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ABSTRACT

DAME (Design Automation of Microprocessor-based systems, using an
Expert system approach) is an expert system that will be capable of configuring
and designing a customized microprocessor system from original specifications.
We have postulated that such an expert system, can be easily constructed, since
most of the interfaces used by the various microprocessors and related peripherals
are standardized. Thus, once the gross structure of the design and the modules
comprising it have been chosen, their interconnection is fairly straight-forward.
Our investigation into the modelling of signal behavior confirmed this premise.

In this work, we present the notation used to model signals in DAME. A
notation is developed to allow complete specification of the static and temporal
behavior of signals and their relation to other signals. Knowledge representation
using frames is presented, together with some typical rules used for the design
process. Actual examples of frame representation, rules to design interfaces
between microprocessor and memory components are illustrated.

1. Introduction

In many systems’ design problems, the lack of comprehensive theory of
system integration and design choices, has led to a more or less empirical set of
rules, which an experienced designer can draw upon in order 10 give an optimum
solution to a given problem,

Knowledge-Based systems have recently proliferated in several fields of
human endeavor. These systems play the dual role of categorizing and codifying
expert knowledge, and then using this knowledge in order to solve time
consuming and/or challenging problems. Examples can be drawn from several
diverse fields such as patient care [6,11}, computer system configuration [7],
geological exploration {4], VLSI design [9,10], computer system design [13],
etc.

DAME (Design Automation of Microprocessor-based systems, using an
Expert system approach) [1,2,3,5] is an expert system that will be capable of
configuring and designing a customized microprocessor system from original
specifications such as type and application, environment, communication and
computational requirements as well as economic criteria.

We postulate that such an expert system, can be easily constructed, since
most of the interfaces used by the various microprocessors and related peripherals
are standardized. Thus, once the gross structure of the design and the modules
comprising it have been chosen, their interconnection is fairly straight-forward.

The envisioned System comprises a library of available components (the
knowledge base), the rule base, and the user interface. The rule base uses
information from the library in order to choose the appropriate components and
to eventually produce a valid design. The library of components incorporates
such diverse information as names, signal protocols and timing, packaging and
availability, as well as design procedures which may be applicable 1o the specific
component. We have chosen the frame paradigm [12) to organize this diverse
information. This was necessitated because of the diversity and repeatability of
the information!. In addition, several expert system tools provide a well behaved
frame development environment2.

DAME organizes the design process into a hierarchy consisting of the
following phases: (1) Design Specification; (2) Configuration; (3) Behavior
Description; (4) Functional Block Design; (5) Implementation and Integration.

During the Design Specification phase, the system responsibilities, design
constraints, and system environment are established. The gross system

¥ This research has been supported in part by the Natural Sciences and
Engineering Research Council of Canada under the strategic grant STR0040526
and by the Science Council of British Columbia under Science and Technology
Development Fund through grant SCBC #88 243,

IThere is for example a limited number of different signal protocols that are to
be found across the various components with slight variations of name and
signal polarity.

2Knowledge Craft™ uses schemata 1o structure its data. Knowledge Craft is a
trade mark of Carnegie Group Inc.

architecture is established during the Configuration phase. The system is divided
into subsystems which are interconnected to produce the gross system
architecture, The Behavior Description phase defines the capabilities of the
subsystems produced by the Configuration phase. During Functional Block
Design phase, the capabilities of the subsystems are mapped directly 1o the
available componcnls or combinations thereof,

During the Implementation and Integration phase the modules obtained
during the Functional Block Design phase are connected together to produce the
final system. Undefined functions which do not directly correspond to a hardware
component, are synthesized using random logic.

Each hierarchical level represents an abstraction of the given design
problem. As the levels are transversed, the abstraction of the design is refined,
until, at the last level, the complete design is formed. Each hierarchical level
manipulates objects which represent the system's concept of the design
requircment at the particular abstraction level. The signal and the signal timing
for a particular component are two of the objects represented in DAME,

Our basic tenet has been that the interface signals found in various
microprocessor families, follow a limited number of well defined protocols for
information exchange. This information is given both descriptively and
quantitatively as timing diagrams by the manufacturers of the component, We
have deviscd a three-tier representation: events and transitions, control and data
protocols, and standard behaviors. Section 2 of this work presents a description
language for this representation, together with a parser that can extract timing
relationships from the language. Data transfer portion of the interface in the
Functional Block Design Level is described in Section 3. Examples of
knowledge and rule representations are given in Section 4.

