
Chapter 14

COMMUNICATION LATENCY HIDING IN

RECONFIGURABLE MESSAGE-

PASSING ENVIRONMENTS:

QUANTITATIVE STUDIES

Ahmad Afsahi, Nikitas J. Dimopoulos
Department of Electrical and Computer Engineering
University of Victoria, PO. Box 3055, Victoria, B.C. VBW 3?6
Canada
{ aafsahi, nikitas } @ece.uvic.ca

Abstract Communications overhead is one of the most important factors affecting per-
fonnance in message-passing multicomputers. We present evidence that there
exists communications locality, and that this locality is "structured". We propose
a number of heuristics that can be used to "predict" the target of subsequent com-
munication requests. Communication latency is hidden through reconfiguring
the network concurrently to the computation. Quantitative results obtained from
standard parallel benchmarks run on IBM SP systems are also presented.

Keywords: Message-Passing, Latency-Hiding, Communication Locality, MPI, Reconfig-
urable Interconnects.

I. INTRODUCTION

Message-passing multicomputers are composed of a number of computing
nodes that communicate with each other by exchanging messages through their
intercon- nection networks. Optics is ideally suited for implementing inter-

connection net- works because of its superior characteristics over electronics
(Yayla et al., 1998; Nordin et al., 1992). Various optical interconnection net-
works including the works in (Bourdin et al., 1995; Louri et al., 1994) have

been proposed.
In free-space optical interconnects, optical signals can propagate very close

to each other and pass each other without interaction and may reconfigure

III

112 HIGH PERFORMANCE COMPUTING SYMPOSIUM 1999

Beam router.\'
~

~
Potential link.\'

Effective links
Nodes

Figul"e 14.1 RON (k. N), a massively parallel computer interconnected by a complete tree-space
optical interconnection network.

on demand (Marchand et al., 1997). Free-space optical interconnects use

space (vacuum, air or glass) for optical signal propagation and include the

optoelectronic device(s) for photon generation or modulation, and the optical

beam router to redirect or distribute optical beams.

Definition: A reconfigurable optical network, RON (k. N), (Afsahi et al.,

1997) consists of N computing nodes with their own local memory. A node

is capable of connecting directly to any other node. A node can establish k

simultaneous connections. These connections are established dynamically by

reconfiguring the optical interconnect. The links remain established until they

are explicitly destroyed.

A simplified block diagram of the network is shown in Figure 14.1. Messages

are sent using circuit-switching. Each node can simultaneously send and receive

k messages on its k links, one message on each link, (the k-port model), or

exactly one message on one of its links (the single-port model). Full-duplex

communication where a node can send and receive messages at the same time

is supported.

Various implementation technologies exist to embody the above abstract

model, including computer generated holograms and deformable mirrors for

switching, frequency hoping for coding, wavelength tuning for transceivers,

VCSELs and SEEDs for photon generation or modulation We assume that

one or more of the technologies outlined above will be used to implement

such an interconnect. Under such an implementation, the various overheads

associated with the reconfiguration of the network are lumped together as the

reconfiguration delay d.

The communication time T required to send a message from one node to

another. In the linear model, the communication time depends, among other

things, on the length of the message, and it is formulated as T = ~ + ImT

where lm is the length of the message, T is the per unit transmission time, and

ts, the setup time, is the time req:!.lired to prepare the message, such as adding

a header, a trailer, memory copying etc. For our case, we amend the linear

model by explicitly including the reconfiguration delay d that is necessary for~

Communication Latency in Me.~sage-Passing Environment.~ 113

a node to configure a link that would connect directly to its target node. The
transmission time then becomes T = d + is + ImT. The time on the fly, ImT
, is negligible compared to the setup time, fs, and the reconfiguration delay, d.
In the current generation of parallel computer systems, the setup time is several
IOs of microseconds (Dongarra et al., 1997). Several researchers are working to
minimize this cost by user-level messaging techniques such as active messages
(Eicken et al., 1992) and fast messages (Pakin et al., 1995). In this work we
are interested in techniques that hide the reconfiguration delay, d.

