Timed Asynchronous Interface Design in Microprocessor-based Systems

M. A. Escalante and N. J. Dimopoulos

Department of Electrical and Computer Engineering
University of Victoria

Abstract

Asynchronous techniques have been rediscovered as an
attractive alternative to digital design due to the devel-
opment g[’ new formalisms such as signal transition
graphs, CSP programs, and event labelled structures.
Until recently the main research thrust was expended in
the area of delay-insensitive circuits for which only
sequence and not timing is sufficient to describe a sys-
tem’s behaviour. In this paper the design of interfaces in
microprocessor-based systems is explored in the context
of a imed asynchronous design. An extension of signal
transition graphs is used not only to specify the timed
behaviour of the interface protocols Jound in micropro-
cessor chips but also to design the interface control
path. A methodology is proposed to deal with the time
constraints that crop up in the protocols of ordinary
microprocessor families: environmental constraints are
transformed into constraints on the interface delays
which can be found ahead of the implementation stage.
A physical implementation of the interface is correct if it
satisfies such set of interface path delay constraints.

1 Introduction

The design of microprocessor-based systems differs
from the VLSI approach in that off-the-shelf micropro-
Cessor com nits are used as the basic building blocks
instead of silicon. The final objective is not the synthesis
of logic functions that implement the system but the
design of interfaces to glue the components that com-
prise the system. This is called the interface design
problem.

Design automation is desirable not oaly to eliminate
errors during the clerical tasks of the design process but
2lso to keep up with the technological drive that is pro-
ducing new chips at an unprecedented rate. One way to
bridle the complexity is to decompose the design prob-
lem into several phases which only require to look at
part of the information at a time. A top-down approach
to design in which the final system is obtained as a
sequence of successive refinements from the initial sys-
tem specifications is attractive mainly because it allows
the desi to concentrate on the important issues at
some pﬂg of the design process while hiding the
unnecessary details.

In this paper we propose a methodology to break
down the interface desiix problem into two simpler sub-
problems, an interface design phase in which the logical
design of the interface is carried out and an interface
implementation phase in which a physical design is pro-
duced. The main contribution of this paper is a proce-
dure that, during the design phase, computes a set of

constraints on the interface path delays using the envi-
ronmental time constraints specified by the interface
behaviour of the microprocessor campornents. In this
manner, such a set of constraints can be used to detect
design problems in advance of the implementation (i.e.
negative path delays), to guide the implementation
phase (ie. time-driven partitioning, placement, and
routing), and to verify that the implementation timed
behaviour of the final interface circuit satisfies the
design constraints.

In section 2, related work is surveyed in two direc-
tions: the automation of the design of microprocessor-
based systems, and the new deve opments in asynchro-
nous digital design. Basic concepts are introduced in
section g‘ In section 4, the interface design problem is
briefly discussed. Section 5 outlines a procedure to cope
with time constraints: environmental constraints are
transformed into constraints on the interface path
delays. This paper concludes with the final remarks and
future work.

2 Related work

A microprocessor-based system can be viewed as a col-
lection of components which operate independently of
one another, sometimes peeding to synchromize and
communicate with the rest of the system through com-
munication structures called buses. The interface design
problem arises during the system integration design
phase when components need be amalgamated into one
entity. The design of such an interface often involves not
only matching the physical and electrical levels of the
signals but also coaverting protocols.

MICON developed at CMU [1] is an expert system
that designs single-board computer systems from sys-
tem level specifications such as type of application, cost,
throughput, etc. MICON uses the system specifications
to select components from its component database. A
design cycle is defined such that the CPU, memory and
/O devices are chosen in such order.

MICON solves the interface design problem by stor-
ing in its component database complete subsystems
called templates which contain not only a basic compo-
nent (ie. CPU, memary, [/O device) but also the addi-
tional glue logic to interface it to predefined
communication structures called generically Micon
usedbusesb A Micon bus follo;vs clos:fly the standarm
y & microprocessor family of components.
the CPU has been selected, the other component tem-
plates are chosen from the group of templates sharing
the same Micon bus. Then for, say, a memory chip there
are as many templates as Micon buses. The MICON

design process is then reduced to choosing the appmi-
ate subsystem aggregates and connecting them tog .
Finally MICON outputs its design as a nelist to other
VLSI tools that carry out the physical design.

