MODELLING SIGNAL BEHAVIOR IN DAME: A RULE BASED
DESIGNER OF MICROPROCESSOR BASED SYSTEMSS$

B. T. Huber,
D. Li,

D. Caughey, K. F. Li,
R. Burnett,

N. J. Dimopoulos,

and E. G. Manning

Department of Electrical and Computer Engineering
University of Victoria, Victoria, B.C., Canada V8W 2Y2

R
- ABSTRACT

DAME csign Automation of Microprocessor-bascd sysicms, using an
Expert system approach) is an cxpert system that will be capabie of configuring
and designing a customized microprocessor sysicm from original specifications.

Wehave postulated that such an expert system, can be casily constructed,
since most of the interfaces used by the various microprocessors and related
peripherals arc standardized. Thus, oncc the gross structurc of the design and the
modules comprising it have been choscen, their interconnection is fairly straight-
forward. Our investigation into the modclling of signal behavior confirmed this
premisc.

in this work, we present the notation used to model signals in DAME. A
notation is developed to aliow complete specification of the static and temporal
behavior of signals and their relation to other signals.

1. Introduction

In many Systems’ design problems, the lack of comprehensive theory of
system inicgration and design choices, has led 10 a more or less empirical set of
rules, which an experienced designer can draw upon in order to give an optimum
solution 10 a given problem.

Knowledge-Based systems have recently proliferated in scveral ficlds of
haman endeaver. Those systems play the dual role of catevaricing and coditving
capert hnowledge, and then using this haowlcdge i order o solve ume
consuming and/or challenging problems. Examples can be drawn from several
diverse ficlds such as patient care [5,10], computer system configuration {6],
geological exploration {4], VLSI design {8 9], computer system design [11], etc.

DAME (Design Automation of Microprocessor-based sysicms, using an
Expert system approach) [1,2,3] is an cxpert system that will be capable of
configuring and designing a customized microprocessor system from original
specifications such as type and application, environment, communication and
computational requirements as well as cconomic criteria.

We postulate that such an expert sysiem, can be casily constructed, since
most of the interfuces used by the various microprocessors and retated peripherals
aie statidardized, Ths, once the gross Situctuze oF the desgn and the modules
comprising it have been chosen, their interconnection is fairly straight-forward.

DAME organizcs the design process into a hicrarchy consisting of the
following phases: (1) Design Specification; (2) Configuration: (3) Behavior
Description; (4) Functional Block Design; (S) Implementation and lntegration,

During the Design Specification phase, the system responsibilities, design
constraints, and systcm cavironment are cstablished.  The gross sysiem
architccture is established during the Configuration phase. The system is divided
into subsystems wihuch arc interconnected to produce the gross sysicm
architecture.  The Behavior Description phase defines the capabilitics of the
subsystems produced by the Configuration phasc. During Functional Block
Design phasc, the capabilitics of the subsystems are mapped directly to the
availablc componcnts or combinations thercof.

During the Implementation and Integration phase the modulcs obtained during
the Functional Block Design phase are connected together to producce the final
system. Undefined functions which do not dircctly correspond to a hardware
componcnt, are synthesized using random logic.

Each hicrarchical level represents an abstraction of the given design problem.
As the levels arc transversed, the abstraction of the design is refined, until, at the
last level, the compleic design is formed. .

Each hicrarchical level manipulaies objects which represent the system's
concept of the design requirement at the particular abstraction level. The signal
and the signal timing for a particular component arc two of the objects
represented in DAME.  In this work, the notation for the representation of the
signals and their timing is described. The notation developed is then used to
illustrate some typical handshaking protocols widely used in microprocessor-
based systems.  Actual cxamples modelling signals for the MC68000
microprocessor arc also given.
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2 Signal Description

A model is nceded 1o encapsulate the specifications of MICIoprocessor
componcnts, into a data basc that can be used by DAME, currcntly implemented
in Knowledge Craf(TM*,

The data describing the component must include information required at each
design phasc.  Examples of such information are: component name,
manufacturer, cost, temperature range and reliability, speed of operation, package
types available, power requirements and consumption, device pin definition, and
cespecially uming and interface specification.