We shall assume that a node sends a message to another node by first
establishing a link to the target (hence the reconfiguration delay d) and then
sending the actual message over the established link. It is obvious that if the
link is already in place, then the configuration phase does not enter the picture
with a commensurate savings in the message transmission time. The main
objective of this work is therefore to establish efficient algorithms where the link
establishment costs are minimized. The stated objective can be accomplished,
if the target of the communication operation can be "predicted" before the
message itself is available.

If the communication pattern is regular, then it is possible to determine the
destinations and the instances that these shall be used. We have developed such
algorithms for broadcasting (Afsahi et al., 1997). However, if the communi-
cations pattern is not known, regular or simple, the above approach cannot be
used.

In the context of the shared memory programming, there are several works on
hardware-controlled and software-controlled prefetching of the next shared data
request (Mowry et al., 1991; Sakr et al., 1997; Zhang et al., 1995). T. Mowry
and A. Gupta (Mowry et al., 1991) have used prefetching, multithreading, and
caching to hide/reduce the latency in shared memory multiprocessors. M. F.
Sakr et al. (Sakr et al., 1997) have used time series and neural networks for the
prediction of the next memory requests in shared memory multiprocessors.

In the context of message passing programming, many parallel algorithms
are built from loops that include computation and communication phases. This
has motivated researchers to find communications locality properties of par-
allel applications (Kim et al., 1998; Lahaut et al., 1994). J. Kim and D. J.
Lilja (Kim et al., 1998) have recently shown that there is locality in message
destination, message sizes, and consecutive runs of send/receive primitives in

parallel algorithms.
In conjunction with this work, communications locality will mean that if

a certain source-destination pair has been used, it will be re-used with high
probability by a portion of code that is "near" the place that was used earlier,
and that it will be re-used in the near future. If communications locality
exists in parallel applications, then it is possible to cache the configuration
that a previous communication request has made and reuse it at a later stage.

114 HIGH PERFORMANCE COMPUTING SYMPOSIUM 1999

Caching in the context of this discussion will mean that when a communication
channel is established it will remain established until it is explicitly destroyed.

This paper is divided into two parts. The first part (Afsahi et al., 1999a;
Afsahi et al., 1999b) explores the ability of a number of heuristics to predict the
target of a communication request. For these studies, we have utilized a number
of parallel benchmarks, and extracted the communication traces on which we
applied our heuristics. These heuristics can be used either dynamically in
real-time at the communication assist/network interface and/or off-line during
the compilation phase. The proposed heuristics can be used in circuit-switched
network including the wave switching (Dao et al., 1997) and (Yuan et al., 1996).

The second part considers the execution time of the computation phases
of these parallel benchmarks on an IBM SP2 system and examines whether
the execution times are sufficiently large for the reconfigurations to proceed
concurrently with the computation. We also present the improvement on the
total reconfiguration delay attained through the use of the said target prediction
heuristics.

In the following section, we shall discuss the benchmarks studied in this
paper. Section 3. explains the proposed target prediction heuristics and presents
their performance in terms of the parallel benchmarks. In section 4., we
compare the inter-send computation times of the benchmarks on the IBM
SP2 system with different reconfiguration costs, and present the performance
enhancements of the proposed heuristics on the total reconfiguration times, in
section 5.. The heuristics' effects on the receiving side are in section 6.. and
we conclude with section 7..

2. PARALLEL BENCHMARKS

We have used some well-known parallel benchmarks from the NAS parallel
benchmarks suite (NPB) (Bailey et al., 1994), the Parallel Spectral Transform
Shallow Water Model (PSTSWM) (Worley et al., 1994), and the pure QCD
Monte Carlo Simulation Code with MPI (QCDMPI) (Hioki 1996). The NAS
parallel Benchmarks (NPB) is a set of eight benchmark problems, each of
which focuses on some aspects of highly parallel supercomputing for aero-
physics applications. The NPB consists offive "kernels", and three "simulated
computational fluid dynamic applications". In this paper, we are only interested
in the patterns of the point-to- point communications. Therefore the EP, FT, and
IS kernels are not suitable for our study. EP and FT use only collective com-
munication operations while each node in the IS kernel always communicates
with a specific node.

PSTSWM is a message-passing benchmark code and parallel algorithm
testbed that solves the nonlinear shallow water equations on a rotating sphere
using the spectral transform method.