Although in MICON the interconnection of compo-
neat templates is straightforward, the updating of the
component database presents a problem because as the
number of devices n grows, the number of templates
that need be stored in the general case! is O(n). A sim-
plification in the design of single-CPU systems is to
limit the Micon buses to the number of CPU buses. The
number of templates for memory and I/O devices is then
reduced to O(m), where m is the number of CPU’s in the
system [1].

In DAME [5] we suggest that a finer grain modelling
of components can prove helpful in reducing the uncon-
trolled growth of the component database: The compo-
nents’ interface behaviour is represented by interface
protocols. Thus protocol templates are used instead of
component templates. Because there are but a limited
number of protocols, fewer general design rules are
needed to cope with the interface design problem. In
addition, systems with more complex architectures than
single-CPU boards can be designed.

An interpreted Petri npet called signal transition
graph (STG) has been proposed in the literature to rep-
resent behaviour of asynchronous digital circuits [4, 12].
Nodes in the graph correspond to signal transitions and
links between nodes describe a precedence relation
between transitions. STG's were first applied to delay-
insensitive designs, in which unbounded positive finite
delays are associated with the links. Several synthesis
procedures have been developed that solve the synthesis
problem of circuits described by STG's. The traditional
problems of asynchronous circuits, namely races and
hazards, can be analyzed and dealt with using the new
techniques [6]. Recently STG's have been extended to
describe timed (i.e. delay-sensitive) asynchronous
circuits [9].

Other work has been done in the ification and
design of the interface control circuitry (10, 2, 3]. In this
paper the effect of time constraints in the interface
design in microprocessor-based systems is considered.
The time constraints specified by the interface’s envi-
ronment are converted into constraints on the interface
path delays. The interface design problem is posed as
the logical design of the interface, represented as a
timed STG describing constraints on the interface path
delays, followed by its physical implementation. Any
correct interface implementation must satisfy the set of
constraints on the interface path delays.

3 Protocol specification

Microprocessor components transfer information in the
form of signals through wires that connect their ports.
Input ports accept incoming signals generated in ou
ports. A protocol enforces the correct transfer of infor-
maﬁonbydeﬁningtheoxderandﬁmingdelememary
operations called actions. Signal transitions are used to
encode the actions. We use an abstraction of STG's to
express the behaviour of component interface protocols
action graphs [S]. After the interface design is

1. Each component has a different interconnection.

produced as the combination of the action graphs of the
components to be interconnected, the merged action
graph is transformed into a timed STG.

3.1 Ports, signals and signal transitions

Ports are designated by unique names. Input port names
are written as g, b, ¢ while output names are written
as a, b, c. Signals carry the v ues of ports through
wires. Let X be a set of m input ports and Z the set of n
output ports of a circuit. The set of signalsisY = X U Z.
The alphabet A = Y x {+.-} is the set of all (binary)
signal transitions”. A signal transition {g, +}, written
g+, indicates a positive transition of the signal valve at
input port g. Signal transitions a+ and a- are called
opposite transitions. When the type of transition is not
important we use the notation a! to stand for a+ or a-.
Delays are modelled by using different signal transi-
tions at the ports connected via the module in question.
A module may be a wire, a buffer, or logic. For example
a wire delay is shown in Figure 1. The two signal transi-
tion frames are the initiation of an ocutput signal transi-
tion in the sender and the reception of the corresponding
input signal transition at the receiver. The only assump-
tion made is that signal transitions occur instantaneously
grtl;zté%h they may take a finite time to propagate

Wirss.

Figure 1. Wire delay model.