2. Library of Components

A model is needed to encapsulate the specifications of microprocessor
components, into a data base that can be used by DAME, currently implemented
in Knowledge Craft. The data describing the component must include
information required at each design phase. Examples of such information are:
component name, manufacturer, cost, temperature range and reliability, speed of
operation, package lypes available, power requirements and consumption, device
pin definition, and especially timing and interface specification.

2.1 Event Description Language

This section provides an overview of the language used 10 model the
behavior of the various signals associated with the components used in the
design of microprocessor-based systems [5].

At the lowest level of the representation, signal transitions are related to
events which must precede them and are considered for our purposcs as their
cause. An event description language has been developed through which,
arbitrarily complex events3 can be described. In addition, causal relations,
relating events to transitions, can also be expressed. We use this language in
order to encode the information in the timing diagrams provided for by the
manufacturers of the components.

A signal associated with a particular device or bus is assigned a signal_name
which consists of a unique string of characters and will be used to reference the
signal. Signals are found to exist at well defined states such as ASSERTED, and
NEGATED. Signals can have more than one logic state and certain states might
imply other statcs.

States can be combined into more specific states using the or and and
operators. The combination of one or more states using operators constitutes a
state_expression. If a signal changes state, a transition results. Combination of
states are expressed through transition_state_expressions . These are used in order
to denote stable states during setup and hold times.

Any change of the state of one or more signals constitutes an event. A
transition, or a transition_state_expression are considered as events. The

3An event is considered as a collection of signal transitions with imposed timing
constraints and precedence.



collection of one or more events, which may or may not occur in a specified
order, also is an event.

If a transition can only occur if certain events precede it, a causal_relation
results which specifics the prercquisite event for a signal transition and its
timing. A sct of causal relations can be used 1o specify the complete timing
characteristics of a set of interacting signals.

2.1.1 Parsing and Detector generator

We have developed a parser (using Unix’s LEX and YACC tools) which is
capable of parsing transition relation expressions that use the grammar described
above. Given an event expression or a causal relation, the parser is capable of
extracting the timing relationships between the constituent transitions as well as
the description (in CUPL) of detectors capable of detecting the described events.
At this point, we are capable of generating detectors of events described through
associative operators. The structure of such detectors are in the form of non-
sequential logic. The parser is currently expanded so that it will be capable of
generating detectors of events described by non-associative operators. Such
detectors take the form of sequential machines. (Such detectors are for example
needed to detect a predefined sequence of transitions obeying well specified
precedence timing).

Precedence extraction allows us to graphically display the transition relation
expressions in the form of a trace plot, so that relation expressions can be
visually verified by the uscr. An example is shown in Fig. 1. Furthermore, we
can extract the relative min/max timings between two transitions. These data are
used in the low-level design of logic blocks. Note however, that often the timing
between transitions is indeterminate or infinite, and extracting these unusable
values may indicate incorrect design intentions or poorly-formed transition
relation expressions.

2.2 Control and Data Protocols

At the second level of the representation, collections of limited numbers of
causal relations describe basic control or data transfer protocols, using the
description language. Examples of such protocols include the two signal
handshaking protoco! found in many information transfer subsystems.

Handshake Template

SIG1

SIG2
handshake template

! ASSERTED SIG1 —> ! ASSERTED SIG2 @ T1
! ASSERTED SIG2 —> | NEGATED SIG1 @ T2
! NEGATED SI1G1 —> ! NEGATED SIG2 @ T3

Another typical example is the gating protocol used for the actual transfer of
data, The following is a template showing the timing of the LDS/UDS strobes
and the data bus for the MC68000 microprocessor.

Ds

DATA
DS/ DATA TIMING (READ)

! ASSERTED LDS —> ! VALIDI D0-D7 @ {-~,(50+T6))
I NEGATED LDS —> ! INVALIDI D0-D7 @ [0,20]

! ASSERTED UDS —> ! VALIDI D8-D15 @ [-~,(50 +T6)}
! NEGATED UDS —> ! INVALIDI D8-D15 @ [0,20]

In the above equation, T6 is DTACK asserted delay from LDS/UDS signal
in the LDS/UDS/DTACK timing.