Communication Latency in Message-Passing Environments 115

LRU FIFO LFU
1

0
0

~ ~o ~
~ ~o ~
& &0 &e !'0 -BT,SP e
~ ~ -+-LU ~< <0 -+- MG <

0 -+- CG0 1 ~ PSTSV-"
~QCDMPI!

, 2 3 4 5 6 7 8 9 10 " 12-size -wsize -wsize

Figure 14.2 LRU, FIFO, and LFU heuristics' effects on the benchmarks, when N = 64.

QCDMPI is a pure Quantum Chromo Dynamics simulation code with MPI
calls. It is a powerful tool to analyze the non-perturbative aspects of QCD. and
can be applied to any dimensional QCD.

We have used the MPI (Message Passing Interface Forum, 1995) implemen-
tation of the NAS benchmarks (version 2.3, Wand A classes), the PSTSWM

(version 6.2), and the QCDMPI (version 1.4) benchmarks on the IBM SP2. We
wrote our own profiling codes using the wrapper facility of the MPI to gather
the communication traces and the timing profiles of these applications.

3. LATENCY HIDING HEURISTICS

The set ofheuristics proposed in this section predict the destination node of a
subse- quent communication request based on a past history of communication
patterns on a per source node basis. These heuristics can be categorized into
three different sets: the classical LRUIFIFO/LFU heuristics, the Cycle-based
heuristics, and the Tag- based heuristics (Afsahi et al., 1999a; Afsahi et al.,

1999b).
We use the hit ratio to establish and compare the performance of these

heuristics. As a hit ratio, we define the percentage of times that the predicted
destination node was correct out of all communication requests.

3.1 LRU, FIFO AND LFU HEURISTICS

The Least Recently Used (LRU), First-In-First-Out (FIFO) and Least Fre-

quently Used (LFU) heuristics, all maintain a set of k (k is the window size)
message destinations (Afsahi et al., 1999b). If the next message destination is
already in the set, then a hit is recorded. Otherwise, a miss is recorded and the

new destination replaces one of the destinations in the set according to which of
the LRU, FIFO or LFU strategies is adopted. The window size, k, corresponds
to the number of ports used. Figure 14.2, shows the results of the LRU, FIFO,
and LFU heuristics on the benchmarks when the number of processors is 64.
It is clear that the hit-ratios in all benchmarks approach 1 as the window size
mcreases.

116 HIGH PERFORMANCE COMPUTING SYMPOSIUM 1999

The performance of the FIFO algorithm is almost the same as the LRU for
all benchmarks. However, the LFU algorithm has a better performance than
the LRU and FIFO heuristics, the exception is for the LU benchmark, when
k = and, 32, and 64 (Afsahi et al., 1999b).

3.2 CYCLE HEURISTICS

The LRU, FIFO, and the LFU heuristics perform better when k is sufficiently
large. However, this adds to the hardware complexity, as k links should be setup
before the next message is ready to take place. Therefore, we consider other
heuristics that perform well under single-port modeling.

Cycle heuristics are based on the fact that if a group of destinations are
requested repeatedly in a cyclical fashion, then a single port can accommodate
these requests by ensuring that the connection to the subsequent node in the
cycle can be estab- lished as soon as the current request terminates. These
heuristics implement a simple cycle discovery algorithm. Starting with a cycle-
head node (this is the first node that is requested at start-up, or the node that
causes a miss), we log the sequence of requests until the cycle-head node is
requested again. This stored sequence constitutes a cycle, and can be used
to predict the subsequent requests. If the predicted node coincides with the
subsequent requested node, then we record a hit. If the requested node does not
coincide with the predicted one, then we record a miss and the cycle formation
stage commences with the cycle-head being the node that caused the miss. The
following example illustrates the heuristic used. The top trace represents the
sequence of requested destination nodes, while the bottom trace represents the
predicted nodes set according to the Single-cycle heuristic. The arrows with
the cross represent misses, while the ones with the circle represent hits. The
"dash" in place of a predicted node indicates that a cycle is being formed, and
therefore no predicted nodes are offered (note that this is also added to the

misses).
Request.~equence I 3 5 6ff(113 5 6 f Ii 3 2 I

Predicted 3 5 6 I -7 3 -7 ---
The enhancements to the Single-cycle heuristic were introduced in the

Single- cycle2 (Afsahi et al., 1 999a; Afsahi et al., 1999b) where during cy-
cle formation, the previously requested node is offered as the predicted node.