32 Signal transition graphs

STG’s are Petri nets whose transitions are interpreted as
siﬁmﬂ transitions. A marked Petri net [4] is a quadruple
PN = (T1, Pl F, M,) where Tr is a non-empty set of tran-
sitions, P/ is a non-empty set of places, F < (Tr x PI) U
(PIxTr) is the flow relation between transitions and
places, M : Pl - N is the marking function (N is the set
of natural numbers) which assigns tokens to places, and
My, is the initial marking. A transition & € Tr is enabled
by a marking M if all its predecessor places have at least
ane token. Every enabled transition may fire. After a
transition fires, a new marking M" is obtained from M by
removing one token from each predecessor place of tr
and adding one token to each successor place of tr.

An STG[6] is a triple (PN, Y, A) where PN is a
marked Petri net, Yis a set of signals, and A: Tr 5 A is
a labelling function which associates each tr € Tr of the
Petri pet with an a/ € A.

A binary relation P (for precedence) on the set of
signal transitions A can be de as follows:
a! P b! iff a! immediately precedes b!,
i.e..a!Pb!:v[—Ec!GA:a!Pc!Ac!Pb!]
The pair (A, P) is a digraph where A is the set of
nodes, P is the set of links, and there is a link from a! to
b! iff a! P bl. Nodes and links in the digraph can be

2. The transition set can be naturally extended to describe multi-val-
ued signals [13]. For example a signal could be in one of three possi-
ble states: asserted, negated, and tri-stated.

associated with transitions and places of a Petri net
respectively. The resulting Petri net is a marked graph,
which generates the class of conjuctive STG's [4]. Thus
a conjuctive STG can be represented as the u}ple
(A, P, M,)) where A is the set of signal transitions, P is
the precedence relation, and M, © P* is the initial mark-
iqg. Concurrency can be expressed with conjuctive
STG’s but not choice. In this paper we only consider the
simplified conjunctive model of STG's.

Although the design of a delay-insensitive micropro-
cessor has been reported in [8), most microprocessor
components nowadays use delay-sensitive protocols. To
express time, a label t=[¢,,. 1,.] is associated with
eachlink30ftheSTGthat8531gnsaminimumanda
maximum time value to the occurrence of b! after a!
whenever a! P b!. Thus, in the underlying Petri net of a
conjuctive timed STG, when a transition fires the token
assigned to a successor place remains there only during
interval ¢ after the transition.

In & pure causal link, the associated time label is
[0.). Frequently labels are under-specified, in which
case the unspecified minimum/maximum values are
assumed to be zerofinfinite. The label of a link with onl
a minimum specified time is [tpip. ©). Likewise a li
with only a maximum specified time has an associated
label [0, t(m,] The values of both ¢,,, and ¢,,_ are noc-
negative (real) numbers.

3.3 Path length

Because labels represent time intervals, interval arith-

metic facilitates label manipulation needed in the

constraint satisfaction procedure discussed in section

5.3. Let I be the set of real compact intervals. In general

an interval operation ® is defined by [11]:
a®P={a®b:a€ arnbe B}

fora.f€ fanda, be R.

There exist exact values a, b in the interval of the
operation, but we are interested in finding the smallest
interval @ ® B which contains all possible 2 ® b. In par-
ticular the calculation of interval addition, subtraction,
minimum and maximum are given by:

a+ﬁ-[amin+ﬁmn'%+ﬁm]

a_ﬁs[anun—ﬁmramx-ﬁm’n]

Mi"(av B) = [mzn(a,,,,,,. ﬁlmn)- ml"(amx' ﬁmx)]

mazx (. B) = [max (@i, Bpin), MAX (Cmger Brnss)])
where interval a is [a,,,. O,n.,). The minimum and max-
imum values of interval a are generically denoted a,,.
Observe that subtraction is not the inverse operation of
addition, as it is the case in rea/ arithmetic.

The length of the path p from transition a! to transi-
tion b!, wnitten Ip, in a conjunctive STG is computed
recursively as follows:

* Ip =[0,0] if p is the empty path (ie., a! = b!)

* Lp = ¢ if there exists only one link between a! and
b! whose label is ¢.

* Yp=max (Ip; Lp,. ..)if p=p, I p,1 . Where p;
are all the paths that share the same fork and join transi-
tions a! and b!.

