DAME: A RULE BASED DESIGNER OF MICRCPROCESSOR BASED
SYSTEMSS

Nikitas J. Dimopoulos, Kin F. Li, Eric G. Manning
Department of Electrical and Computer Engineering
University of Victoria
Victoria, B. C.

ABSTRACT

In this work, we present the overall structure of DAME, which
is an expert system capable of configuring and designing customized
microprocessor based systems from original specifications.

DAME [3. 4] . is organized as a hierarchy of design levels, each
one of which refines the design provided by the previous level, by
following established practices in the field of hardware design.

In this work, we shall present the general structure of DAME as
well as our approach in modelling the behavior of the various signals
associated with the components used for the design of
microprocessor based systems.

Introduction

fn many Systems' design problems, the lack of comprehensive
theory of system integration and design choices, has led to a more or
less empirical set of rules. which an cxperienced designer can draw
upon in order to give an optimum solution to a given problem.
Examples can be drawn from several diverse ficlds such as patient
care, computer system configuration, geological exploration, VLSI
Design, computer system design cic.

Knowledge-Based systems have recently proliferated in several
fields of human endcavor. These systems piay the dual role of
categorizing and codifying expent knowledge. and then using this
knowledge in order to solve time consuming and/or challenging
problems.

{nitially, expert systems were developed that were capablc of
analyzing a cenain sct of facts and suggesting plausible explanations
or interdependencies. The ficlds of expertise were drawn from such
diverse fields as medicine (c.g. MYCIN[16], EMERGE {9] etc.)
analytical chemistry (DENDRAL{10]) and oil ficld exploration
(PROPECTOR [5)).

Recently though, scveral artempts have been made of producing
systems capable of synthesis. The most celebrated cxample is R1
(11] which i§ capable of configuring VAX computers. Given a
customer's order, R1 determines if the order is consistent and
complete, otherwise it is modificd to meet the completeness and
consistency criteria, and it produces a set of diagrams depicting the
components included, their arrangement and interconnection.

Several examples of systems capable of automated logic design
are also cited. Uchara [17), describes a knowledge-bascd synthesizer
which transforms a technology independent functional design of a
system, to a tcchnology dependent gate level design.

VEXED [13] provides interactive aid to the user in designing a
circuit. Initially the circuit is represented as a module whose
functional specifications are entered by the user. Then VEXED
together with the user refines the module into submodules which
themselves are further refined into subsubmoduies until the design is
finished. VEXED+ [14] provides focusing of attention and selects
the best refinement rule that meets the cument design goal.

SOCRATESI2] optimizes combinational logic for a specilied
target technology: it performs substitutions of combinations of gates
with equivalent simplificd configurations, thus reducing the area and
time complexity of the design.

ELF [15] is a prototype generator for wire routing applications.
Given an application environment such as routing planes, cell
cxpansion strategy ctc. ELF is capablc of generating a router
specifically tailored to the application environment.

§ Supported in pant by the Natural Sciences and Engineering Rescarch
Council of Canada under the strategic grant #STR0040526

ISCAS 89

574

Additionally, several expert system development environments
have been constructed (8] that help the collection of knowledge and
the effective construction and debugging of the resulting production
system. The first expert systems produced (such as MYCIN) were
written in LISP. The Inference engine of MYCIN was isolated and
made available (termed EMYCIN[12]) so that coupled with
knowledge of a particular field would produce a distinct production
system. The sequence of OPS (1,7] languages produced at Carnegie
Mellon. combines a forward chaining reasoning mechanism together
with an efficient pattern matching (the Rete algorithm [6}) to produce
a good cnvironment for Expert System construction. Subsequent
generations of tools such Knowliedge Craft encapsulate several
environments (such as OPS-CRL, PROLOG, the Palm Editor etc.)
plus a user friendly interface for increased productivity and
application control.

The aim of this work, is to establish the framework for an
expent system capable of configuring and designing a customized
microprocessor based system from original specifications such as
type and application, environment, communication and
computational requirements as well as economical criteria.

DAME (Design Automation of Microprocessor based systems,
using an Expert systems approach) will be capable of interpreting the
design specifications, make appropriatc choices of system
configuration and components, and (inally produce a complete design
of the specified system.

We postulate that such an cxpert system, can be casily
constructed. since most of the interfaces uscd by the various
microprocessors and related peripherals are standardized. Thus, once
the gross structure of the design and the modules comprising it have
been chosen, their interconnection is fairly straight-forward.