3.3 BETTER-CYCLE AND BETTER-CYCLE2

HEURISTICS

In the Better-cycle heuristics (Better-cycle and Better-cycle2 (Afsahi et al.,
1999a; Afsahi et al., 1999b), we maintain the previously formed cycle and upon

Communication Latency in Message-Passing Environments 117

c 11- .~*- ~)

Hj;.O~p-..

Figure 14.3 State diagram of the Better-cycle algorithm.

a miss, we attempt to use it. In case that the previous cycle is not suitable, a
brand new cycle formation phase is entered. The state diagram used for the
Better-cycle heuristic is given in Figure 14.3.

The Better-cycle2 heuristic is identical to the Better-cycle heuristic with the
addi- tion that during cycle formation and cycle revision phases the previously
requested node is offered as the predicted node. As was expected, the Better-
cycle2 heuristic performs the best among the cycle-based heuristics, and much
better than the LRU, LFU, and FIFO heuristics. Figure 14.4 presents the
average hit ratios of this heuristic.

3.4 TAGGING HEURISTIC

This heuristic assumes that the execution trace visits a particular commu-
nication request (e.g. mpi-send) several times and that the target node of this
communication request remains the same with high probability. Therefore, as
the execution trace nears the section of code in question, it can cause the com-
munication environment to establish the connection to the target node before
the actual communications request is issued. This can be implemented with the
help of the compiler or by the programmer through a pre-connect (tag) opera-
tion (this is similar to (Mowry et al., 1991) which will force the communication
system to establish the connection before the actual communication request is
issued.

A different tag is attached to each of the communication requests found
in the benchmarks. To this tag at the communication assist, we assign the
requested target node. A hit is recorded if in subsequent encounters of the tag,
the requested commu- nication node is the same as the target already associated
with the tag. Otherwise, a miss is recorded and the tag is assigned the newly
requested target node. The performance of the Tagging heuristic is presented
in Figure 14.5. The Tagging heuristic results in an excellent performance (hit

118 HIGH PERFORMANCE COMPUTING SYMPOSIUM 1999

Figure 14.4 Effects of the Better-cycle2 heuristic on the benchmarks.

Figure 14.5 Effects of the Tagging heuristic on the benchmarks.

ratios in the upper 90%) for all the benchmarks except the CG, PSTSWM, and
the QCDMPI benchmarks. The reason is that these benchmarks include send
operations with a target address calculated based on loop variables. Thus, the
same section of code cycles through a number of different target addresses.
As we have seen in section 3.3, the Better-cycle and Better-cycle2 heuristics
are excellent in discovering such cyclic occurrences for the CG and PSTSWM
benchmarks. Meanwhile, the Better-cycle2 heuristic has better performance
for the QCDMPI compared to the Tagging and other cycle heuristics.

3.5 TAG-BETTERCYCLE AND
TAG-BETTERCYCLE2 HEURISTICS

We combined the Better-cycle and the tagging heuristics for better per-
formance. In the Tag-bettercycle heuristic, we attach a different tag to each
communication request found in the benchmarks and do a Better-cycle discov-
ery algorithm on each tag. The Tag-bettercycle2 heuristic is identical to the
Tag-bettercycle heuristic with the addition that during cycle formation, as in
Better-cycle2, the previously requested node is offered as the predicted node.
The performance of this heuristic is shown in Figure 14.6. It is clear that its
performance is superior to all other heuristics.

Communication Latency in Message-Passing Environment:,' 119

Figure 14.7 Comparison of the perfonnance of the heuristics for the benchmarks under single-
port modeling when number of processors is 64 (PST is PSTSWM).

Figure 14.7, presents a comparison of the performance of the heuristics pre-
sentedin this work undersingle-port assumption when thenumberofprocessors
is 64. That is a single communications channel is available to each node, and it
is reconfigured on demand. The superior performance of the Tag-bettercycle2
heuristic is evident.