3. Although for conjuctive STG's each time label can be thought of
being associated with a place of the marked graph, in general a label is
assigned to each link from a place 10 a transition or from a transition to
a place of the underlying Petri net (cf. {14]).

. 2p-£p,+...+££; if pm=p,-..-p, such that
there are no parallel paths between the heac{'ofp, and the
tail of p; for all i, j through the path.

'I‘hema.xtermsinthelengthofapathcanposedd
parallel subpaths arise because a join transition is
enabled until all of its preceding transitions have
occurred. In a disjunctive S’F G, where the join transition
is enabled when one of its preceding transitions has
occurred, the max terms in the computation of Ip are
replaced by min terms (cf. {7]).

Paths with conflicting time labels indicate inconsis-
tencies in the specifications. For example in Figure 2 the
interval relation (¢, + £;) N (¢; + £,) # ¢ must be satisfied.
otherwise both paths would have incompatible time
duration, i.e. the duration from a! to d! through b! would
be outside the range of the path through c! and since
tokens remain alive only for the duration indicated by
the path length, d/ could never be executed.

Figure 2. Checking conflicting paths.
4 Interface design

In this section we summarize our approach to the inter-
face design. The interested reader is referred to [5) for
more details.

4.1 Interface design problem

Given a system specification which includes type of
application, throughput, cost, etc., the designer must
decide the system'’s architecture, choose the appropriate
componeats and come up with the necessary glue logic
to incorporate the components into the system. The
interface design problem arises when several compo-
nents are to be interconnected together to build up a sys-
tem.

In the case of microprocessor-based systems. one
can decompose the general camponent interconnection
problem into the individual connections between a com-
ponent and a bus (see Figure 3). A bus can be the CPU
bus, a standard system bus (ie. VMEbus. Futurebus,
etc.) or any of a hierarchy of buses that may appear in
the system. For example, incorporating memory to a
single-CPU system can be viewed as the interconnec-
tion between the memory chip and the CPU bus.
%Uwge that a CPU is interfaced trivially to its own

us.

Component

(device)

Figure 3. Interface design problem.

Protocol descriptions of hardware components are
aften offered by the manufacturer in the form of timing

diagrams [2, 3). Figure 4a shows the timing diagram of
a fully interlocked handshake bus arbitration protocol. A
potential master requests the bus from the arbiter by
asserting its REQ signal. When the input signal ACK is
asserted by the arbiter, the requestor can take over the
data transfer bus DTB. At the completion of the transfer
the master gives up the bus by negating REQ and waits
until the arbiter has negated ACK to initiate another
cycle. Figure 4b shows the action graph corresponding
to the timing diagram. Nodes in the graph represent
actions of the protocol and links describe the precedence
between actions. The token indicates the initial state of
the protocol. Observe that it is not clear from the timing
diagram if r+ must wait for transition g-. The graph for-
malizes the ambiguous behaviour of the protocol by
ascertaining that r+ occurs only after g-.

(a) ® \ g

Figure 4. Fully interlocked handshake bus arbitration
protocol: (a) timing diagram; (b) STG.

4.2 Merging signal transition graphs

Consider the interface between two devices shown in
Figure 5. Each device has one input signal { and one out-
put signal 0. The structural description (in Figure 5a)
shows that the output port in one component is con-
nected to the input port of the other component. Cannec-
tor or C blocks are intended to leave the conditioning of
the electrical and logical characteristics of the signals to
a subsequent design phase.

Interface

et

(a)

(b)

Figure 5. Ideal interface: (a) structural description; (b)
behavioral description.

The behavioral description of the interface describes
two handshake protocols. The thick links represent the
paths through the C blocks and wires. There is a delay
associated with each interfacing link. In this example, a
pair of delays 5, 0’, is associated with each interface
path through the C blocks. In general, the values of a
Eﬁ of delays may be different. This is the case when a

ink represents combinational logic which may re
with different speed to positive and negative transitions.