In this work, we will specifically discuss the overall structure of
DAME comprising several hicrarchical levels, and we shall discuss
our approach in modelling the various signals found in the
components that are used in the design process.

Structure

In designing a microprocessor bascd system, the designer goces
through a formal design process incorporating the following phases:
(1) Design Specification (2) Configuration (3) Behavior Description
(4) Functional Block Design (5) Implementation and Integration. -

During the Design Specification phase, thc system
responsibilities, design constraints, and system cnvironment arc
established. This phasc involves considerable consultation between
the designer and the customer, so as the various design criteria could
be clanfied.

The gross system architecture, is established during the
Configuration Phase. During this phasc, the system is divided into
subsystems which are finally interconnected to produce the gross
system architecturc. The subsysicms known and uscd by the
Configuration phase arc Memory. Processor. I/0 and Bus.

The Behavior Description phase, defines the capabilitics of the
subsystems produced by the Configuration phase. For cxample, it is
during this phase that the choice of 16-bit over an 8-bit processor is
made, the size of the memory, the number and type of /0 channels
arc cstablished. as wetl as the decision on the type of standard to be
followed for the System Bus is made.

During the Functional Block design phase, the capabilitices (i.c.
functions) of the Subsystems, are further refined into simpler
functions known to map directly into available componcnts or

CH2692-2/89/0000-0574 $1.00 © 1989 IEEE

combinations thereof. For example, in designing the memory
module, (the size and speed of which have been specified during the
Behavior Description phase) the Functional Block design phase
choscs the type of memory (e.g dynamic or stalic), determines the
requirements of the address decoding module, and finally determines
whether refreshing and/or error correcting modules are neccssary. It
also specifies the characteristics of these modules.

During the Implementation and Integration phase, the modules
obtained during the Functional Block design phase are connected
together to produce the final system. Functions specificd during the
Functional Block design phase which do not directly correspond (o a
hardware component, are synthesized, at this point by using random
logic.

In DAME, the formal design process as described above, is
followed. Thus, DAME has a hierarchical structure with levels that
correspond exactly to the phases of the formal design process as
described above. The overall structure of DAME is given in Fig. 1.

—
DESIGN SPECIFICATION

/ \
CONFIGURTION
/———_\
BEHAVIOR DESCRIPTION

/_—_-_\
FUNCTIONAL BLOCK DESIGN

IMPLEMENTATION
/’——\

Figure 1. The Hicrarchical Structure of DAME.

Each hierarchical lcvel represents an abstraction of the given
design problem. As the levels are transversed, the abstraction of the
design is refined, until at the last level the complete design is
formed.

Each hicrarchical level manipulates objects which represent the
system's concept of the design rcquircments at the particular
abstraction of the level. These objects are refined by the current
hicrarchical level and the resulting objects are communicated to the
next level which repeats the process. Each level may itself be
partitioned in more sublevels which in turn compute particular
requirements within a given level.

The types of objects that are known o a particular level are the
following:

(1) Concept Classes (CC). These describe abstract sets of objects
possecssing similar propertics. Examples of Concept Classes arc
Computer Systems, Processors. Memory, Signals, Signal
Timing etc.

Individual Objects (10) are particular represcntations of specific
Concept Classes, in the sense that obtain terminal values for the
propertics described in a general way within the Concept Class.
Examples of Individual Objects are MC68000 (a member of the
CC 16-bit processors, which itsclf is a member of the CC
processors). Also, a unibus structure is a member of the CC
Computer Systems.

Individual Objects and Concept Classcs are shared between
hicrarchical levels so as a common language between levels is
cstablished.

Relation Descriptors (RD) characterize rclations between
Concept Classes and Individual Objects. Examples of such
rclations are /S_A which describcs membership in a class,
HAS_TIMING _SPECS which relates timing specifications of a
signal to the signal itsclf, IS_CONNECTED_T(O which
expresses the pin connectivity, and through which the whole
design will be expressed.

Facts (F) constitute "knowledge units” which embody
descriptive information that is used to make inferences. Facts
arc inferred, or are incorporated within each of the levels (and

(2)

(3)

4)

575

they are pertinent only to that particular level). For example, the
fact A decoupling capacitor must be connected between VCC
and GND pins of all the dynamic RAM chips is found in the
system integration and implementation level, and the objects
decoupling capacitor, dvnamic RAM etc. are known only in this
level. On the other hand the fact The chosen processor is a 16-
bit processor, is passed to the Functional Block design level
from the Behavior Description level where it was inferred by a
rule of the form: If large addressing capabilities, then choose a
16-bit processor.