4. INTER-SEND COMPUTATION TIMES

To reconfigure the interconnect concurrently to the computation, two condi-
tions are necessary: (1) An accurate prediction of the destination; (2) Enough
lead time so that the reconfiguration be completed before the communication

request arrives.
In the previous section, we presented a number of heuristics that can be

used to predict the destination of the subsequent communication request. In
this section, we shall argue that, at least in the benchmarks studied, there is
sufficient computation time preceding a communication request to effectively
hide the reconfiguration cost.

We have used the thirty node IBM SP2 Deep Blue machine at the IBM TJ
Watson Research center and run the suite of benchmarks at the user space, one
process per node, and under an exclusive access to the node. This avoided any

Sf SP LU MG CG PSTSWMacO -0 10 20 30 40 50 60 70
Number of processors

Figure 14.6 Effects of the Tag-bettercycle2 heuristic on the benchmarks.

120 HIGH PERFORMANCE COMPUTING SYMPOSIUM 1999

Table 14.1 Minimum inter-send computation times of the parallel benchmarks (all times in

microseconds)

nodes 16 nodes 25 nodes
A W A A

4.576 72 4.161 4.472 4.161 4.576
.I 4.784 72 4.161 4.472 4.161 4.368

LU 9.568 22.568 -8.112 9.672
MG 6.344 7.592 5.928 6.760
CG 407.99 829.92 ..-7.384 6.656

PSTSWM -'-
QCD 13 8

task switching that might have affected our measurements. Our measurements
determined a lower bound on the inter-send computation times (i.e. the time de-

voted to computation between two send requests). The inter-send computation
measurements excluded any overhead associated with other communication
primitives (e.g. receive) and it can thus be considered as a lower bound on the

pure computation.
Table 1, shows the minimum inter-send computation times of the benchmarks

on up to 25 nodes of the IBM Deep Blue machine. Examining the distribution

of the inter-send times (Figure 14.8) revealed that they are distributed widely.
A variety of techniques are used to reduce the reconfiguration time in optical

interconnects. In (Panajotov et al., 1998), the authors present a reconfiguration
time of 25 s for an experimental reconfigurable optical interconnect. We

compare the pure computation times of the benchmarks with this 25 s recon-
figuration time, and with reconfiguration times of 10,5, and 1 s as a measure
of future advancements in this area. Figure 14.8 presents the percentage of the
number of computation times more than 5, 10, and 25 s for each node of the

SP2 and for each application. It is evident that the majority of the reconfigu-
rations can proceed in parallel with the computation and be readied before the

end of the computation.

5. TOTAL RECONFIGURATION TIME

In this section, we shall examine and quantify the effectiveness of the pro-

posed heuristics. in hiding the reconfiguration delays.
We assume a multicomputer with nodes similar to the thin nodes of an IBM

SP2 but with a reconfigurable optical interconnect which has a reconfiguration

delayd(d=25, 10,5, 1 s). The calculations which quantify the reconfiguration
hiding capabilities of our heuristics, use the lower bound of the inter-send
computation times. This allows us to compute the lower bound of the time that
can be hidden. The algorithm used to obtain the time spent in reconfiguring the
interconnect with and without the prediction heuristics is given by the following

pseudocode.

Communication Latency in Message-Passing Environments 121

.-(W a,NAS) .Nad-(A NAS)

i I

l' I'~ ~

I ,

OT -," Ma =
0 Nod- (8--.~ BT. SP, Wc NAB) BNod- (8 node-- BT. SP, A ~ NAB)

I J

l' I'~ ~

I I

, 0 Nod.- (W a'-- -NAS), , ., , ',~~.:.; ,

J I

l' I'~ ~

I ,
-,"

20-(WcO--fa,NAS) 2.-(A---NA8), ." .., .., , i~==, ' .., , ., , ., ,~it;;=,

J J

II:~ ~R

I: I:
~ &,:" .l8.."