Although a classification of link labels is deferred
until section 5.1, observe that t and 6 labels in Figure 5b
correspond to propagation delays through physical cir-
cuitry, while A labels indicate required times that must
be satisfied for correct operation. The u.rgose of the
interface links is to provide physical patﬁs om output
to input transitions (i.e. to generate the input signals)
that ¢ the transition sequence in the original pro-
tocols, while satisfying the constraints.

5 Time Constraints

In this section we suggest & methodology to deal with
time constraints using interval arithmetic. A procedure
is proposed that determines a set of inequalities on the
interface path delays which parameterizes the timed
control behaviour of the interface. First we present a
classification of labels.

5.1 Timing label classification

Time counstraints play an important role in the interface
design phase due to the restrictions they impose on the
control sequence of the protocol. We distinguish
between constraints impose‘dP by the interface environ-
ment which are specified by the protocols of the devices
to be interconnected, and constraints required by the
interface basic building blocks such as the set-up and
hold time of a latch used within the interface. Only envi-
ronmental constraints are considered in this paper.

Links labels are classified according to the source of
their minimum and maximum time values into the fol-
lowing groups:

¢ 1 labels which represent known operational times
in the component protocols (i.e. the time an output port
takes to change in response to an input txansitiortS.

¢ b labels which represeat interface path delays

¢ A labels which represent environmental con-
straints an the protocols for proper operation, such as
set-up and hold minimum times to avoid metastability.

* ¢ labels are specialized A causal labels between
opposite input transitions, which are discussed further in
section 5.2.

Links are named after their time labels. Thus a link
with a < label is called a t link. Because < and & links
have a correspondence to physical paths within a com-
ponent or the interface respectively, they are called
operational links. The 1 and b labels are intervals due to
variations in the device fabrication process, operation
temperature, etc. On the contrary, A and € links are vir-
tual links in the sense that there is no silicon associated
with them, and are called constraint links.

52 Constraint satisfaction

Because there are no physical paths associated with con-
straint links but they represent time restrictions that

must be met for pr operation, their head and tail
transitions must also be connected by paths with 1 and
links which provide a physical path between the two
transitions. Thus it is possible to check if the physical
path satisfies the restrictions imposed by the constraint
link. Paths consisting only of operational 1 and & links
are calied implementation paths.

Two situations may arise in satisfying a constraint
link with implementation paths as depicted in Figure 6.
If the head of the caostraint link (a!, b!) is an output
transition (Figure 6a), there must be one implementation
path from a! to b!, otherwise it would be impossible to
ensure the time precedence implied by the constraint
label. Similarly if the head a! of a constraint link (a!, b!)
is an i gut transition, there must be an output fork tran-
sition from which two implementation paths can be
drawn to a! and b! (Figure 6b). The former situation is a
special case of the latter in which the head of the con-
straint link is the fork transition and the implementation
path preceding the constraint link is the empty path. In
both cases there are two implementation paths from the
fork transition to the head and tail of the constraint link,

called ph and pt paths respectively.
T AN
Bus Ipt LW Lot
b (a) D'ajnzxi‘xtlion : (bi‘;‘Pl‘B“af}'g’ﬁ"“

Figure 6. Implementing A links: (a) output-to-input A

link; (b) input-to-input A link.

To satisfy the constraint link, the interval difference
between the occurrence of the tail and the head transi-
tion of the constraint link must be within the interval
specified by the constraint label. The occurrence of the
head and the tail transition are controlled by the ph and
pt paths. Thus the constraint satisfaction can be written
as the interval expression Ipt—-XIph © A, where a A
constraint link is assumed for the sake of illustration
without loss of genperality. Two inequalities of the form
Bin S fo®ipn. T) a0d A 2D, . 7;,,) are produced
from the interval expression, where tions f; contain
only sums and subtractions of linear and max terms on
the minimum and maximum values §,,.7;, of the
labels of operational 6 and < links.

If the constraint link is causal (A = [0.%)) and the
path ph is empty, both inequalities are satisfied for finite
operational delays. Therefore a causal output-to-input
constraint link can be satisfied by any parallel imple-
mentation path. Mareover the A,,,, inequality is always
satisfied for a causal constraint link even if path phis
not empty.

