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ABSTRACT?

In this work, we present the Hypercycles, a class of multidimensional
graphs, which are generalizations of the n-cube. These graphs are obtained
by allowing each dimension to incorporate more than two elements and a
cyclic interconnection strategy. Hypercycles, offer simple routing, and the
ability, given a fixed degree, to chose among a number of altemative size
graphs. These graphs can be used in the design of interconnection
networks for distributed systems tailored specifically to the topology of a
particular application. We are also presenting a back-track-to-the-origin-
and-retry routing, whereupon paths that block at intermediate nodes are
abandonned, and a new attempt is made. Intermediate nodes are chosen at
random at each point from among the ones that form the shortest paths
from a source to a destination. Preliminary simulation results are also
presented.

1.0 Introduction

Message passing concurrent computers such as the Hypercube[11,
16}, Cosmic Cube[15], MAX[12, 13], consist of several processing nodes
that interact via messages exchanged over communication channels linking
these nodes into one functional entity.

There are many ways of interconnecting the computational nodes, the
Hypercube, Cosmic Cube, and the Connection Machine[17] having
adopted a regular interconnection pattern corresponding to a binary n-
dimensional cube, while MAX adopts a less structured, yet unspecified
topology.

Several recent studies attempt extensions and generalizations of the
basic tenets of the n-cube. Broder et. al. {4] have proposed product
graphs(14] of small "basic" graphs. Their prime concem is to synthesize
fault tolerant networks with a given degree of coverage. In these
multidimensional graphs, they define a single route from a source to a
destination, as the product of routes in each of the constituent dimensions.
Routing is exhausted in each dimension before another dimension is
considered. Bhunyan and Agrawal (3] have introduced the generalized
hypercubes (GHC) which are also graph products of fully connected
"basic" graphs. The mixed radix system [2] is used t0 express the
properties of these graphs and their routing. Wittie [18] gives a good
overview and comparison of several interconnection nctworks including
the spanning bus and dual bus hypercubes. These are essentially binary
n-cubes with broadcast busses connecting the processors in cach
dimension.

The advantages of having a regularly structured interconnection are
many-fold, and they have been proven time and again in their being
incorporated in many recent designs [6,11,12,13,15,16,17]. In these
structures, easy deadlock-free routing (7] can be accomplished by locally
computing each successive intermediate node -for a path that originates at a
source node and terminates at a destination node- as a function of the
current position and the desired destination. Many regular problems (such
as the ones found in image processing, physics etc.) have been mapped on
such regular structures, and run on the corresponding machines exhibiting
significant speedups. In contrast, embedded real-time applications, such as
the ones addressed by the MAX project [12, 13], tend to exhibit variable
structures that do not necessarily map optimally to an n-cube. In addition,
since the size of a binary n-cube is given as 21 (n being the degree of the
graph), it means that a particular configuration cannot be expanded but in
predefined quantum steps. For example, if a given embedded application
requires a system comprised of 9 nodes, the next larger n-cube with 16
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nodes must be chosen. This constitutes a significant increase in resource

allocation, especially in the light of the power-mass limited environment of

a spacecraft.

Hypercycles[9] can be considercd as products of "basic" graphs that
allow, as compared to the Generalized Hypercubes (GHC) [3], a richer set
of component “basic" graphs ranging in complexity from the simple rings
to the fully connected ones used in the GHC. Also, contrary to Broder et.
al.[4], we define thc component graphs and provide analytical cxpressions
for routing, our aim being twofold:

(@ To provide computer interconnection networks that match the node
requirements of a given embedded system. Since our primary target
is spacecraft applications which are weight and power limited, (the
nodcs in a spacecraft computer network are the primary weight
contributor rather than the communication media) the exact matching
of the node requirements is of paramount importance.

(® To increase throughput of a given network by providing routing
expressions that can be computed analytically (and hence are
candidates for VLSI implementation) and which provide a maximum
number of altemnate paths from a source 10 a destination. The
existence of altcmate paths guarantees that a message will not be
blocked waiting for its single route to be freed, but it would in tum
scarch for the availability of altcmnate paths. This strategy also
provides for fault protection, since a faulty path can be marked
permanently busy, and thus messages can be routed around it. (Such
an approach of adaptive routing is applicd in the hypercube through
the Hyperswitch [6])

The Hypercycles, being regular graphs, retain the advantages of easy
routing and regularity. Yet, since we arc dealing with a class, rather than
isolated graphs, we have the flexibility of adopting any particular graph
(from the class) that closcly matches the requircments of a given
application. Since the graphs belong to the same class, routing is
accomplished via the same mcthods and thus the same hardware can
conceivably be used to configure structures with different sizes and
topologics.