Figure 14.8 Percentage of the inter-send computation times for different benchmarks more
than specific length of times when N = 4, 8, 9, 16, and 25

total-new.reconfiguration = 0.0;
total-original-reconfiguration = 0.0;
for each inter-send computation time {

if (hit) then
if (inter-send-computation < reconfigurationJjelay) then

total-new-reconfiguration += reconfigurationJjelay -inter-send-computation;
else total-new-reconfiguration += reconfigurationJjelay;
total-original-reconfiguration += reconfigurationJjelay;

} Figure 14.9, presents the total reconfiguration time obtained while employing

heu- ristics as a percentage of the total configuration time when no prediction
heuristics were employed when the number of processors is 16 (Afsahi et al.,
1999b). The results are shown for the best heuristic of each category, that is

the LRU/LFU/FIFO, Better-cycle2, and Tag-bettercycle2 heuristics.
The Benchmarks assumed a current generation and a 10 times faster CPU .

The results are consistent with the fact that we can use most of the time to hide
the reconfiguration delay with the help of one of the proposed high hit-ratio
heuristics. Figure 14.10, shows a summary for the Tag-bettercycle2 heuristic
up to 25 processors when the reconfiguration delay, d, is 25 microseconds.

122 HIGH PERFORMANCE COMPUTING SYMPOSIUM 1999

Figllre 14.9 The total reconfiguration time obtained while employing the prediction heuristics

as a percentage of the total configuration time when no prediction heuristics were employed.

Benchmarks assumed current generation and a 10 times faster CPU with reconfiguration delay,
= 1,5, 10, and 25 s (PST is the PSTSWM).

Communication Latenc.v in Message-Passing Environments 123

Tag---2'..25m",","""",,W-..NAS) T..-bo ,..25--~... WoO NASCPU.O -10.10"weT . WeT +sP +SP

..LU ..LU
10. ..MG 10A -&- MG
~ ...CG ~ ..CGJ ...PSTS- i ...PSTS- -+- ac.-. -+- ac-, 0 0

0 ~ jo.

~ ~

10 ~o

'2 ..20 " 26 26
Numbe' 01 p~ Numbe' of prooe Tag-bo ,d=25 mO- NAS) Tag-bo '.. (dau ..N.S CPU .0 -I "weT .

W ST +Sp +sP

...LU LU
!0. 0 -&- MG
" ...CG ~ ...CGi ...PST.- PST6- -+-ac-, .-+-ac-,

0 i.

0 ~ Jo
~ ~

~o 1°

.2 ..20 " 26
Numbe' of proceeeo.. Numbe' "1 p'0C8 Figure /4./ O Summary of the ratio of the total reconfiguration times when applying the Tag-

bettercycle2 heuristic on the benchmarks when the reconfiguration delay, d, is 25 microseconds.

P'OCCSS 1 p,occss 2 P,oCCSS 1 P,occss 2
, , , ,
, , , ,

, , , Q Rcccwc-call. ' w", """",, ! .W"" .",,"," ,

'cod-call , 'cnd-call ~ ,

i '" 11 i 11
, N. "..""" , , No"..n,," ,

6 ' ,
1" Rcccwc-call ' !

Figure /4.// Heuristics' effects on the receiving side.

6. HEURISTICS' EFFECT ON THE RECEIVE SIDE

It is interesting to discover what would be the effect of the heuristics on
the receiving sides. Using one of the high hit-ratio heuristics reduces the total
reconfiguration delay. When these happen at the sender sides, most of the time
the messages are delivered sooner at the receiver sides. If the receive calls have
been issued after the corresponding send calls there would be no gain. However,
if they are issued earlier then there would be performance enhancement on the
receiving side and therefore on the whole execution time. This is shown in the
Figure 14.11.

We present the average percentage of the times that the receive calls are
issued earlier than their corresponding send calls for the CG, SP, and PSTSWM
bench- marks, in Figure 14.12. For these, we synchronized the timing traces of
each node of these applications. These ratios present the worst case scenario
for the receive side improvements. We are currently working on deriving the
performance enhancements of the heuristics (applied on the sender sides) for
the receiver sides using an event-driven simulator.

124 HIGH PERFORMANCE COMPUTING SYMPOSIUM 1999

~,oo
I~
i~ eo

(40
'.0

ep (VV 00.-) .P (A 0.--) C~ P.TSVV..