2.3 Standard Behaviors

At the highest level of the representation, collections of basic protocols as
they exist at the second level, constitute Standard Behaviors. In general, a
Standard Bchavior comprises two parts: the control part which describes the
behavior of the control signals participating in this behavior and the information
transfer part which describes the actual information transfer.

Examples of Standard Behaviors are data transfer behaviors such as the ones
found in processors and which incorporate both a control protocol and the actual
transfer protocols necessary for the delivery of addresses and data on a bus. In
contrast, the data transfer behavior of static memory components are devoid of
the control protocol. This absence of a control protocol illustrates the inability
of a memory component to initiate activity.

Protocols as well as Standard Behaviors are depicted as semantic networks
(networks of schemata in Knowledge Craft). Template networks of schemata

-

depicting generic protocols and behaviors have been constructed. These templates
are customized when they are used in the description of the various components
within the component data base to reflect the particular signals and timing
constraints involved.

2.4 Modelling Components in DAME

Components incorporate both structure and function specifications. Typical
structure specifications include the name of the component, its type, the number
and name of its interface signals etc. Function specifications on the other hand,
relate to the behavior of its interface signals and they are crucial in the
refinement of the design. We have postulated [5] that these signals follow some
very typical behavior patterns? (Standard Behaviors). The existence of a
particular Behavior forces design decisions to be made3, These behavior patterns
have been identified, and they are described through templates. Some typical
templates were introduced in Section 2.2. The existence of particular behavior
patterns is denoted through the inclusion of instantiations of the appropriate
templates in the function specifications of a component. We have organized the
structure and function specifications of a component as a semantic network
(network of schemata in Knowledge Craft).

Components are described as semantic networks that include both the
structure and function specifications. An example of a partial network of
schemata depicting part of the MC68000 is shown in Fig. 2. The hierarchy of
the component specification is organized as follows. A component has a name
such as MC68000. It is classified as to its type (e.g., Microprocessor, RAM
memory, ROM memory, IO peripheral device etc.) Instances of components
have their unique names.

Each component has signals associated with it, which will be referenced to
the component through the has-signals relation. Each signal has a pin number,
polarity etc. Each component has behaviors involving classes of signals. Typical
behaviors are data-transfer bus-arbitration ctc. Each of the behaviors relates to the
semantic network through a has-behavior relation.

Bascd on the existence of particular Standard Behaviors, modelling aspects of
the operation of the interface, one can write few general yet powerful rules that
are capable of connecting individual components together.

As an example, we elaborate on the data transferring behavior and its use in
designing a simple system comprising of a processor and a memory module.

Data transferring behaviors are distinguished as master or slave Behaviors. A
component exhibiting a master behavior can initiate a data transfer (e.g.
processor, DMA) whilc a module exhibiting a slave behavior can only respond
to data transfer requests (e.g. memory).

A data-transfer Behavior involves three types of signals grouped into buses:
the control-bus, address-bus, and data-bus. These groups are identified through
the uses-control-bus, uses-data-bus, and uses-address-bus relations. The control
and transfer protocols involved are identified through the has-timing and uses-
template relations.

The example depicted in Fig. 2 represents the partial specification of an
MC68000 component. The data transferring behavior READ-PROTOCOL-1 of
this component includes the two- signal handshaking protocol as well as separate
gating protocols for the transfer of the addresses and data. These protocols
correspond to the fact that the MC68000 uses an asynchronous non-multiplexed
bus.

3. Functional Block Design Level

The Functional Block design level considers pairs of components and
identifics the various groups of signals that need to be interfaced. It generates
“functional blocks” and identifies the correct signals which are used by these
blocks. Each block represents a specific function. The function definition will be
used at a later stage to refine design of the block.

Aspects of the Functional Block design level reported in this work,
incorporate knowledge necessary for the design of the data transfer portions of the
interface. It is capable of identifying the protocol used for the data transfer, and
accordingly specifics the correct “functional blocks” for the control, address, and
data groups of signals.

As an example, we have used two specific components, namely an
MC68000 processor and a MK6116 2K by 8 static RAM and had the
corresponding blocks and participating signals identified in two experiments, the
first involving a single processor and a single memory component, while the
second involved two memory components.