Production Rules (PR) describe the static and dynamic behavior
of the objects of the design. They are used in cach level in order
lo refine the abstraction of the design.

We are using Knowledge CraftT™1t a5 our implementation
platform. Knowledge Craft supports “schemata” through which the
objects and relations outlined above, can be expressed in a
hierarchical fashion. Relations allow schema slots, holding particular
information to be inherited in a controlled way from object to object
in the Hierarchy. We shall be describing in detail in the following
section the objccts and relations necessary to describe certain signal
classes and their timing. We shall also give their implementation by
using schemata.

(&)

Describing Signals .

We consider signals to be associated with a particular physical
port (in the casc of a component, a pin) to have a name, to foilow a
certain type of logic (i.e. to be active either high or low) and to be
related to other signals. Through these relations, one understands the
behavior of a particular signal especially its timing behavior. For
cxample, the address strobe of the MC6800Q is associated with pin#
6 in the DIP package, it has the name AS, it is active low, it is an
output signal (relative 0 the component) and it is related with the data
transfer acknowledge, in the sensc that the asscrtion of the data
ransfer acknowledge forces the negation of the address strobe after a
predetermined time interval. The complete specification of the timing
interdcpendence of these two signals is given in Fig. 2.

AS

gl

T~

|«

DTACK

\d

Figure 2. The timing interdependence of the AS and DTACK signals
of the MC68000.

In modeling signals such as the AS and DTACK described
above, we have constructed the following objects.

SIGNALS This is an object class that acts as the template of the
objects to be described. It incorporates slots for the pin#, the
type of logic a particular signal is following, and the dircction of
the signal.

INDIVIDUAL_SIGNALS These arc objects describing the individual
signals comprising the class of SIGNALS for a particular
component. INDIVIDUAL _SIGNALS arc related to the class
of SIGNALS through an IS-A relation through which they
inherit all the slots of the parent class SIGNALS. These slots are
then filled individually with pertinent values. Examples of such

objects are AS, DTACK etc.

TIMING_SPECS is a class of objects that acts as the template for the
objects that describe the timing specifications of the individual
signals.

* Knowledge Craft is a trade mark of Camegic Group Inc.

INDIVIDUAL_SIGNAL_TIMING_SPECS These are the objects
that describe the timing specifications of individual signals.
They are related to the class TIMING_SPECS through an IS-A
relation, and they inherit all slots found in the class
TIMING_SPECS. They are also related (o the
INDIVIDUAL_SIGNALS objects through te
IS_TIMING_SPECS_OF rejation.

We have also defined and used the following relations
HAS_TIMING_SPECS and its inverse IS_TIMING_SPECS_OF.

This relation is used to associate the object describing an
individual signal to the object that describes the signal's timing
specifications. This relation has a transitivity of one, requiring
that the signals influencing each other to be directly related, and
it does not convey any slots during inheritance. That is the
timing specifications of a signal must be directly related to the
signal itself.

The following four reiations
LO_HI_TRIGGERED_BY_LO_HI
LO_HI_TRIGGERED_BY_HI_LO
HI_LO_TRIGGERED_BY_HI_LO
HI_LO_TRIGGERED_BY_LO_HI
convey the name of the signal whose transition forces the indicated
transition to the domain signal. Thus the low to high transition of the

AS resulting from a previous high to low transition of the DTACK

is described by relating the timing specifications object of the AS

with the DTACK signal through the
LO_HI_TRIGGERED_BY_HI_LO relation. These relations have a
transitivity of one, requiring that the signals influencing each other to
be directly related, and they do not convey any slots during
inheritance.

The above mentioned objects and relations have been
implemented as "schemata” in a Knowledge Craft environment. Their
complete descriptions can be found in TABLE I, while the network

describing the AS and DTACK signals and their timing relations
can be found in Fig. 3.

Conclusions

In this work, we provided the framework of DAME which is an
expert system capable of configuring and designing customized
microprocessor based systems from original specifications.

DAME, is organized as a hierarchy of design levels, each one of
which refines the design provided by the previous level, by
following established practices in the ficld of hardware design.

We have postulated that the use of an expert system at this level
of design activity is achievable, since the design methodology is
well established, and the interfaces for most of the components used
are standardized.

