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nodes must be chosen. This constitutes a significant increase in resoun;e
ABSTRACrt allocation, especially in the light of the IX>wer-mass limited environmelU of

a spacecraft.
In this work, we present the Hypen;ycles, a class of multidimensional Hypen;ycles[9] can be considered as products of "basic" graphs that

graphs, which are generalizations of the n-cube. These graphs are obtained allow, as compared to the Generalized Hypen;ubes (GHC) [3], a richer set
by ~o.wing each d.imension to incorporate more than two elements and a of component "basic" graphs ranging in complexity from the simple rings
cyclic InterconnectIon strategy. Hypen;ycles, offer simple routing, and the to the fully connected ones used in the GHC. Also, contrary to Broder et.
ability, given a fixed degree, to chose among a number of alternative size ai.[4 I, ~e define ~e co.mponent graphs and provide analytical expressions
graphs. These graphs can be used in the design of interconnection for routIng, our aim beIng twofold:
networks for distributed systems tailored specifically to the topology of a (a) To provide computer inten;onnection networks that match the node
particular application. We are also presenting a back-track-to-the-origin- ~uiremcnts of a given embedded system. Since our primary target
and-retry routing, whereupon paths that block at intermediate nodes are IS spa~craft applications which are weight and power limited, (the
abandonned, and a ~w attempt is made. Intermediate nodes are chosen at node~ In a spacecraft computer network are the primary weight
random at each point from among the ones that form the shortest paths conlnbutor rather than the communication media) the exact matdling
from a source to a destination. Preliminary simulation results are also of the node requirements is of paramount importance.
presented. (b) To inc~ase throughput of a given network by providing routing

expressions that can be computed analytically (and hence are
candidates for VLSI implementation) and which provide a maximum

1.0 Introduction number of alternate paths from a source to a destination. The
Message passing concurrent computers such as the Hypen;ube[ 11, existence of alternate paths guarantees that a message will not be

161, Cosmic Cube[15], MAX[12, 13], consist of several processing nodes blocked waiting for its single route to be freed, but it would in turn
that interact ~ia messages exchanged over commW1ication channels linking scar~h for the availability of alternate paths. This strategy also
these nodes Into one functional entity. provides for fault protection, since a faulty path can be marked

There are many ways of inten;onnecting the computational nodes, the permanently busy, and thus messages can be routed around it. (Such
Hypercube, Cosmic Cube, and the Connection Machine[ 17] having an approach of adaptive routing is applied in the hypen;ube through
adopted a regular interconnection pattern corresponding to a binary n- the Hyperswitch [6])

dimensional cube, while MAX adopts a less structured, yet unspecified ~e Hypercycl~s, being regular graphs, retain the advantages of easy
topology. ~utlng and regulanty. Yet, since we are dealing with a class, rather than

Several recent studies attempt extensions and generalizations of the Isolated graphs, we have the flexibility of adopting any particular graph

basic tenets of the n-cube. Broder et. ai. [4] have proposed product (fro~ ~e cla~s) that closcly matches the requirements of a given
graphs[14] of small "basic" graphs. Their prime concern is to synthesize applicatIon. SInce the graphs belong to the same class, routing is
fault tolerant networks with a given degree of coverage. In these accomplished via the same methods and thus the same hardware can
multidimensional graphs, they define a single route from a soun;e to a conceivably be uscd to configure structures with different sizes and

destination, as the product of routes in each of the constituent dimensions. topologies.
Routing is exhausted in each dimension before another dimension is This work describes such a class of generalized interconnection
considered. Bhunyan and Agrawal [3] have introduced the generalized networks, with routing strategies that are similar to that of the n-cube [4].
hypercubes (GHC) which are also graph products of fully connected Yet, these networks offer richer topologies, and contain both thc n-cube
"basic" graphs. The mixed radix system [2] is used to express the and the ring as special cascs. While the n-cube is bascd on represcntation
propenies of these graphs and their routing. Wit tie [18] gives a good of nodes in base 2, we generalize by using the mixed radix system
overview and comparison of several interconnection networks including representation. Such a representation, includes the binary (and hence ~ n-
the spanning bus and dual bus hypercubes. These are essentially binary cube ) as well as the arbitrary base b representation as special cases.
n-cubes with broadcast busses connecting the processors in each This work is dividcd into three pans. Section 2.0 introduces ~ Mixed
dimension. Radi~ System, Section 3.0 prescnts some basic graph terminology and