This work describes such a class of generalized interconnection
networks, with routing strategics that are similar to that of the n-cube [4].
Yet, these networks offer richer topologices, and contain both the n—cube
and the ring as special cascs. While the n-cube is based on representation
of nodes in basc 2, we generalize by using the mixed radix system
representation. Such a representation, includes the binary (and hence the n-
cube ) as well as the arbitrary base b representation as special cascs.

This work is divided into three pants. Scction 2.0 introduces the Mixed
Radix System, Section 3.0 presents some basic graph terminology and
notation, while Section 4.0 introduces the Hypercycles and discusses their
properties,

2.0 Mixed Radix Number System

The mixed radix representation (2], is a positional number
representation, and it is a generalization of the the standard b-base
representation, in that it allows cach position 1o follow its own base
independently of the other.

Thus, given a decimal number M factored into » factors mj my e

My aSM=mpXmyxm3.x--xm, then any number 0 X s M-
1 can be represented as the following r-tuple

X )m, my..m,~ xle"‘xrlm, my...m,
where 0 Sx;<(m;-1);i=12,..,r and the x;'s are choscn in such a

M

r
waysoasX = $Sx.w. where w, = ———08——nu
;%I ! ommyem;

We use the notation (X )ml,,,z_“,,,' = 1112---1r|m, my .m0

indicate the radices involved. Since for most cases we shall be dealing with
a single set of radices, mj,m,,....m, , we shall omit, when obvious, the



radix indication from the notation x ; x,..
As an example, if we chose M = 10 =2 x 5, then any number between
0 and 9 can be represented with two digits, the first one ranging from O to
1, and the second one from 0 to 4. Thus (6)7 5 = 11l s, since mj =2,
my =5 wjij = M/mj; =10/2 =35, and
wp =M/ (mym3 ) = 1. Therefore,
(6)2,5 = 11l3,5 = Ixwy + Ixwp = 1x5 + 1x1 = 6lj.
Similarly, we can see that the mixed radix system representation, is a
generalization of the standard base-b system. Indeed, if we sclect
myp=mgz=..=m,=b, then M =b" , the corresponding weights w;
become w; = M/b; = b" -i, therefore, the representation of a number X in

.X, Im, my..m;

r r .
base b xb X ... xb becomes (X ),, , = inw‘. = inb r
i=1 i=1
which is exactly the representation in base-b.

3.0 Graph Notation

An undirected graph G is defined as the following tuple: G =(N, £
), where N is the set of nodes (vertices)
N={ o 1i=12,.N}, and E the set of edges defined as
£ = {e‘-ji = (a‘.,p,.i )j,.= 1,2,d; 10 = 1,2,..N }
with o, ﬂj" € N and where d; is the degree of node ¢; (i.e. the number of
edges incident at a particular node). The degree of a graph, denoted d@G ),
is defined as the maximum of the node degrees. A walk in @ (5] is a
sequence of edges e; e2 ... ¢/, such that if ¢; = (@, ;4] ) then
eiv1=(05y 7, 042)and ¢; € E. The length I of such a walk is defined
as the number of edges occurring in it. The distance, dis(7,6 ), between
nodes ¥ and & is defined as the shortest walk between ¥ and § if any,
otherwise, dis(y,6 ) = e=. The diameter of a graph, denoted by &, is

defined as the maximum distance between any pair of nodes. A graph is
regular, if all nodes have the same degree.

4.0 Hypercycles.
We define now an r- dimensional Hypercycle, as the following regular
undirected graph:

aP- { NP EP }
m m m
where # =mjy,mz,m3,....m, a mixed radix, p = p1,02,....0r :

p; <m;/ 2 the conncctivity vector, determining the connectivity in cach

dimension which ranges from a cycle (p; =/ ) to the fully connected

.= m: p - . P
©; Lm,IZ_j),ande {0,1,2,....M-1}. Each node a e :Nm is
represented in the mixed radix system mj,mp,m3,...m, as

2 .
(a )mlm: ..m,= 0 0.0, . The sct of edges (N’ﬁ) :I—:z is

defined in the following way. Given «, e Ng and if o, B are

represented  as (a )m,m,...m,= a;,a,..«a and

r
(B Im, my...m,= By By--B,. Then(a, B)e EP ifand only if there

exists / Sj <r suchthat
ﬂj = (aj:t éj )modmj with 1 SéjSpj
and o =f; ;i#f

Observe that since Q, =(oj ﬁj) modrm; , b > g is symmetric.