We presented our approach in modelling the behavior of the
various signals associated with the components used for the design
of microprocessor based systems. Specifically, we presented the
modeciling of two signals, namely the Address Strobe and the Data
Transfer Acknowledge, as dcfined for the MC68000 microprocessor.
We used objects and rclations to capture both their static and temporal
behavior. We implemented these objects by using schemata as
defined in Knowledge Craft, and we presented their implementation.

The signals chosen for modelling are typical in that they
implement the two signal handshaking protocol widely used by many
microprocessors and their associated peripherals. We are in the
process of modelling more complex behaving signals. Such an
cxample is the Bus Request, Bus Grant, Bus Grant Acknowledge
set, also used by the MC68000 and constituting a typical example of
the implementation of a three signal arbitration protocol.

REFERENCES

1. Brownston L., R. Farrell, E. Kant and N. Martin,
Programming Expert Systems in OPS5: An Introduction to
Rule-Based Programming, Addison Wesley, 1985.

576

11

12.

15.

. Micchell, T. M., L. L Steinberg and J. S. Shuiman,

de Geus, A. J. and W. Cohen, "A Rule-Based System for
Optimizing Combinational Logic" /EEE Design & Test, pp.

22-32 Aug. 1985.

Dimopoulos, N. J. and H. C. Lee, "Experiments in Designing
with DAME: Design Automation of Microprocessor Based
Systems using and Expert Systems Approach” Proceedings of
International Computer Symposium 1986 , pp. 1858-1867,
Tainan, Taiwan, Dec, 1986.

Dimopoulos, N. J, C. H. Lee and N. Galatis, "DAME:
Automated Design of Microprocessor based Systems, an Expert
Systems Approach” Proceedings of the Canadian Conference on
I{gggstrial Computer Systems , pp. 20-1/ 20-7, Montreal, May
Duda. R. O.. P. E. Hart, K. Konolige and R. Reboh, "A
computer-Based Consultant for Mineral Exploration” Technical
Report, SRI Intemational, Sep. 1979.

Forgy , C. L., "Rete: A Fast Algorithm for the Many Patterny/
Many Object Pattern Match Problem"” Artificial Intelligence ,

vol. 19, pp. 17-38, Sept. 1982.

Forgy, C. L., "OPS5 Users Manual" Department of Computer
Science, Camegie Mellon University, Pittsburgh, Pennsylvania,
Jul. 1981.

Gevarter, W. B, "The Nature and Evaluation of Commercial
Expert System Building Tools" /EEE Computer , pp. 24-41,

May 1987.

Hudson, D. L., and T. Estrin, "EMERGE- A Data-driven
Medical Decision Making Aid" /EEE Trans. Pattern Anal.
Machine Intell., vol. PAMI-6, pp. 87-91, Jan. 1984.

Lindsay, R., B. G. Buchanan, E. A. Feigenbaum, J.
Lederberg, Applicarions of Artificial Intelligence for Chemical
Inference: The DENDRAL Project , McGraw-Hill Book

Company, New York, 1980.

McDermott, J., "R1: A Rule-Based Configurer of Computer
Sgisgx;ms" Artificial Intelligence , vol. 19, pp. 39-88, Sept.
1 .

Melle, W. Van, A. C. Scou, J. S. Benett and M. A. Peairs,

"The EMYCIN manual" Technical Report, Heuristica

Programming Project, Stanford University, 1981.

"A

Knowlcdge-Based Approach to Design" [EEE Trans. Pattern

Anal. Machine Inzell., vol. PAMI-7, pp.502-510, Scp. 1985.

. Norton, S. W. and K. M Kelly, "Leaming Preference Rules

for a VLSI Design Problem-Solver” Proceedings of the fourth
Conference on Artificial Intelligence Applications . pp. 152-158
Mar. 1988.

Sctliff, D. E. and R. A. Rutenbar, "Knowledge -Based
Synthesis of Custom VLSI Physical Design Tools: First Steps”
Proceedings of the fourth Conference on Artificial Intelligence
Applications , pp. 102-108 Mar. 1988.

. Shortliffe, E. H., Computer-Based Medical Consultation:
17.

MYCIN, Elsevier, New York, 1976.
Uehara, T., "A Knowledge-Based Logic Design System”
{EEE Design & Test , vol. 2 no. 5 pp. 27-34 Oct. 1985.