The advantages of having a regularly structured inten;onnection are notatIon, while Section 4.0 introduces the Hypen;ycles and discusscs their

many-fold, and they have been proven time and again in their being properties.
incorporated in many recent designs [6,11,12,13,15,16,17]. In these 2.0 Mixed Radix Number System
structures, easy deadlock-free routing [7] can be accomplished by locally The mixed radix representation [2], is a positional number
computing each successive intermediate node -for a path that originates at a representation, and it is a generalization of the the standard b-base
source node and terminates at a destination node- as a function of the representation, in that it allows each position to follow its own base
current position and the desircd destination. Many regular problcms (such independently of the other.

as the ones found in image processing, physics etc.) have been mapped on Thus, given a decimal number M factored into r factors m I .m2 ,171

s~~ regular structures, and run on the correslX>nding machines exhibiting -3Significant speedups. In contrast, embedded real-tirne applications, such as ...,mr as M -m 1 x m2 x m3.x ...x mr thcn any number O 5 X 5 M-

the ones addressed by the MAX project [12, 13], tend to exhibit variable 1 can be represented as the following r-tuple
Structures that do not necessarily map optimally to an n-cube. In addition, (X )mi m2 ...m, = X 1X2...Xr Im1 m2 ...m,

since the size of a binary n-cube is given as 2n (n being the degree of the where O 5 xi 5 (mi -1 ) ; i = l.2 ,r and the xis are chosen in such a
graph), it means that a panicular configuration cannot be expanded but in r M
predefined quantum steps. For example, if a given embedded application way so as X = LXj Wj where w j =
requires a system comprised of9 nodes, the next larger n-cube with 16 j =1 m 1m 2 ...m j

We use the notation (X) = x 1X 2 ...X I to.mi m2 ...m, r mi m2 ...m,
t This. work has been supJx.rted by the Nalura1 Sciences and Engineering Research indicate the radices involved. Since for most cases we shall be dealing with
CoWICil Canada. under grant 'OOPOOOt337 a single set of radices, m l.m2,...,171r ' we shall omit, when obvious, ~



00ix iIxIication from the ootationx 1Xl...Xr ImJ m2 ...mr. p=1,1 = p I,P2 .Therefore, for the graph generated by using the above

As an example, if we chose M = 10 = 2 x 5, then any number between mixed radix and connectivity vector, node (1)4 3 = 01 = a 1a2 ' is

0 and 9 can be represented with two digits, the first one ranging from 0 to .' .
1 d th d fro 0 4 Th (6 '"' 111 . 2 distance one away from node (10)43 = 31 =/1 1 /12. Indeed, accorolng to
,an esecon one m to. us '.£5= 25'slncem]= , ,

m 2 = 5, w ] = M I m ] = 1'0/2 = '5, and o u r d e f i n i t i o n , /1 1 J

w2 = MI (m]m2 ) = 1. Therefore, (0- ] ) mod4 = (a1-~1 )modm] , and a2=/12= 1.

(6>2,5 = 1112,5 = lxw] + lxw2 = Ix5 + Ixl = 6110. ThcpreviouslydefincdHypcreycles,are regular graphs of degree§

Similarly, we can see that the mixed radix system representation, is a r
generalization of the standard base-b system. Indeed, if we select d = D (m .,p. ) where
m] = m2 = ...= mr = b, then M =br , the corresponding weights wi j =1 ' ,

become wi = Mlbi = br-i, therefore, the representation of a number X in

r r { 2p. if 2p. < m.
basebxbx...xb becomes (X )bb...b = LXjWj = Lxjb r-j f(mj'pj) = m. ~ 1 if 2p'. = m~

j =1 j =1 ' , ,
r

which is exactly the representation in base-b. ~ r Lm. /2J land diameter k , t. k = £...1 --L-
3.0 Graph Notation j =1 Pj
An undirected graph a is defined as the following tuple: a = (1'1 , 1;; It is easy to see that the n-cube is a Hypcrcycle, obtained with

), where N is the set of nodes (vertices) M = 2 x2 x...x2 = 2 n and P =1,1,1,...,1.