Example: Suppose that M = 12 = 4x3 =m; xm3. and

p=1,1=p,p2 .Therefore, for the graph generated by using the above
mixed radix and connectivity vector, node (1)4,3=01=ajay,is
distance one away from node (10)4 3 = 31 =B . Indeed, according 10
our definition, B ; = 3 =
(0-1)mod4 =(ay—§;)modm; , and ay=fy=1.

The previously defined Hypercycles, are regular graphs of dcgrce§

r
d= Y f(m;.p;) where

i=1

if 2p, <m;

[

if 2p;, =m;

i
r
Lm; 21
and diameterk 17, k = Z |— —
i=1 P;
It is easy to sec that the n-cube is a Hypercycle, obtained with
M=2x2x-x2=2"and p=1,1,1,...,1.

= | 2Pi
f(m,'-P,') = {m“' 1

4.1 Routing
Hypercycles, have routing properties that are similar to those of the n-
cube. From the definition of the Hypercycle, nodes

(a )'"1 my..mim,= % a,...¢...a, and

(a.)m,mz v m, a; ay....c... a,

Lm; 2]
are at most distance |— —i— | away. A walk, from node a to node
Pi
a*, oflength
Lm, 121
b = |— —L— | can be constructed as follows:
i

Cjag..a...e alaz...él...ar cajaz.baia,
ajap.b..a .
such that

éj.' +p; if [(6 ’éji)mOdmi‘ |¢ji'¢l] > P
éj,+l= éj‘ -p; ff [(éj‘_'f Jmodm; = IC,-&I] > P

3 it [¢; 8] < e

60 =a¢ él = §

We call the length lma;gf such a walk, the distance along dimension §

$ Observe that 1€yl <m2 and 1&| # |y | imply that (a + € )modm = (a +
v )modm . Thus, for every 0 < S p; a,a,.(a;t §{)modm, ..a, defines
two distinct nodes in the graph, for a total of 2p; nodes. The only exception
occurs when m; is even. Then, for § = mJ2, we have (@;+ mJ2 )ymodm,
=(@;+mJf2+m;i2-mi2)modm; =(a,-mJ2 )modm; .That is, the
s-mt; node is defined, and thercfore, the total number of nodes reachable, becomes
m,;-1.

¥ The function Lx] denotes the largest integer smaller than or cqual to x, while
[y1denotes the smallest integer larger than or equal to y.

TThis number is calculated as follows: Given that there are r digits in a node
address, there are the maximum s differences between a source an a destination
address. Also, for each digit (since it is expressed in base m; ) the maximum

distance between any two points is given as dy .y = [mi/2 J. Thus, because each
point is connecied to points that are distance £ ; lS§Sp‘. away, all the points

\

can be reached in & maximum of [dp,y /p'. Tsteps.



Given an origin (a )m, mg..m,= O 0C,
and a destination (B )'M my..m, = B, B,.-.B,
and if ¢; denotes their distance along dimension i , their total distance,
denoted as dis(a, ) and defined as the sum of the individual distances
along all the dimensions, is given as
r
dis(a, B)=q =Y 4;
i=l
For these nodes, there are a total of ¥
q q
I = =
(‘11 g2 el ) q;! 95! ~q,!

distinct walks of length ¢ that connect them . These paths can be
constructed by sequentially modifying the source address, each time
substituting a source digit by an intermediate walk digit , as specified in
equation (2) above, until the destination is reached. As an example, the
following walk connects the source to the destination.

source=Q; 0y &3..a, ,» ;& a;5..¢, , 0, &, v, ..,

a &V S yaa a8y By e, ., BBy By

..., =destination

Figure 1., gives an example of two distinct walks of equal length that
connect a source to a destination, for a Hypercycle.

