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ABSTRACT

In this work, we present the Hypercycles, a class of multidimensional
graphs, which are generalizations of the n-cube. These graphs are obtained by
allowing each dimension to incorporate more than two elements and a cyclic
interconnection strategy. Hypercycles, offer simple routing, and the ability,
given a fixed degree, to chose among a number of alternative size graphs. These
graphs can be used in the design of interconnection networks for distributed
systems tailored specifically to the topology of a particular application.

1.0 Introduction

Message passing concurrent computers such as the Hypercube[11, 16],
Cosmic Cube[15], MAX([12, 13], consist of several processing nodes that
interact via messages exchanged over communication channels linking these
nodes into one functional entity.

There are many ways of interconnecting the computational nodes, the
Hypercube, Cosmic Cube, and the Connection Machine[17] having adopted a
regular interconnection pattern corresponding to a binary n-dimensional cube,
while MAX adopts a less structured, yet unspecified topology.

Several recent studies attempt extensions and generalizations of the basic
tenets of the n-cube. Broder et. al. [4] have proposed product graphs{14] of small
"basic" graphs. Their prime concern is to synthesize fault tolerant networks with
a given degree of coverage. In these multidimensional graphs, they define a
single route from a source to a destination, as the product of routes in each of the
constituent dimensions. Routing is exhausted in each dimension before another
dimension is considered. Bhunyan and Agrawal [3] have introduced the
generalized hypercubes (GHC) which are also graph products of fully connected
"basic” graphs. The mixed radix system [2] is used to express the properties of
these graphs and their routing. Wittie (18] gives a good overview and
comparison of several interconnection networks including the spanning bus and
dual bus hypercubes. These are essentially binary n-cubes with broadcast busses
connecting the processors in each dimension.

The advantages of having a regularly structured interconnection are many-
fold, and they have been proven time and again in their being incorporated in
many recent designs [6,11,12,13,15,16,17]. In these structures, easy deadlock-
free routing [7] can be accomplished by locally computing each successive
intermediate nodc -for a path that originates at a source node and terminates at a
destination node- as a function of the current position and the desired destination.
Many regular problems (such as the ones found in image processing, physics
etc.) have been mapped on such regular structures, and run on the corresponding
machines exhibiting significant speedups. In contrast, embedded real-time
applications, such as the ones addressed by the MAX project {12, 13], tend to
exhibit variable structures that do not necessarily map optimally to an n-cube.
In addition, since the sizc of a binary n-cube is given as 20 (n being the degree of
the graph), it means that a particular configuration cannot be expanded but in
predefined quantum steps. For example, if a given embedded application requires
a system comprised of 9 nodes, the next larger n-cube with 16 nodes must be
chosen. This constitutes a significant increase in resource allocation, especially
in the light of the power-mass limited environment of a spacecraft.

Hypercycles{9] can be considered as products of "basic” graphs that allow,
as compared to the Generalized Hypercubes (GHC) [3), a richer set of component
"basic” graphs ranging in complexity from the simple rings to the fully
connected ones used in the GHC. Also, contrary to Broder et. al.[4]), we define
the component graphs and provide analytical expressions for routing, our aim
being twofold:

(@) To provide computer interconnection networks that match the node
requirements of a given embedded system. Since our primary target is
spacecraft applications which are weight and power limited, (the nodes in
a spacecraft computer network are the primary weight contributor rather
than the communication media) the exact matching of the node
requirements is of paramount importance.

() To increase throughput of a given network by providing routing

expressions that can be computed analytically (and hence are candidates for

VLSI implementation) and which provide a maximum number of alternate

paths from a source to a destination. The existence of alternate paths

guarantees that a message will not be blocked waiting for its single route
to be freed, but it would in turn search for the availability of alternate
paths. This strategy also provides for fault protection, since a faulty path
can be marked permanently busy, and thus messages can be routed around
it. (Such an approach of adaptive routing is applied in the hypercube

through the Hyperswitch [6])

The Hypercycles, being regular graphs, retain the advantages of easy
routing and regularity. Yet, since we are dealing with a class, rather than isolated
graphs, we have the flexibility of adopting any particular graph (from the class)
that closely matches the requirements of a given application. Since the graphs
belong to the same class, routing is accomplished via the same methods and thus
the same hardware can conceivably be used to configure structures with different
sizes and topologies.

This work describes such a class of generalized interconnection networks,
with routing strategies that are similar to that of the n-cube [4]. Yet, these
networks offer richer topologies, and contain both the n-cube and the ring as
special cases. While the n-cube is based on representation of nodes in base 2, we
generalize by using the mixed radix system representation. Such a representation,
includes the binary (and hence the n-cube ) as well as the arbitrary base b
representation as special cases.