From their data-transfer Behaviors, their address, data and control buses are
identified, and “buffer blocks” interface the respective address (unidirectional
buffers) and data (bidirectional buffers) buses. Because the MC68000 has an
asynchronous bus, which is manifested through the handshaking behavior as an

4A particular example of such a behavior pattern can be considered is the two
signal handshaking protocol and its variants which is widely used for data
transfer operations.

S5For example, the existence of a two signal handshaking behavior in a bus (e.g.
the MC68000 asynchronous bus), nccessitates the generation of an acknowledge
signal within a certain delay. Once such a behavior has been detected, it is easy
to synthesize the appropriate block that will generate the required acknowledge.



instance of a handshake template, a ““delay selection” block is created which will
generate the appropriate data transfer acknowledge ( DTACK ), and chip

selection (E), The following shows the resulting delay block for DTACK :

{
BINARY-BLOCK-3
INSTANCE: BINARY-BLOCK
PURPOSE: DATA-TRANSFER CONTROL GENERATE
TYPE: DELAY
DETECT: (MC68000 TIMING-1 EVENT1)
GENERATE: (MC68000 TIMING-1 TRANSITION2)
DELAY: (MAX ((DELTA (MIN MK6116 TIMING-6 EVENT1 TIMING-
6 TRANSITION2 TIMING-6 EVENT1)) MINUS ........ )
DEVICE1: U1
DEVICE2: U2
EXTRA-TIMING1: TIMING-7
EXTRA-TIMING2: NIL

i

The necessary “significant” events are extracted from the description of the
control and transfer protocols and the corresponding event detcctors are gencrated
automatically. Fig. 1 depicts the description of such an event (this event
identifics the onsct of a memory access cycle in the MC68000, and it is used in

the generation of the appropriate data transfer acknowledge DTACK and the
corresponding detector.

4. Knowledge and Rule Representation

We have used Knowledge Craft and OPS-CRL to represent the knowledge
necessary for the functional block design level. The cluster of rules which is
capable of performing the data transfer design comprises rules which identify the
address, data and control buses, the signals participating in them and their
behaviors, and rules to structure the appropriate “functional blocks”.

A typical rule for connecting the control bus of two components together is
shown below:

(p create-control-block
(timing Aschema-name <tim1> *uses-template handshake-template)
(data-transfer-control-bus *schema-name <contri>
Ahas-timing (member <tim1> <>) *uses-signal <sigs1>)
(data-transfer Ahas-capability+inv <name1>
Auses-control-bus <contr1>)
(microprocessor “schema-name <comp-namei> *instance
<name1>)
(timing Aschema-name <tim2> Auses-template strobe-template)
(data-transfer-control-bus *schema-name <contr2>
Ahas-timing (member <tim2> <>) Auses-signal <sigs2>)
(data-transfer “has-capability+inv <name2> *uses-control-bus
<contr2>)
(memory “schema-name <comp-name2> Ainstance <name2>)
-(block Aype control Adevice1 <comp-name1> Adevice2 <comp-
name2>)
- d
(cschema (symgen ‘block)
(instance binary-block)
(type 'control)
(‘function :new-values '(delay selection))
(‘device1l <comp-name1>) (‘device2 <comp-name2>)
(‘'signals1 :new-values <sigs1>)
(‘'signals2 :new-values <sigs2>)))

A typical “functional block” for the control bus between the MC68000 (U1)
and MK6116 (U2) is shown below. The block was created using the rule create-
control-block above:

{
BLOCK2

INSTANCE: BINARY-BLOCK

TYPE: CONTROL

FUNCTION: DELAY SELECTION

DEVICE1: Ut

DEVICE2: U2

SIGNALS1: MC68000-AS MC68000-RW MC68000-DTACK

MC68000-LDS MC68000-UDS

SIGNALS2: MK6116-WR MK6116-OE MK6116-CE

OUTPUT1: MC68000-DTACK

OUTPUT2: MK6116-CE MK6116-OE MK6116-WR

INPUT1: MC68000-UDS MC68000-LDS MC68000-AS MC68000-
RW

B

The above connection block shows that it is used to connect contro! signals
from devices Ul and U2, where U1 is a MC68000 microprocessor and U2 is a
MKG6116 static memory.