N = { a. ; i =1 .2,...N }, and 1;; the set of edges defined as
I 4.1 Routing

1;; = { ejj. = ( aj , /1j. )jj = ],2,...,dj ; i = 1,2,...,N } Hypercycles,haveroutingpropertiesthataresimilartothoseofthen-
.th R . N d h '

d . the d food (. th be f cube. From the definition of the Hypercycle, nodes
Wl aj' f'j. e an were i IS egree 0 e a; I.e. e num r 0 ( ) - .a m m m m -a 1 al ~...ar and

I 2 ...I... r
edges incident at a panicular node). The degree of a graph, denoted d(a ) , ( . )is defined as the maximum of the node degrees. A walk in a [5] is a a ml m2 ...mi ...mr = aJ al ~...ar

sequence of edges e] e2 ...el, such that if ei = (ai ai+] ) then
L J' . r m./2 lei+] = (a;+], ai+2 ) and ei e 1;;. The length I of such a walk IS defired are at most distance ~ away. A walk, from node a to node

as the number of edges occurring in it. The distance, dis( };<5 ), between P j

nodes r and <5 is defined as the shortest walk between r and <5 if any, a* , of length

otherwise, dis(r.<5 ) = 00. The diameter of a graph, denoted by k, is I = r ~ l can be constructed as follows:defined as the maximum distance between any pair of nodes. A graph is max P j

regular, if all nodes have the same degree. l' l'a1a2...a a , a1a2 ,I...a , a1a2 ,2 a I r r r

4.0 Hypercycles. a 1a2...~...ar .

We define now an r- dimensional Hypercycle, as the following regular such that
undirected graph: { ~. + p. if [ (~ -~. )modm. . I~. ,~ I] > P .

P { P P } 1. , I. , I.a = N ,1;; I. .
m m m ~j+l= ~ji -Pj if [(~ji-~)mOdmj.l~ji'~I] > Pj

wherem=m].m2.mJ mramixedradix,p=P1,P2,...,Pr; .~ if l~j.~ISpj
p. .s'mi 12 the connectivity vector. determining the connectivity in each .

I

dimension which ranges from a cycle (Pi =1 ) to the fully connected ~o = a, ~l = ~
.-

(Pi = L mi 12 J ), and N p = {0.] .2,...,M-] }. Each node a e N p is We call the length lmaxof such a walk. the distance along dimension i
m m

represented in the mixed radix system m].m2.mJ mr as §Observethatf~I,I",I<mll andl~I-I",fimplythat(a+~)modm-(a+

(a ) = a a ...a. The set of edges (N p)2 :1 1;; p is "' )modm .Thus, for every O < ~ S Pi ala2"".(ai% ~ )modmi ..ar defines
mlm2...mr 1 1 r m m ...

two dIstInct nodes In the graph. for a total of 2pi nodes. The only exception

p occurs when mi is even. Then. for ~ = mill. we have (ai + mIl )modmi

defined in the following way. Given a,/1e N m and if a, /1 are = (a. + mn + mJl .mJl ) modm. ~ (a. -mJl ) modm That is theI I. ...I. ..

( ) same nodc is defined. and thercforc, the tolal number of nodes reachable. bccomes
represented as a m m m = a 1 a 1 ...a r a n d m -1.I 2... r .