This work is divided into three parts. Section 2.0 introduces the Mixed
Radix System, Section 3.0 presents some basic graph terminology and notation,
while Section 4.0 introduces the Hypercycles and discusses their properties.

2,0 Mixed Radix Number System

The mixed radix representation [2), is a positional number representation,
and it is a generalization of the the standard b-base representation, in that it
allows each position to follow its own base independently of the other.

Thus, given a decimal number M factored into r factors
mjp.,my.m, .. mp as M=mpXxXmyxm3.X- Xm, then any number
0 £X £M-1 can be represented as the following r-tuple

* )m, my..m, = X1%2-%p Im, my..m,
where 0 <x; <(m;-1);i=12,..,r and the x;'s are chosen in such a way

< M
soasX = Ex‘.wi where w; =
=1 mymy-m;
We use the notation (X )m,m; m, = X[Xgek, lm/ my .m, 1©

indicate the radices involved. Since for most cases we shall be dealing with a
single set of radices, m;,mj,...,m, , we shall omit, when obvious, the radix
indication from the notation x ;x,...x, Iml my..m,
As an example, if we chose M =10=2x 5, thén any number between 0
and 9 can be represented with two digits, the first one ranging from 0 to 1, and
the second one from 0 to 4. Thus (6)p 5 = 11|2,5, since mj=2,my =35,
wp=Mim;=10/2=5, and wp = M/ (mymp ) = 1. Therefore,
©)2,5= 11!2'5 = Ixwy + Ixwy = Ix5 + Ix1 = 6'10.
Similarly, we can see that the mixed radix system representation, is a
generalization of the standard base-b system. Indeed, if we select
mj=my=..=m,=b,then M =b” , the corresponding weights w; become
wi=M/b; = b7-i, therefore, the representation of a number X in

r r
basc b xb x ...xb becomes (X )pp , = Z"iwi = Zx‘-b re
i=1 i=1
which is exactly the representation in base-b.
Based on the above, we proceed now with the presentation of the
Hypercycles.



3.0 Graph Notation

An undirected graph G is defined as the following tuple: @ = (N, £),
where N is the set of nodes (vertices)
N={ o ;i=12,..N }, and £ the set of edges defined as

£ = { e;j = (ai.ﬂj_)j‘-=1,2.....di 1i =1,2,...,N }
i $

with a;, Bj e N and where d; is the degree of node @ (i.c. the number of
i

edges incident at a particular node). The degree of a graph, denoted d(a ) , is
defined as the maximum of the node degrees. A walk in & [5] is a sequence of
edges ey ep .. e;, suchthatife;= (0 o7 ) thene; ) =(@y ] &y Y and
¢; € £. The length [ of such a walk is defined as the number of edges occurring
in it. The distance, dis(7,8 ), between nodes ¥ and § is defined as the shortest
walk between ¥y and & if any, otherwise, dis(7,6) = ee. The diameter of a
graph, denoted by k, is defined as the maximum distance between any pair of
nodes. A graph is regular, if all nodes have the same degree.

4.0 Hypercycles.
We define now an r- dimensional Hypercycle, as the following regular
undirected graph:

pP_[NP P
-{nf 20 ]
where m =mj,mj.m3,...m, a mixed radix, p = p1,p2,....0r p; < m;/2the

connectivity vector, determining the connectivity in cach dimension which

ranges from a cycle (p; =1 ) to the fully connected (p; =| m; /2 |), and N”:‘ =

(0.12.....M-1 ). Each node a € NZ is represented in the mixed radix system

mjp,my,m3,..m, as =0 0y...a, . The set of edges

(a )m, mjp..m,

(Nﬁ)2 2 z”: is defined in the following way. Given a, i e NZ and if

a , B arc represented as (o ) =a;a;..a, and

mymy..m, r

(:] )ml my m, =B B,..B.. Then (a, B ) e f:fl if and only if there cxists 7

Sj<r such that ]
pj = (ot 5,- )r'no.dmj with 1 Sfj < p;
anda; = f; (i #

Observe that since ﬂj = (aj + ﬂj ) modmj ,25' is symmetric,

Example: Suppose that M = 12 =4x3 = my; xmyp. and p=1,1 = p1,p2
.Therefore, for the graph gencrated by using the above mixed radix and
connectivity vector, node (1)4 3 =01 = arjaz, is distance one away from node
(10)4,3 = 31 =B B3 . Indeed, according to our definition, By =3 =
=(0-1)mod4 = (a;-&;)modm; , and ap= fp=1.

