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Abstract—In this work, we present the paraliel implementation of three low-level vision algorithms,
namely smoothing, histogram generation and edge detection by using the Sobel operator on the
Homogeneous Multiprocessor. These algorithms were run on the simulator specifically developed for the
Homogeneous Multiprocessor and the simulation experiments were used to establish the performance of
these algorithms on the proposed architecture.
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1. INTRODUCTION

Many applications in image processing require a large amount of computation, especially if they
involve anything more than the most elementary processing techniques. Multiprocessor
implementation of image processing and pattern recognition algorithms requiring a large amount
of computation offers the possibility of making such algorithms more useful for practical, real-time
applications. The complexity of algorithms is in general a function of the size of the problem, and
the number of transfers between processors. Thus a hardware structure on which such
computations can be performed efficiently requires the availability of communication pathways
linking processors in a pattern that matches the one imposed by the algorithm chosen. One such
architecture is the Homogeneous Multiprocessor [1,3] which is a closely coupled MIMD
architecture providing nearest-neighbor communication.

This work describes the potential applications of the Homogeneous Multiprocessor in low-level
image processing. We shall concentrate our discussion in presenting a brief overview of the
Homogeneous Multiprocessor, the parallelization of some known low-level vision algorithms and
the performance of these algorithms on the Homogeneous Multiprocessor. The performance was
obtained through simulation experiments on the existing simulator for the Homogeneous
Multiprocessor [2].

2. THE HOMOGENEOUS MULTIPROCESSOR AND THE H-NETWORK

As shown in Fig. 1, the Homogeneous Multiprocessor [3] is a tightly coupled MIMD
architecture, composed of N (N > 3) processing elements, N memory modules, N + 1 interbus
switches isolating the processing elements from each other and the H-network which is a fast local
area network used for point-to-point and broadcast mode communications. The architecture is
considered to be composed of two parts: namely the Homogeneous Multiprocessor Proper
incorporating the processors, memories and interbus switches, and the H-network [1].

Each processing element P, owns its local memory module M, and accesses it via its local bus
b;: it also has the exclusive use of the respective network station HS;. The local buses are separated
by the intervening switches s;. These switches provide each processor P; with the ability to access
the memory modules of either one of its two immediate neighbors by requesting the appropriate
switch to close, creating thus an “extended bus”. Also, for I/O or data transfers to/from distant
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Fig. 1. The homogeneous multiprocessor architecture: P = processor; M = memory module; s = bus
switch; FE = front end; BE = back end; SC = Switch controller; b = local bus; T = terminal; MS = mass
storage; HS = H-network station; R/G = bus request/grant.
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processors, each processor may utilize the H-network. Although the H-network could have been
used for data transfers to/from distant processors (especially in the histogram calculation), the
results reported in this work were obtained through the utilization of the “‘extended bus”
communication mechanism. It was felt that this mechanism was considerably faster for short to
medium distances since no task switching is involved. Nevertheless, we expect further improvement
in the performance by employing the H-network for long distance transfers when it becomes
operational.

The Homogeneous Multiprocessor is currently under implementation by using the 8 MHz
MC68000 processor. The performance results reported in this study pertain therefore to an
implementation of the multiprocessor by using the aforementioned processor.

3. IMAGE PROCESSING AND PARALLELISM

The Homogeneous Multiprocessor being a closely coupled MIMD architecture is perfectly suited
for context dependent algorithms. Yet, some frequently used low-level image processing algorithms
such as smoothing, histogram computation, edge detection by Sobel operator can be efficiently
implemented on the Homogeneous Multiprocessor and the computations achieve significant
speedups. In the following sections we shall present the method we used in implementing these
algorithms on the Homogeneous Multiprocessor as well as their performance.