Figure 14./2 Average percentage of the times the receive calls are issued before the corre-
sponding send calls when N = 4) 8, 9, 16, and 25.

7. CONCLUSION

In the first part of this work, we presented a number of heuristics that can

be used to "predict" the target of a communication request before the actual
request is issued. These heuristics use the pattern of communications and are
designed to extract dependencies which are embedded in these patterns. For
these studies, we used the NAS NPB suite, the PSTSWM and the QCDMPI

parallel benchmarks. The results of our studies give strong evidence for the
existence of communications locality.

The heuristics proposed are only possible because of the existence of com-

munications locality that can be used in establishing a communication pathway
between a source and a destination before this pathway is to be used. This is a
very desirable property since it allows us to effectively hide the cost of estab-
lishing such communications links, providing thus the application with the raw

power of the underlying hardware (e.g. a reconfigurable optical interconnect).
In the second part of our work, we presented the pure computation time of

these parallel benchmarks on the mM Deep Blue using its high performance
switch and the user space when we had exclusive access to the nodes. In

measuring the execution times of the computation phases we ensured that any
system and communication overheads were excluded. In essence, the reported
times are the lower bounds of the execution times of the computation times.

We presented the percentage of times that the computation times are less than
1,5, 10, and 25 microseconds. Even for current optical technology (d =)

(Panajotov et al., 1998), the results show that we can use most of this time
to hide the reconfiguration delay if we use one of the proposed high hit-ratio

heuristics. We also presented the performance enhancements of the proposed
heuristics on the total reconfiguration time. For this, we used the obtained

computation/communi- cation traces and heuristics hit/miss profiles to deter-
mine the total reconfiguration time under different reconfigurable costs and

processor speeds. The results indicated that the tag-cycle based heuristics have
the best performance. We presented the average percentage of the times that
the receive calls are issued earlier than their corresponding send calls. We are

currently working on deriving the performance enhancements of the heuris-

Communication Latency in Message-Passing Environments 125

tics (applied on the sender sides) for the receiver sides using an event-driven
simulator. Finally, we are confident that the existence of "communications

locality" and the resulting latency hiding techniques will usher a new era in
interconnection technolo- gies by allowing the use of reconfiguarbility and fast
optical fabrics.

Acknowledgments

This work was supported by grants from NSERC and the University of Victoria. We would
like to thank Dr. Murray Campbell at the IBM TJ Watson Research Center and Mr. Greg Schick
at the IBM Victoria for their kind help in accessing the IBM Deep Blue, and the staff of the

computer center at the University of Victoria for the access to the university's IBM SP2 during
the early stages of this work.

References

Afsahi, A. and Dimopoulos, N.J. (1997). Collective Communications on a

Reconfigurable Optical Interconnect. Proc. of the Int 'I Co~f on Principles
ofDistributedSystems, pp. 167-181.

Afsahi, A. and Dimopoulos, N.J. (1999a). Hiding Communication Latency in

Reconfigurable Message-Passing Environments. Proc. of the IPPS/SPDP
1999, 13th Int '1 Parallel Processing Symp. and lOth Symp. on Parallel and
Distributed Processing, pp. 55-60.

Afsahi, A. and Dimopoulos, N .J .(1999b). Hiding Communication Latency in

Reconfigurable Message-Passing Environments. Technical report ECE-99-
3, Dept. of Electrical and Computer Engineering, Univ. of Victoria.

Bailey, D.H. Barszcz, E., Dagum, L. and Simon, H.D. (1994). NAS Parallel
Benchmark Result 3-94. Proc. of the Scalable High-Pe,:"formance Comp.

Coni,pp.111-120.
Bourdin H., Ferriera, A., and Marcus, K. (1995). A Comparative StudyofOne-

to-Many WDM Lightwave Interconnection Networks for Multiprocessors.
Proc. of the 2nd Int 'I Coni on Massively Parallel Processing using Optical

Interconnections, pp. 257-263.
Dao, B. V., Yalamanchili, S., and Duato, J. (1997). Architectural Support for

Reducing Communication Overhead in Multiprocessor Interconnection Net-
works. Proc. 3rd Int '1 Symp. on High Pe,:"f Comp. Architecture, pp. 343- 352.