4.2 Average Distance Calculation

Given an r-dimensional generalized graph G "," , and restricting

ourselves in any single dimension {, we can calculate the number of nodes
that are distance |/ away from a source node

(a )m’ my..m,= @ 05..., as equal to the number of symbols &; that

satisfy the relation
(- 1)p; < laj.&1 <lp;. This number is given as
2p; if Ip;<lm;/21
i_ m.-1-p.
=Y mp-1)-20-1)p; if (m;121s1p;s —J—zﬁ
0 otherwise

Given a node (a
r

2 n 1‘ nodes at distance one, and in general

i=l

)m} my..m,= @ 0.0, there exist

i

r

> I

Ly vl 20 Timl

- { »0
’1 +l2 +..H =1 i

n1=

nodes at distance [ .This cquation is simplified for the case where p; =| m;
/2 jo the following:
r-1+1 r-l+2 r
> (m; -1)(m, -1)(m; -1)
=i, 41 ! 2 !
Therefore, the average distance between any two nodes in a Hypercycle
2’41"‘
=1
m 1m2 ..-m'
Some typical distances are given in TABLE 1.

n,=
|I=l 12=ll+l

a”ff canbe calculated as d =

*For the definition of a multinomial number, see [1] pp 32.

5.0-Deadlock Avoidance in Routing.

In section 4.1, we have proven that the Hypercycles are connected
graphs, and we have given a method that establishes at least one path from
a source to a destination node. In this part, we are concemed with
optimally chosing one of the paths. Routing must be efficient and deadlock
free. Deadlock occurs when resources (in this case node to node
communication segments) are allocated so that the completion of a partial
path requires a segment already allocated to a different partial path which
in turn waits for a segment in the first partial path. It is obvious that no
messages can propagate over the deadlocked paths, and the only remedy is
to break the already established and deadlocked partial paths and try again.

Deadlock may occur easily in cases where the segments that form the
paths are chosen at random. Certain routing algorithms (e.g. virtual
channels, ¢-cube routing(7)) avoid deadlocks by ordering the resources
(channels) to be allocated. Thus a lower order resource cannot be
committed if a nceded higher order resource cannot be obtained. The
disadvantage of this approach in an intcrconncction network is that it
limits the number of paths connecting a source to a destination (o exactly
one, even though several alternate free paths may exist at a particular
moment. On the other hand, discovering a deadlock and breaking it may
prove expensive. Nevertheless, for centain operating conditions, it may
prove beneficial to adopt a strategy where deadlocks are broken by
requiring a blocked path to backtrack (o its origin and retry.

6.0 Backtrack-to-the-origin-and-retry routing

For Hypercycle-based interconnection networks, because of the
existence of cycles in cach dimension, the usc of an ¢-cube type routing
that avoids dcadlocks, is impractical. We are proposing a deadlock
detecting routing strategy. According to our backtrack-lo-the-origin-and-
retry routing, we identify at each node all potential candidates for next
node in the path according to equation 4.1.1. For all such identified
nodes, we also identify the corresponding free ports that can be uscd in
order to continue the path. One of these free ports is randomly selected
through which the subscquent link in the path is established. If no free
ports are to be found at an intcrmediate node in the path, then a break is
retumed to the origin (through the already established partial path to the
blocking nodc), the partial path is destroyed, and a new attempt for the
creation of the required path is initiated. This routing strategy avoids
deadlocks through the backtracking, and also guarantees that the formed
path will be of a minimum length, since each subsequent link is sclccted
according to cquation 4.1.1.

We have used Extend™T 1o construct a simulator capable of simulating
any Hypercycle based network. For this simulator, we implemented both
the backtrack-to-the-origin-and-retry as well as the e-cube routing
strategies. The e-cube routing can only be used for binary cube networks.
For each node, we assumed a Poisson message generator which gencrates
packets with uniform distribution of destinations. Each packet carries both
the destination addresse which is used for routing. Links arc assigned
priorities, so that collisions can be resolved. We assumed a packet
transmission time (over an established source 1o destination path) of 100
simulation-clock ticks. We use the simulator to obtain the throughput and
delay characteristics of several networks for both e-cube and backtrack-to-
the-origin-and-retry in terms to the offered load. Both the offered load
and the throughput were normalized in terms 10 the maximum capacity of
cach nctwork taken to be proportional 1o the number of links in the
corresponding graph. The average delay was expressed in actual time units
necessary to cstablish a source-to-destination circuit. Preliminary
simulation results are depicted in figs. 2 and 3.