For example coansider the interface between a CPU
and a memory with only write ation shown in
Figure 7. The interface consists of two C blocks as
shown in Figure 7a. The STG describing the CPU proto-
col contains only output signals. Thus all its link labels
are T labels. Conversely the labels in the STG corre-
sponding to the write-only memory chip are A and ¢
labels. One can identify A, and A, as the set up and hold

times resrectivellﬁeof dat with respect to wr-, the transi-
tion that latches the data. A, is the width of the wr pulse.
Usually only minimum values are given to these A
labels. By making the appropriate interface connections
(thick lmis in Figure 7b§pthe input transitions of the pro-
tocols are generated from the output transitions. The
ordering of transitions in both protocols is preserved iff
the operational times satisfy the constraint links.

The constraint link A, in Figure 7b is an input-to-
input A link. Two implementation paths to the head and
the tail of the constraint link are the path from wr+ to
wr+, and the path from wr+ through wr- to wr-. There-
fore 1, +6') = 8, € A; which can be expanded into two
inequalities: 8’y e = By pmin & A pmay = T3 mar a0 &'y,
= 81 max S A min ~ Ty min. The interval expressions for the
constraints 4,, Ay, e, and g3 are 7, + 1, + 5, - 5, T A,,
T3 +6'2"6'1 §A3, T4+62-6'2g [O,°°), and 13+T‘+
1, +8, - 0| & [0.) respectively.

(b)

Figure 7. Simple memory-to-CPU interface: (a)
structural description; (b) behavioral description.

§5.3 Time constraint satisfaction procedure

In this section we propose a procedure that, given a
merged graph representing the interface design. obtains
a set of inequalities on the minimum and maximum val-
ues 5, ,, of the 8 labels.

The minimum and maximum values of the opera-
tional labels are assumed to be known, and they must
satisfy the constraint labels. However before the inter-
face implementation is carried out, the & labels are
unknown. Therefore we rephrase the problem of time
constraint satisfaction in the interface design to that of
finding the b intervals that satisfy the constraint links. In
this manner it is possible to determine the interface’s
permissible delays in advance of its implementation. For
instance, 8 negative maximum time in a § label indicates
a design problem which requires a redesign of the inter-
face. Also suitable technologies can be selected to carry
out the interface implementation based on the tightest
required interface delays. The timing interface verifica-

tion task can also be facilitated by highlighting the criti-
cal delay paths.

Both A and 1 labels are used to determine the allow-
able ranges on b as delineated by the following:

Procedure: Given a cogjuctive timed STG repre-
senting the interface design do:

1. For each A or ¢ link in the graph do until all output
fork transitions are considered:

e Find an output fork transition from which two
implementation paths ph and pt can be drawn to the
head and tail of the constraint link.

» Write the interval expression Ipt- Iph S Aore.

2. Expand the interval expression into inequalities in
which the variables are the minimum/maximum values

b; of the & labels.

3. Write for each 5 label in the graph the inequalities
ﬁi,20§nd55M26,mn.

Let & be a vector containing the n unknown values

of 5, ,. The result of applying the above procedure is a
set of non-linear inequahities on & due to the presence of
the max terms. Ev inequality containing M max
terms, each holding m, (i = 1, ... , M) linear expressions
e, (k=1,..,.m)on b, can be substituted by }_ (m; - 1)
linear inequalities by selecting a winner w; among the
linear expressions for each max term and writing w; 2 ¢,
fork=1,...m Ak#+i A winper choice for every max
term defines one particular solution, whose correspand-
ing expanded set of N linear inequalities can be written
as the linear program [3]:

max f(5)

Subject to AD 2 b
where f(5) is the null function, with A € R¥*" and
b € R". The solution of the linear program is the set of
feasible points which, when non-empty. is bounded by a
convex polytope. There are in total [1 m; particular solu-
tions. A solution vector 8* must satisfy at least one of
the particular solutions.