The previously defined Hypercycles, are regutar graphs of dcgrec§

r
d= 2/ (m;.p;) where

i=1
{
2p; if

2p; <m;
f('"i'pi)'-'{m‘--l if L=y

2p; = my

¥ Observe that fel lwl<m2 and [€] 2 |y} imply that (@ + &)modm = (@ +
v )modm . Thus, for every 0 < &< p; a,a,..(a;+ §)modm, ..a, defines
two distinct nodes in the graph, for a total of 2p; nodes. The only exception
occurs when m; is even. Then, for €= mJ2, we have (ot;+ m,J/2 )modm;
= (o, +my2 +myJ2-mJ2)modm; = (a,-my2 )ymodm,; .That is, the

same node is defined, and therefore, the total number of nodes reachable, becomes
m;-1.

P;
It is easy to see that the n-cube is a Hypercycle, obtained with

M=2x2x+x2=2"and p=1,1,1,..,1. Both the diameter and the degree
of the ncube are equal ton .

r

12

and diameter k 11. k = Z I— L_m_‘/_J
i=]

4.1 Routing

Hypercycles, have routing properties that are similar to those of the n-
cube. From the definition of the Hypercycle, nodes
a) m = 0y 0y..6..a, and

Lm; 2]
are at most distancel— —# away. A walk, from node a to node a*, of
i

fength [ = T— can be constructed as follows:
i

10200, alaz...él...ar . a,ag...fz.,.,ar RN 2T 2 A

.
such !halﬂ
éji +p; if [(5 ’5," ymodm; = léf,- £ |] > P
éj, = 5/1 -p; f [(éji-é ymodm; = |€ji ,gl] > p;
4 if léji N3 I <p;
50 = ¢ =¢

max
We call the length [,,, .. of such a walk, the distance along dimension i .
Given an origin (o )'"1 mym, = O 030,
and a destination (B )"'1 mg m, = B; BB,
and if ¢; denotes their distance along dimension i , their total distance, denoted
as dis(a,B ) and defined as the sum of the individual distances along all the
dimensions, is given as \

r
dis(e, B)=q =Y g;
i=l
For these nodcs, there are a total of ¥

q !
(ql 42 veedy ) 9! 9! 9,
distinct walks of length ¢ that connect them . These paths can be constructed by
sequentially modifying the source address, each time substituting a source digit
by an intermediate walk digit , as specified in equation (2) above, until the
destination is reached. As an example, the following walk connects the source
to the destination.
source =0, oy, 03..a, , ;5 050, a8, v, .,

0 & Wy, O Ep Wyl s B €y By,
B; By B3 ..B, =destination

Figure 1., gives an example of two distinct walks of equal length that
conncct a source to a destination, for a Hypercycle.

1 The function|y | denotes the largest integer smaller than or equal to x, while
ry] denotes the smallest integer larger than or equal to y.

1'1‘his number is calculated as follows: Given that there are r digits in a node
address, there are the maximum r differences between a source an a destination
address. Also, for each digit (since it is expressed in base m; ) the maximum

distance between any two points is given as dyy = Lm,- /2 ). Thus, because each
point is connected to points that are distance & ; lsﬁsp‘. away, all the points

can be reached in a maximum of rdmnx ! p‘. 1 steps.

11Denote as |;t , v i=min{ (1 -v)modm , (v-u)modm }, the distance between
two integers modulo m .

tFox' the definition of a multinomial number, see [1] pp 32.



4.2 Properties
In this section, we shall present a symmetry property for the Hypercycle .

Theorem If m =mp.m3,...m, and m ‘= mI*.mzt...‘,m,' are two
- *

*
mixed radix bases, p= p1.p2...p, andp =p1 p2 ,.,.,pr' ,m" =mn(m)and
Y *
p =m(p)(where n is a permutation ), then the graphs G”)" and G”;. are

isomorphic to each other.
Proof Since m " is a permutation of m , then

r r L *
Y rimp) = N flmey) = E f(m;) =d@) and
i=1

i=1 pa
g |_ Lm—’:"_@ =§ |_ menn:i)/zj—l =§ |— Lm;;ﬂ—lﬂ

Thus, the number of clements, the degroes and the diameters of the graphs
-
aP andGP. are identical.
m m

Define now the map g between the nodes of the two graphs in the
following manner:

P 4 . . p‘
Nm 3 al a2...ar — al (12 ...ar € Nmt

»
such that a; = an“(j)

The map g is an isomorphism. Indecd, from its construction, it is 1-1
and it can be casily proven that if dis(a,B )= 1 then also
dis(g (a 1 g (B ? )= 1. Indeed, since dis(a,B) =1, there exists an i
such that [ ¢, -ﬁi <p; and aj = ﬁj :j #i.and from the construction of

the map g , we have

- - » L] »
an(i)'ﬂn(i)l SPi =Py and Opy = By ifei
and therefore dis(g (a).g (B))=1.