(/1 )ml m2 ...mr= /1 1 /1l.../1r .Then (a, /1 ) e 1;;~ if and only if there, Thc function LxJ denotes the largest integer smaller than or equal 10 x. while

.sts ] < h that r y 1 denotes the smallest integer larger than or equal 10 y.
eX! ;:.j-r suc t /1. = (a.:!: ~. )modm. with ] ~~. ~ p. This number IS calculat~ u fol1ows, GIven that there are r dIgIts m ~ ~e

} J 1 } 1 } address. there are the maxImum r differences between a source an a destlnauon
and aj = /1j ; i *j address. Also. for each digit (since it is expressed in bue mj ) the maximum

p ..distance bctween any two points is given u dmax = Lmj 12 J. Thus. bccause each
Observe that SInce /1j -(~ :!: /1j ) rnodmj , 1;; m IS symmetnc. point is connectcd to points that are distance ~ ; I SC.Sp .away. al1 the points

,
Exam-Dle: Suppose that M = 12 = 4x3 = m] xm2. and can be reached in a maximum of rdmaxlPjlsteps.





TABLE I. 0.

A VERAOE
(iIARi DEGREE DIAMErER NODES DISTANCE -+- (33) dimensional Hypercycle

PER NODE ~ 3-dimensionaJ binary cube

m 62 6 2 12 1.454 0. -4-di.mensi~nal bi.nary cube

= 3 I -0- 4-dImenslOnal binary cube
p S (e-cube routing)

m 53 6 2 15 1.571 0.
.cp = 21 0)

0" .
e

III 522 6 3 20 1.894 £

p = 211

m 333 6 3 27 2.077
p I11 0

m 3322 6 4 36 2.4
r 1111

m 32222 6 5 48 2.723 0

p 11111 .01 .1

m = 222 2 22 6 6 64 3.047 offered bad

p 111111

m = 22 17 6 6 68 3.403 Figure 2. Throughput vs. offered load using backtrack to the origin and e-

p I I 2 cube routing. The offered load and throughput are normalized to the

m 2 2 3 7 6 6 84 3.434 capacity of the inte~nnection network
p 1111 .

m 357 6 6 105 3.615
p I II

m 5 5 5 6 6 125 3.629
p III 300

m 222 222 2 7 7 128 3.528
p 1111111

-+- (33) dimensional Hypercycle

-0- 3-dimensionaJ binary cube
200 -4-dimensional binary cube

00 02 ~ -0- 4-dimensional binary cube

~ (e-cube routing)

10 12 100

20 22 @ 0

.01 .1

offered bad30 32

J J III
a. Hypercycle a 43 b. Binary 3-<:ube a222 Figure 3. Delay vs. offered load using backtrack-to-the-origin and e-cube

routing. The offered load is normalized to the capacity of the

inte~nnection network.
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Figure I. Examples of Hypercycles.



network failed, it could be marked as pelmanentely busy, and packets 5. Carlsson, G. E. , J. E. Cruthirds, H. B. Sexton, and C. G. Wright
would be routed around it. This obviously is not the case for the e-cube "Interconnection Networks Based on a Generalization or Cube-

routing. Connected Cycles" IEEE Trans. Comput., VoI. C-34, No.8, pp.

769-772, Aug. 1985.
6.0 Conclusions and Discussion 6. E. Chow, H. Madan, J. Peterson "A Real-Time Adaptive Mesage
In this work, we presented the Hypercycle, a class of Routing Network for the Hypercube Computer" Proceedings of the

multidimensional graphs, which are essentially generalizations of the n- Real-Time Systems Symposium, pp. 88-96, San Jose CA., (Dec.
cube. These graphs are obtained by allowing each dimension to 1987)
incot'lX>rate more than two elements and a cyclic interconnection strategy. 7. Dally, W .1 ., and C. L. Seitz "Deadlock-Free Message Routing in

Although these graphs are not ti¥: densest possible, they are attractive, Multiprocessor Interconnection Networks" IEEE Trans. Comput.
because of their simple routing. Similarly to the n-cube, the destination Vol. C-36, No.5, pp. 547-553, May 1987.
address is used to sequentially route a message through intelmediate nodes 8. C. Duret " A Nodal Structure Switching Network" Proceedings

as outlined in section 4.1. Also, since the node addresses are represented Colloque International de Communication VoI. 2, pp. 834-839,' in a mixed radix as a sequence of r.{!igits, each one of these digits is Paris, France (May 1979).