3.1. Image averaging

Averaging (smoothing) operations [6] are primarily used for diminishing noise. The raw image
usually has sharp edges, but it is also noisy and it may contain small spiky artifacts. One of the
most commonly used algorithms for smoothing is local averaging. Given an M x M image f(x, y),
the smoothed image g(x, y) is obtained by averaging the grey level values of the pixels of the
original image contained in a predetermined neighborhood S(x, y) of (x, y):
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where n is the total number of points in the set S(x, y).

This operation is performed for each pixel in the image with the possible exception of the edge
pixels.

We implement the smoothing algorithm on the Homogeneous Multiprocessor as follows. The
M x M image is divided into N strips with each strip having (M x M)/N pixel columns. Each
processor is allotted a strip of the M x M image and smooths the pixels in the strip located in its
local memory using equation (1) above. Each processor needs to communicate with a neighboring
processor only for the calculation of the smoothed image at the boundaries of the strip. This
communication is accomplished directly through the “extended bus” mechanism, as described in
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Section 2 above, and it is transparent to the programmer. Figure 2 shows the plot of the speedup
factor obtained, against processors involved in the computation for two image sizes. The number
of grey levels is fixed to 64 for both cases.

3.2. Histogram generation

A histogram of grey level content provides a global description of the appearance of an image.
The histogram is frequently used in thresholding an image and interactive histogram modification
is useful for enhancing picture quality.

1t is assumed that there are N (N = 2*) nodes in the Homogeneous Multiprocessor. The image
is divided into N strips, and each strip is loaded in the memory of each of the nodes, which calculate
the partial histogram of the region assigned to them in parallel.

The next step accomplishes the merging of the partial histograms. Assuming that there are B
grey levels in the image, the partial as well as final histograms are stored in 1-D vectors each
containing B elements or bins. Pairs of partial histograms are brought in neighboring memory
modules and the corresponding elements are added to form a new partial histogram which
supplants the pair of partial histograms. This is repeated until only one histogram remains.
Normalization is done on the last remaining histogram. This merging is accomplished through a
form of recursive doubling [5,8,9]. Initially, processors Py, ,; 1 =0,1,2,...,(N/2 — 1) merge the
B/2 least significant elements of the partial histograms contained in their own as well as the memory
of their neighbors to the right. Similarly, processors P, , merge the B/2 most significant elements
located in their own as well as the memory of their neighbors to the left at the end of these
operations, nodes Py, , hold the least significant halves of the merged partial histograms, while
their neighbors to the right (nodes P, ,) hold the most significant halves.

Next, nodes P,,,;1=0,1,2,...,(N/4—1) transfer the B/2 least significant elements of their
merged histograms to nodes P, ,, and similarly nodes P, , transfer the B/2 most significant
elements to nodes P, ;. At this point, nodes P, , and P, ; contain partial B-element histograms,
and the process is repeated. The final completed histogram is to be found in node Py;,. Under this
algorithm, the partial histograms are merged on a tree structure of processors embedded on the
Homogeneous Multiprocessor as depicted in Fig. 3.

Observe that as the process progresses, partial histograms are located in nodes that are
progressively further away from each other. Their merging requires the transfer of data between
distant processors. Pipelining is then used to efficiently transfer long vectors between distant
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Fig. 2. Speedup vs the number of processors for the distributed averaging algorithm as obtained through
simulation.
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Fig. 3. An example of the distributed merge algorithm on 16 processors.
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processors. Thus, in order to transfer a B-element vector from processor P; to processor P;,
the intervening processors form a pipeline through which the B-element vector is transferred
in O(j —i+ B) time units. Since neighboring nodes communicate by accessing each other’s
memory modules, it is possible to form a pipeline consisting of alternate nodes. Each node in the
pipeline moves data from the memory nodule of its left neighbor to the memory of its right
neighbor. The following example can be used to clarify the strategy. Consider the transfer of a
vector of B elements from node 5 to node 8 (cf. Fig. 3). The transfer is accomplished by forming
a two-stage pipeline consisting of nodes 6 and 8. Thus node 6 transfers data from the memory
module of node § to the memory module of node 7 while node 8 completes the pipeline by
transferring the data from the memory module of node 7 to its own. Assuming that transferring
an individual element between two memory modules which can be accessed by the same node
requires f, time units, then the transfer of the B-element vector as described previously, requires
(B + 2 — 1)t, time units [4]. This result can be generalized as (B + [(j — )/27— ¢, for transfers
between nodes i and j.