S =2 e ke =39 "KNOWLEDGE.
Current context: DIME

Paim lcrema kditor

§U{ 5 :context DAME
HAS_TIMING_SPECS: AS_TIMING
IS-A: SIGNAL
PING: &
ACTIVE: LO
DIRECTION: ouT
TRISTATABLE: YES

}

Create

Do lete
L1nk

OTACK_TTRING
FAS_TINING

]
Create
Retation

[snws

Ex1t

i

OTACK_TIMING|

(3) IS-a
(4) IS_TIMING_SPECS_OF
{5) MI_LO_TRIGGERED_BY_HI_LO

Relation Keys:
(1) IS-A¢INV
(2) HAS_TIMING_SPECS

(6) LO_HI_TRIGGERED_8Y_LO_HI
(7) LO_HI_TRIGGERED_BY_HI_LO

Figure 3. The Network of Schemata modelling the AS and DTACK signals of the MC68000.

TABLE 1. Schemata Impiementing Some of the Objects and Relations
{{ SIGNAL {{ TIMING_SPECS
IS-A+INV: AS DTACK IS-A+INV: DTACK_TIMING AS_TIMING
PIN#: HI-LO-DELAY:
ACTIVE: LO-HI-DELAY:}}
DIRECTION:
TRISTATABLE:}) {{ LO_HI_TRIGGERED_BY_HI_LO
IS-A: RELATION
{{ AS DOMAIN: (TYPE 1S-A TIMING_SPECS)
HAS_TIMING_SPECS: AS_TIMING RANGE: (SCHEMA (TYPE IS-A SIGNAL))
IS-A: SIGNAL TRANSITIVITY: (STEP LO_HI_TRIGGERED_BY_HI_LOT)
PIN#: 6 INVERSE: HI_LO_TRIGGERS_LO_HI_TRANSITION_OF})
ACTIVE: LO

DIRECTION: OUT
TRISTATABLE: YES})

{([AS_TIMING

IS-A: TIMING_SPECS

IS_TIMING_SPECS_OF: AS

LO_HI_TRIGGERED_BY_HI_LO: DTACK

LO-HI-DELAY: (' (COND ((<= (GET-VALUE ' DTACK _TIMING’
HI-LO} 2) 2)

(T (+(GET-VALUE ' DTACK_TIMING '

HI-LO} 2)))

{{ DTACK
HAS_TIMING_SPECS: DTACK_TIMING
I1S-A: SIGNAL
PIN#: 10
ACTIVE: LO
DIRECTION: IN}}

{{ DTACK_TIMING
IS-A: TIMING_SPECS
IS_TIMING_SPECS_OF: DTACK
HI_LO_TRIGGERED_BY_HI_LO: AS
LO_HI_TRIGGERED_BY_LO_HI: AS
HI-LO-DELAY: <X>
LO-HI-DELAY: 0} }

577

{{ HI_LO_TRIGGERED_BY_HI_LO

IS-A: RELATION

DOMAIN: (TYPE IS-A TIMING_SPECS)

RANGE: (SCHEMA (TYPE IS-A SIGNAL))
TRANSITIVITY: (STEP HI_LO_TRIGGERED_BY_HI_LOT)
INVERSE: HI_LO_TRIGGERS_HI_LO_TRANSITION_OF}}

{{ HI_LO_TRIGGERED_BY_LO_HI

IS-A: RELATION

DOMAIN: (TYPE IS-A TIMING_SPECS)

RANGE: (SCHEMA (TYPE IS-A SIGNAL))
TRANSITIVITY: (STEP HI_LO_TRIGGERED_BY_LO_HIT)
INVERSE: LO_HI_TRIGGERS_HI_LO_TRANSITION_OF] }

{{ HAS_TIMING_SPECS

IS-A: RELATION

DOMAIN: (TYPE IS-A SIGNAL)

RANGE: (SCHEMA (TYPE IS-A TIMING_SPECS))
TRANSITIVITY: (STEP HAS_TIMING_SPECS T)
INVERSE: IS_TIMING_SPECS_OF}}

({ IS_TIMING_SPECS_OF
IS-A: RELATION
DOMAIN: (TYPE IS-A TIMING_SPECS)
RANGE: (SCHEMA (TYPE IS-A SIGNAL))
TRANSITIVITY: (STEP [S_TIMING_SPECS_OF T)
INVERSE: HAS_TIMING_SPECS}}