From Ul the inputs into the connection block are given in INPUT1, while
the outputs out of the block are given in OUTPUT1. The connections from the
connection block to U2 only consist of outputs given in OUTPUT2.

5. Conclusion

In this work, we provided the framework of DAME which is an expert
system capable of configuring and designing customized microprocessor based
systems from original specifications. DAME, is organized as a hierarchy of
design levels, each one of which refines the design provided by the previous
level, by following established practices in the field of hardware design.

We have postulated that the use of an expert system at this level of the
design activity is achievable, since the design methodology is well established,
and the interfaces for most of the components used are standardized.

We presented our approach in modelling the behavior of the various signals
associated with the components used for the design of microprocessor-based
systems. Notations and templates for typical timing specification are presented
with examples shown for the MC68000. We used objects and relations to
capture both the static and temporal behavior of these signals. We implemented
these objects by using schemata as defined in Knowledge Craft. We have also
developed a parser that is capable of interpreting signal timing specifications and
used it to create timing diagrams corresponding to the specifications. Actual
examples of knowledge representation, and design rules used for interfacing the
MC68000 microprocessor and its memory components are illustrated.

We have also implemented a user-friendly interface which is currently used
in capturing the rclevant information and creating a network of schemata that
describes the properties of a component. Our approach is to use templates of
networks of schemata describing partial properties and incorporate those
templates into the final network. Our user interface is window based, mouse
driven, and is implemented as a “work center” in Knowledge Craft. We have
started formulating the design rules necessary for the Functional Block Design
level.
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Partno: 000G
Date: wed Jun 13 17:30:30 FOT 1990;
Revisian: 01
Designer: eros/1/dame/parser/rev2/dane;
Campany; University of Victoria, DAME group;
/ * /
/% &(8S[—,+~] (|asserted RD,+(]assarted UDS, |asserted IDS!)1) */
VAd ->|asserted DIACK @{—,+~] */
/ /
g */
lad FO: ___ | 1 */
” v/
” ws: I */
Al */
/* ws; 1 v/
/* */
/*  DIKK: | */
/* */
/ /
/* Pins (input and output) */ /* Logic Equations */
PIN XX = |RESET; /* input */ event_03.D = !clear & levent 03 & FO
PIN XX = event_01; /* cutput */ # lclear & event 03;
PIN XX = event_Ola;s /* output */ event_05.D = Iclear & !event 05 & WS
PIN XX = event_02; /* cutput */ # !clear & event 05;
PIN XX = event_02a; /* cutput */ event 06.D = Iclear & levent 06 & IDS
PIN XX = RD; /% input */ ¢ lclear & event 067
PIN XX = event_03; /* output */ event_04.D = lclear & levent 04 & ( event 05 + event 06 )
PIN XX - event_04; /* output */ # !clear & event _04;
PIN XX = ws; /% input */ event_02a.D = iclear & !event 02a & event 03 & 'event 04
PIN %X = event_05; /% output */ # !clear & event O2a;
PIN XX = 1DS; /* input */ event_02.D = iclear & levent 02 & event_(O2a & event 04
PIN XX = event_06; /* ocatput */ # !clear ¢ event_02;
PIN XX = event_07; /* output */ event_07.D = Iclear & !levent 07 & !RD
PIN XX = DTACK; /% output */ 4 !clear ¢ event 077
event 0Ola.D = lclear & fevent Ola & event_02 & !event 07

/* Declarations and Intermediate Variable Definitions */ # !clear & event Ola;
clear = RESET event_01.D = lclear & levent_O1 & event Ola & event 07

§ DTACK; # !clear & event 01

DTACK.D = !RESET & !DTACK & event 01
¢ IRESET ¢ DTACK;

Fig. 1  The rules in the data transfer module produce the specifications for the necessary glue
logic needed to handle the various parts of the data transfer operation (e.g. acknowledgement,
address transfer, data transfer, selection). The specifications are written in CUPL, and can be
exported directly to standard PLA generators to synthesize the appropriate circuits. To this end we
have used the Standard Behavior models involved in data transfers for the automatic generation of
a processor memory interface in the MC68000 family.
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Fig. 2 A Partial Network of Schemata describing the behavior of the MC68000 processor.