The histogram merging algorithm outlined above is carried out in log N iterations. Each iteration
consists of a partial merging step requiring B/2 additions and B/2 transfers, plus B/2 transfers
needed to locate the merged histogram in the appropriate node. Observe that after iterations 2 to
log N —1 the resulting partial histograms are located in nodes which are separated by 2m-2
intervening nodes, where m is the iteration number. Thus, the resulting pairs of B-element partial
histograms are transferred through the 2™m-2 intervening nodes to pairs of adjacent nodes and
become ready for the subsequent merging iteration. These transfers use the pipelining method as
discussed earlier, and are accomplished in (B + 2¢"~2 — 1)t,, time units. Thus, if we denote by 1,
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Fig. 4. Speedup vs the number of processors for the distributed histogram algorithm as obtained through
simulation and analysis.

the time required to perform a single addition, then the time required for the histogram merging
algorithm can be calculated ast
log N logN— 1§

Turc = 2, (L. +2t,)(B/2)+1, ), [B+2m"2-1]
m=1 mx=2
B N
= (z, 5>1og N +1, [Z+ (2B — )log N — 2B + 1] )

Given now an M x M image, the time required to obtain the N partial histograms on a
Homogeneous Multiprocessor consisting of N nodes is given as Tysr = M?/Nt,. Thus, the total
time required for the parallel algorithm is obtained as:

2

M
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Similarly, the total time required to obtain the histogram of an M x M image on a uniprocessor
is given as T = M?t,. The speedup factor is therefore obtained as:
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where y =1, /t, is the ratio of the transfer over the add times. The efficiency of the algorithm is

given as:
MZ

—5 - : ©)
M+—2—NlogN +7y T+(28—1)NlogN+N(l—28)

e =

2l

11t is assumed that the time spent to merge each of the B/2 elements of two partial neighboring histograms is ¢, + £, which
corresponds to the transfer of one element from the neighboring memory module plus the addition to the corresponding
element in the local memory module. In addition, B/2 elements need to be transfered to a neighboring memory module
at the conclusion of the addition step.
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Fig. 5. Speedup vs the number of processors for the distributed his-
togram algorithm as obtained through analysis.

Figure 4 shows the speedup factor, obtained through both simulations and equation (2) against
the number of processors, for histogram calculation for images of varying sizes. The number of
grey levels is set to 32.

3.3. Edge detection using the Sobel operator

Edge detection plays an important role in segmenting an image. Some of the edge detection
algorithms are very attractive for parallel implementation. Mask operations are popular among
them. The Sobel mask operator for example, was found effective in automatic visual inspection
of spring assemblies [7] among other applications.

The Sobel operator was designed to approximate a discrete gradient function by appropriate
directional mask operators [6]. The Sobel operator estimates the partial derivatives in four
directions and is given in Fig. 6.
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Fig. 7. Speedup vs the number of processors for the distributed edge detection algorithm (using the Sobel operator) as
obtained through simulation.
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Each edge detector is described by a set of templates whose application on an intensity function
f(x,y) results in a set of gradient arrays. The above procedure can be implemented in the
multiprocessor as described below. The M x M image is divided into N strips with each strip having
(M x M)/N pixel columns. Each processor calculates the gradient arrays of its strip, i.e. the
corresponding edge enhanced values of each pixel. In a similar fashion as in smoothing, the edge
enhanced values of the strip boundaries are calculated based on the values of the pixels in the
neighboring processors. This is repeated for all the directional mask operators.

The partitioning algorithm is similar to the one used in smoothing. Figure 7 shows the speedup
factor against the number of processors for two image sizes. The number of grey levels is fixed to
64 for both cases.