Unfortunately the complexity of reduction sketched
above is not polynomial-time on the number of max
termas in the system of b, ,-inequalities. In [7] a similar
problem was also shown to be NP-complete in which
the interface timing is verified assuming that t and 5 are
known subject to a set of constraints A.

6 Conclusions

In this paper a procedure that determines ahead of the
physical implementation the time constraints on the
internal delay paths of the interface was proposed. The
procedure transforms the environmental constraints rep-
resented by A constraints and € constraints into § inter-
face constraints. Such set of & delay constraints can be
used to: i) detect inconsistencies in the design before
attempting to convert it into silicon (i.e. a negative delay
is required in one path of the interface); i1) guide the
lower synthesis stages (i.e. time-driven partitioning,
placement, and routing); and iii) verify that the final
implementation operates correctly.

With the procedure described in this paper it is pos-
sible to separate the integration design phase, that amal-
gamates the microprocessor com ts into a single
system by designing interfaces, into a logical design
subphase and an implementation subphase. A timed

STG graph is the intermediate representation between
the two subphases.

This work attempts to bridge the gap between the
trends in design automation of microprocessor-based
systems and the new developments in digital design
techniques which are reaching a common framework to
encompass both synchronous and asynchronous timing
disciplines.

Acknowledgments

We are grateful to Dr. L. Lavagno for enlightening com-
ments oo a previous draft, and to Dr. A. Yakovlev for
bringing [13] to our attention. Also we would like to
thank the anonymous reviewers for their comments and
corrections. This research has been supported in part by
NSERC grants OGP-00041188 and STR-0134222. M.
Escalante has also been supported by a University of
Victoria fellowship.

References

(1] W.P. Birmingham and D.P. Siewiorek, “Single board

computer synthesis,” in ert Systems for Engineering

Design, chapter 5, pp. 113-139, Academic Press, 1988.

(2] G.Borriello and R. H. Katz, “Synthesis and optimization

oé sigltzrfacc transducer logic,” in Proc. ICCAD, pp. 274-277,

1987.

[3] J. A. Brzozowski, T. Gahlinger, and F. Mavaddat, “Con-

sistency and satisfiability of waveform timing specifications,”

Networks, vol. 21, pp. 91-107, Jan. 1991.

[4] T-A.Chu, “On the models for designing VLSI asynchro-

nous digital systems,” INTEGRATION, the VLSI journal,

no. 4, pp. 99-113, 1986.

[5] M. A. Escalante, “Bus arbitration modelling and design

in DAME: An expert microprocessor-based-systems

designer,” M. A. Sc. thesis, University of Victoria, 1991.

(6] L.Lavagno, “Synthesis and testing of bounded wire

delay asynchronous circuits from signal transition graphs,”

Tech. Rep. UCB/ERL M92/140.

{77 K L. McMillan and D. L. Dill, “Algorithms for interface

timing verification,” in Proc. ICCD, pp. 48-51, 1992.

{8] A.J. Martin et. al, “The design of an asynchronous

microprocessor,” in Proc. Decennial Caltech Conf. on VLSI,
.351-373, 1989.

rg] C.Myers and T. H.-Y. Meng, “Synthesis of timed asyn-

chronous circuits,” in Proc. ICCD, pp. 279-284, 1992.

[10] J. A. Nestor and D.E. Thomas, “Behavioral synthesis

with interfaces,” in Proc. ICCAD, pp. 112-115, 1986.

{11] H. Ratschek and J. Rokne, Computer Methods for the

Range of Functions. Ellis Horwood, 1984.

{12] L. Y. Rosenblum and A.V. Yakovlev, “Signal graphs:

From self-timed to timed ones,” in Proc. Intl. Worksi:)p on

Timed Petri Nets, pp. 199-207, July 1985.

[13] A_V. Yakovlev and A. 1. Petrov, “Symbolic signal transi-

tion graphs and asynchronous circuit design,” Tech. Rep. 395,

University of Newcastle upon Tyne, Sept. 1992.

(14] J.J. Zhu and R. T. Denton, “Timed Petri nets and their

spplication,” in Proc. MILCOM, pp. 195-199, 1988.