Dongarra, J.J. and Dunigan, T. (1997). Message-Passing Performance ofVari-
ous Computers. Concurrency, Vol. 9, No. 10, pp. 915-926.

Eicken, T. V., Culler, D.E., Goldstein, S.C., and Schauser, K.E. (1992). Active
Messages: A Mechanism for Integrated Communication and Computation.
Proc. of the 19th Ann. Int'l Symp. on Computer Architecture, pp. 256-265.

Hioki, S. (1996). Construction of Staples in Lattice Gauge Theory on a Parallel

Computer. Parallel Computing, 22-10, pp. 1335-1344.

126 HIGH PERFORMANCE COMPUTING SYMPOSIUM 1999

Kim, J. and Lilja, D.J. (1998). Characterization of Communication Patterns
in Message- Passing Parallel Scientific Application Programs. Proc. of the
Workshop on Communication, Architecture, and Applications .for Network-
based Parallel Computing. Int 'I Symp. on High Pet:formance Computer Ar-
chitecture, pp. 202-216.

de Lahaut, D.G. and Germain C. (1994). Static Communications in Parallel Sci-
entific Programs. Proc. ofPARLE'94, Parallel Architecture and Languages.

Louri, A. and Sung, H.K. (1994). An Optical Multi-Mesh Hypercube: A Scal-
able Optical Interconnection Network for Massively Parallel Computing. .1:
of Lightwave Technology, Vol. 12, No.4, pp. 704-716.

Marchand, P.J., Krishnamoorthy, A. V., Yayla, G.I., Esener, S.C., and Efron,
u. (1997). Optically Augmented 3-D Computer: System Technology and
Architecture. .1: of Parallel and Distributed Computing, Special Issue on
Optical Interconnects, Feb. 25, pp. 20-35.

Message Passing Interface Forum: MPI: A Message-Passing Interface Standard.
(1995). Version 1.1.

Mowry, T. and Gupta, A. (1991). Tolerating Latency Through Software-
Controlled Prefetching in Shared-Memory Multiprocessors. .1: of Parallel
and Distributed Computing, 12(2), pp. 87-106.

Nordin, R.A., Levi, A.F., Nottenburg, R.N., O'Gorman, J., Tanbun-Ek, T.,
and Logan, R.A. (1992). A System Perspective on Digital Interconnection
Technology. IEEE.1: of Lightwave Technology, Voi. 10, pp. 801-827.

Pakin, S., Lauria, M., and Chien, A. (1995). High Perf. Messaging on Worksta-
tion: Illinois Fast Messages (FM) for Myrinet. Proc. ofSupercomputing'95.

Panajotov, K., Nieuborg, N., Goulet, A., Veretennicoff, I., and Thienpont, H.
(1998). A Free- space Reconfigurable Optical Interconnection based on
Polarization-Switching VCSEL's and Polarization-Selective Diffractive Op-
tical Channels. Proc. of Optics in Computing, pp. 151-154.

Sakr, M.F., Levitan, S.P., Chiarulli, D.M., Home, B.G., and Giles, C.L. (1997).
Predicting Multiprocessor Memory Access Patterns with Learning Models.
Proc. of the 14th Int'l Coni on Machine Learning. pp. 305-312.

Worley, P.H. and Foster, I. T. (1994). Parallel Spectral Transform Shallow Water
Model: A Runtime-tunable parallel benchmark code. Proc. of the Scalable
High Performance Computing Conference. pp. 207-214.

Yayla, G.I., Marchand, P.J., and Esener, S. C. (1998). Speed and Energy Analy-
sis of Digital Interconnections: Comparison of On-chip, Off-chip and Free-
Space Technologies. App. Optics, Voi. 37, No.2, pp. 205-227.

Yuan X., Melhem, R., and Gupta R. (1996). Compiled Communication for
AII-Optical TDM Networks. Proc. ~f Supercomputing '96.

Zhang. Z. and Torrellas, J. (1995). Speeding Up Irregular Applications in
Shared-Memory Multiprocessors: Memory Binding and Group Prefetching.
Proc. of the 22nd Ann. Symp. on Computer Architecture, pp. 188-199.