4. SPEEDUP CALCULATION FOR LOCAL OPERATIONS

Several image processing algorithms can be carried out by repeating a set of operations on
well-defined neighborhoods of each pixel. Examples of such algorithms are the local averaging and
edge detection algorithms mentioned previously. These algorithms can be effectively ported on the
Homogeneous Multiprocessor, by assigning to each of the N nodes a strip of size M x M/N. For
this analysis, we assume that the width of the neighborhood is smaller than twice the width of the
strip of pixels assigned to each processor. This condition guarantees that only neighboring strips
are participating in the local calculations. Since individual pixels belong to several neighborhoods,
it is most economical to replicate the values of the pixels from the two adjacent strips needed for
the local calculations. If w were to denote the width of a neighborhood, then one would replicate
the pixels contained within strips of width (w — 1)/2 adjacent to the current slip. Thus, each node
would transfer [(w — 1)/2] x M pixels from each adjacent node. Denote now by t,, the time
necessary to perform the set of operations on the pixel neighborhood, and by ¢, the time needed
to transfer a single pixel from a neighboring memory module, then the achievable speedup is
calculated as follows.

The time to carry out the algorithm on a uniprocessor is given as T = Mz, while the execution
time for the Homogeneous Multiprocessor is:

2 -1 M2
Tpar = N I, +2 w—z— M, = A L, +(w— 1My, .
Therefore, the speedup is given as:
T M N
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Since M >N and 1, ~(w —1)%, it is easy to see that the speedup is larger or equal to
N/t +(w —1)"" and it approaches N for sufficiently large M and w. This has been confirmed
experimentally as can be seen by the linear behavior of the speedup vs the number of processors
in Figs 2 and 7.

If the number of processors N is large, it is possible that for large local operators, pixels in one
strip will need to access pixels which are located in strips on processors which are not immediate
neighbors to the current processor. This happens when N exceeds 2M /(s — 1). In such cases, one
would simply replicate the strips from the neighboring memory modules at an extra cost of 2Mwit,,
and use the same algorithm. The speedup would still be linear with the number of processors, albeit
with a slightly lower slope than before.

5. CONCLUSIONS

In this work, we presented the performance of the following low-level vision algorithms:
(1) smoothing; (ii) histogram generation; and (iii) edge detection by using the Sobel operator.
The results were obtained through simulation experiments run on the simulator developed for the
Homogeneous Multiprocessor, and are presented in Figs 2, 4-7.

As can be seen in Figs 2 and 7, both the smoothing and edge detection algorithms show an almost
linear speedup with the number of processors involved. This was expected, since these algorithms
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require very little interaction between processors, apart from the occasional exchange of the values
of the pixels located at the boundaries of the strips allocated to each of the processors, and it agrees
with equation (6) predicting the behavior of the speedup for local algorithms implemented on the
Homogeneous Multiprocessor.

Also, almost linear speedup was obtained for large images of the histogram presented in Section
3 above. Figures 4 and 5 present substantial agreement of the theoretical calculation [as given by
equation (4)] for the speedup with that obtained through simulation.

As can be seen in Fig. S, the speedup for the histogram generation algorithm slows down, and
as a matter of fact it reverses itself when a large number of processors are used. This was also
expected, since the algorithm used for the distributed merging of the partial histograms, requires
O(n) transfers. Hence given the number of grey levels in the histogram, there exists an optimum
number of processors beyond which no substantial speedup gain can be achieved.

Our distributed merge algorithm could be improved if the pipelined transfer of the partial
histograms started immediately after the merging of the neighboring histograms. Further
improvements may be attained if the H-network were to be used instead of the pipelining
mechanism for long range transfers for which the transfer time over the H-network is less than
the transfer time obtained through the pipelining mechanism.

Nevertheless we were able to show substantial speedups for both cases of local algorithms (such
as local averaging and edge detection) as well as nonlocal ones (e.g. histogramming) and for
standard image sizes.
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