As it was expccted, the performance of the backtrack-to-the-origin-
and-retry for both binary cubes and hypercycles of similar sizes, is clearly
superior that of the c-cube as it can be scen in figs. 2 and 3. This is
attributed to the fact that the backirack-to-the-origin-and-retry can use
altemative paths to the destination instead of the single path alloted by the
e-cube routing. The additional advantage of the backtrack-to-the-origin-
and-retry is its inherent fault tolerance. Indeed, if one of links in the

1 Extend is a rademark of Imagine That inc.



TABLEL 0.4

AVERAGE
GRAPH DEGREE DIAMETER NODES  DISTANCE 1 -+~ (33) dimensional Hypercycle

PER NODE < 3-dimensional binary cube
m - 62 6 2 12 1.454 0.3 — 4-dimensional binary cube
p = 31 ) O 4-dimensional binary cube

5 1 (e-cube routing)
m = 53 6 2 15 1.571 2
po= 21 2 0.2
m = 522 6 3 0 1.8% £
P = 211
m = 333 6 3 27 2077
p = 111 0.17
m = 3322 6 4 36 24
r = 1111
<

m = 32222 6 5 48 2723 0.0 T
p = 11111 .01 A 1
m = 222222 6 6 3.047 offered load
p = 111111
mo = % % 57 6 6 68 3.403 Figure 2. Throughput vs. offered load using backtrack to the origin and e-
P - cube routing. The offered load and throughput are normalized to the
Z' z f % :;' Z 6 6 8 3434 capacity of the interconnection network.
m = 357 6 6 105 3.615
p = 111
m = 555 6 6 125 3.629
P = 111 300+
m = 2222222 7 7 128 3.528
p = 1111111

—*- (33) dimensional Hypercycie
-~ 3-dimensional binary cube
— 4-dimensional binary cube
O
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00 /\ 02

11
10 / 12 1007}

4-dimensional binary cube
(e-cube routing)

delay
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0 L i |
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& Hypercycle @, b. Binary 3cube  G3;; Figure 3. Delay vs. offered load using backtrack-to-the-origin and e-cube
routing. The offered load is normalized to the capacity of the
interconnection network.
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Figure 1. Examples of Hypercycles.



network failed, it could be marked as pcrmanentely busy, and packets
would be routed around it. This obviously is not the case for the e-cube
routing.

6.0 Conclusions and Discussion

In this work, we presented the Hypercycle, a class of
multidimensional graphs, which are essentially generalizations of the n-
cube. These graphs are obtained by allowing each dimension to
incorporate more than two elements and a cyclic interconnection strategy.

Although these graphs are not the densest possible, they are attractive,
because of their simple routing. Similarly to the n-cube, the destination
address is used to sequentially route a message through intermediate nodes
as outlined in section 4.1. Also, since the node addresses are represented

" in a mixed radix as a sequence of r-digits, each one of these digits is
processed independently and in parallel with the remaining digits. Thus the
hardware involved in the routing can be made fast (because of the
parallelism) and simple (since each module need only handle arithmetic
modm; , as compared to arithmetic modmymy...m, needed when all the
address digits are necessary as is the case with such networks as the
chordal rings [10], or the cube connected cycles [5]).

For these graphs, we have also calculated the average distance between
any two nodes. Assuming that the graph is the representation of a
multiprocessor, the average distance provides a metric. of the
communication complexity involved in such a structure. Compare for
example the average distances of the 7-cube and the (m =555,
p=111) graph. The average distances, as they can be determined
from TABLE 1, are 3.528 and 3.629 respectively, both have similar
number of nodes, while their diameters are equal to six and seven
respectively.

The graphs presented in this study, are generalizations of some well
known graphs such as the binary n-cube, 2- and 3-dimensional meshes,
and rings, which are included as special cases. Examples of some special
cases arc depicted in Figure 1.

The Hypercycles, can be further extended by employing a different
connectivity strategy in each dimension. Thus, in its most general form,
eqn. 1. can be modified into

B; = (a;+§)modm; ; & € {CJI .Cf '----5; }

provided that the subgraph (projected in dimension j) is connected.
Examples of such extensions include the chordal rings [10], cube
connected cycles (5] etc. The disadvantage is the increased complexity
involved in the routing calculations for that particular dimension.

In conclusion, Hypercycles are generalizations of the basic n-cube and
they offer simple routing, and the ability, given a fixed degree, to chose
among a number of alternative size graphs. The use of the backtrack-to-
origin-and-retry routing strategy offers incresed throughput and fault
tolerance. These properties are important for the design of concurrent
systems (e.g. MAX [12], Hypercube [11]) of varying size and
connectivity, and tailored specifically to the topology of a particular
application.
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