4.3 Average Distance Calculation
Given an r-dimensional generalized graph a’,’" , and restricting ourselves

in any single dimension i, we can calculate the number of nodes that are distance
1 away from a source node
(a )"‘I"'Z m, = @00, 88 equal to the number of symbols &; that

satisfy the relation (/- 1 )p; < |a;,§,'| < Ip; . This number is given as
2p; if tp;<fm;/21
m; -1 -p;
2

i
M=) (my-1)-20-1)p; if fm;121<1p; <

0 otherwise

Given anode (a )
r
n = z n '1 nodes at distance one, and in general
i=1

r
Y II-
n o= g

1.4 vl 20 i=l
" 1.#0
I' +l2 +..41 =1 i
r

iy g ey = a; a,..q, there exist

nodes at distance [ .This equation is simplified for the case where p;=|m; 12 |
to the following:
r-l+l r-l+2

r
e Y X e 2 (mg Dm Delmy D)
A T O L 2 !

p

Thercfore, the average distance between any two nodes in a Hypercycle a,,

r
Zl"l
=1
mymy e,
Some typical distances are given in TABLE 1. and TABLE 2.

canbecalculatedas? =

5.0 Conclusions and Discussion

In this work, we presented the Hypercycle, a class of multidimensional
graphs, which are essentially generalizations of the n-cube. These graphs are
obtained by allowing each dimension to incorporate more than two elements and
a cyclic interconnection strategy.

Although these graphs are not the densest possible, they are attractive,
because of their simple routing. Similarly to the n-cube, the destination address
is used to sequentially route a message through intermediate nodes as outlined in
section 4.1. Also, since the node addresses are represented in a mixed radix as a
sequence of r-digits, each one of these digits is processed independently and in
parallel with the remaining digits. Thus the hardware inVolved in the routing can
be made fast (because of the parallelism) and simple (since each module need
only handle arithmetic modm; , as compared to arithmetic modmmy...m,
needed when all the address digits are necessary as is the case with such networks
as the chordal rings [4), or the cube connected cycles (3]).

For these graphs, we have also calculated the average distance between any
two nodes. Assuming that the graph is the representation of a multiprocessor,
the average distance provides a metric of the communication complexity
involved in such a structure. Compare for example the average distances of the 7-
cube and the (m =555, p=11 1) graph. The average distances, as they can
be determined from TABLE 2, are 3.528 and 3.629 respectively, both have
similar number of nodes, while their diameters are equal to six and seven
respectively. TABLES 1. and 2. give a collection of graphs together with their
degrees, diameters, number of nodes and average distances.

The graphs presented in this study, are generalizations of some well
known graphs such as the binary n-cube, 2- and 3-dimensional meshes, and
rings, which are included as special cases. Examples of some special cases are
depicted in Figure 1.

The Hypercycle, can be further extended by employing a diffcrent
conneclivity strategy in each dimension. Thus, in its most general form, eqn. 1.
can be modificd into

k
i

B; = (¢ +§; )modm; ; §j € {fﬁ .ézj b }

provided that the subgraph (projected in dimension j) is connected.
Examples of such extensions include the chordal rings [4), cube connected cycles
[3] etc. The disadvantage of course, is the increased complexity involved in the
routing calculations for that particular dimension.

In conclusion, Hypercycles are generalizations of the basic n-cube and
they offer simple routing, and the ability, given a fixed degree, to chose among a
number of alternative size graphs. These properties are important for the design
of distributed systems of varying size and connectivity, and tailored specifically
to the topology of a particular application, These graphs can therefore be used in
the design of the interconnection networks of such machines as the MAX (7] or
the Hypercube [6,8].
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Figure 1. Examples of Hypercycles.

TABLEL
AVERAGE
GRAPH DEGREE DIAMETER NODES  DISTANCE
PER NODE
m = 7 6 1 7 1.0
p =13
m = 44 6 2 16 1.6
P = 22
m = 333 6 3 27 2.077
P = 111
m = 222222 6 6 64 3.047
P = 111111
TABLE2,
AVERAGE
GRAPH DEGREE DIAMETER NODES  DISTANCE
PER NODE
{
m = 62 6 2 12 1454
p = 31
m = 53 6 2 15 1.571
p = 21
m = 522 6 3 20 1.894
p = 211
m = 432 6 3 24 2.0
p = 211
m = 4222 6 4 32 2.323
p = 2111
m = 3322 6 4 36 24
r = 1111
m = 32222 6 5 48 2.723
p = 11111
m = 2217 6 6 68 3.403
P = 112
m = 2237 6 6 84 3434
P = 1111
m = 357 6 6 105 3.615
P = 111
m = 555§ 6 6 125 3.629
P = 111
m = 2222222 7 7 128 3.528
p = 1111111
m = 779 6 10 441 5.664
P = 111