processed independently and in parallel with the remairling digits. Thus the 9. Feng, T. Y. ," A Survey of interconnection Networks" IEEE
hardware involved in the routing can be made fast (because of the Computer, VoI. 14, pp. 12-27, Dec. 1981
parallelism) and simple (since each module need only handle arithmetic 10. Imase, M., T. Soneoka, and K. Okada, "Connectivity or Regular
modmi' as compared to arithmetic modm1m2..mr needed when all the Directed Graphs with Small Diamete~"IEEE Trans. Comput., VoI.

address digits are necessary as is the case with such networks as the C-34, No.3, pp. 267-273, Mar. 1985.
cOOrdal rings [10], or ti¥: cube connected cycles [5]). II. Pete~on, J.C., J. 0. Tuazon, D. Lieberman, M. Pniel "The MARK

For tl¥:se graphs, we have also calculated the average distance between III Hypercube -Ensemble Concurrent Computer" Proceedings of the
any two nodes. Assuming that the graph is the representation of a 19851nternational Conference on Parallel Processing pp. 71-73,
multiprocessor, the average distance provides a metric of the Aug.20-23 1985.
communication complexity involved in such a structure. Compare for 12. Rasmusscn, R. D., G. S. Bolotin, N. J. Dimopoulos, B. F. Lewis,
example the average distances of the 7-cube and the ( m = 555, and R. M. Manning "Advanced General Put'lX>se Multicomputer for

p = III ) graph. The average distances, as they can be detelmined Space Applications" Proceedings of the 1987 International

from TABLE I, are 3.528 and 3.629 respectively, both have similar Conference on Parallel Processing. pp. 54-57. (Aug. 1987)
number or nodes, while their diamete~ are equal to six and seven 13. Rasmusscn, R. D., N. J. Dimopoulos, G. S. Bolotin, B. F. Lewis,
respectively. and R. M. Manning "MAX: Advanced Gencral Put'lX>SC Real- Time

The graphs presented in this study, are generalizations or some well Multicomputer for Space Applications" Proceedings of the IEEE
known graphs such as the binary n-cube, 2- and 3.{!imensional meshes, Real Time Systems Symposium pp. 70- 78, San Jose, CA.,(Dec.
and rings, which are included as special cases. Examples or some special 1987).
cases are depicted in Figure I. 14. G. Sabidussi "Graph Multiplication" Math. Zeitschr. VoI. 72, pp.

The Hypercycles, can be further extended by employing a different 446-457 (1960).
connectivity strategy in each dimension. Thus. in its most general folm, 15. Seitz, C. L. "The cosmic cube" CACM vol. 28, pp.22-33, Jan.
eqn. I. can be modified into 1985

.8 " " {,,1 " 2 " k } 16. Tuazon, J. 0., J. C. Peterson, M. Pniel, and D. Liebelman
j =(aj+..j)modmj : ..j e ..j '..j '..j "Caltech/JPL MARK II Hypercube Concurrent

provided that the subgraph (projected in dimension j) is connected. Processor" Proc~edings of the 1985 International Conference on
Examples of such extensions include the chordal rings [10], cube Parallel Proce~slng ~p. ~6-673, Aug. 20.231.985. ."
connected cycles [5] etc. The disadvantage is the increased complexity 17. Waltz, D. L. Applications or the Connecuon MachIne IEEE
. I ed . th u. calculati ons for that particular dimension. Computer January 1987, pp.85-97tnvO v In e mu ng 18 L D W .." C .. S t ti La N t ks orIn I .

H I ra1i ti . ns of the bas.lc n-cube Ittle ommurucatlon truc urcs or rge e wor
conc uslon, ypercyc es are gene za o 41... ."

they offer simple routing, and the ability, given a fixed degree, to chose Mlcrocompute~ IEEE Trans. on Computers VoI. C-30, No.4,

among a number or alternative size graphs. The use of the backtrack-to- pp.264-273. (Apr. 1981).

origin-and-retry routing strategy offe~ incresed throughput and fault
tolerance. These propenies are imponant for the design of concurrent
systems (e.g. MAX [12], Hypercube [II]) of varying size and
connectivity, and tailored specifically to the topology of a panicular

awlication.
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