Notc that not all information must be accessible at all levels of the design
phascs. Howecver, it should be available when needed. The aim of this work is
to develop a notation to describe the pin definition, timing and intcrface
information.

The electrical, temporal, and logical behavior of a signal is predetermined by
the specification given by the manufacturers. Each signal modelied is associated
with a particular physical port (usually a pin on the componcent) and will be
referred 1o by a symbolic name” This name must be uniquc 10 cach pin on a
component, but pins from different components may have the same name. The
extension of the pin name with the componcent number will result 10 a uniquc
namc in the design.

With the device in operation, each signal pin will attain different eloctrical
and Towie states sch as enahlad wovshidar itterent o

The netation
o desonbe e sighabs shouid tclade aloproasiii i Iedatniani mpai and output
states. A bidirectional pin can attain both the input state and the output state at
different times. Open collector type output pins should also be covered with the
notation. The state notation must cover all these possibilitics without
introducing inconsistencics or impossible statcs.

Any change of the statc of onc or more signals constitutes an cvent. An
example of an cvent is the change of an output pin from tristate to cnabled, or an
input pin that changes from invalid input 10 valid input. A simplc state
transition cvent can be restricted by the state of other signals or by other cvents
that precede or succeed it. This allows arbitrarily complicated cvents to be
generated. For example, for a certain event to occur. three different events must
I Y N T S S | - vatied
the correct order, s the complete event considered W have oveurred. Because of
the temporal restrictions placed on the signals, timing information must be
embedded with the cvent for the specification to be complete.

If a transition can only occur if cerain events precede it, a causal relation
results which specifics the prerequisite cvent for a signal transition and its
timing. A sct of causal rclations can be used to specify the complete timing
characteristics of a set of intcracting signals.

In our notation, causal rclations arc denoted by causal expressions. The
cvent on the left hand side of the expression is considered o be the prercquisite
of the transition, denoted on the right hand side of the cxpression.
causal_expressions ase incorporated in the frames describing the timing behavior
of the signals. We are collecting standard bchaviors (such as the
two_signal_handshaking and its variations, the three_signal_handshaking cic.)
and making them availablc as behavior emplates to be usced in describing the
behavior of any specific st of signals in a given component. Associated with
the behavior templates, we are incorporating primitive design rules that will be
used for the design of the gluc logic necessary for the integration of the
components into a working system.
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3 Notation for Interface Signals

This scction defines the syntax used to mode! the behavior of the various

signals associated with the componcents used in the design of microprocessor-
based systems.

3.1 Signal Names
A signat associated with a particular device or bus is assigned @ name which
consists of a unique string of charactcrs.
signal_name:
siring of characiers
This symbolic name will be used o reference the signal. No two signals arc
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CH2868-8/90/0000-1497$1.00 © 1990 IEEE



allowed to have the same name unless they are the same physical signal. If the
same signal on different devices has different symbolic names, then the signal
can be refercnced using any onc of the names.

3.2 Signal States

Signals arc found to exist at well defined states. Each state comresponds to a
particular physical condition of the signal in question. Most states will have
well defined voltages associated with them. A signal may be an INPUT, or an
OUTPUT, or both, signifying the direction of the information flow with respect
to the device to which the signal is associated. Bclow, we present a short
description of the various states a signal can attain.

3.2.1 VALIDI or INVALIDI

If a signal is an INPUT, there will usually be a timing restriction given on
when the correct input is required. This state is called the VALIDI state, which
stands for VALID INPUT. Any other time when the correct input is not
required, the signal will be in the INVALIDI state.

3.2.2 ENABLED or TRISTATED

If a signal is an QUTPUT, it can be ENABLED, which mcans the pin is
driving the signal to some voltage, or it can be TRISTATED which is
equivalent to having the pin disconnected.

3.2.3 VALIDO or INVALIDO

A signal can be ENABLED, but it may not be correct or valid. This signal
condition is called INVALIDO state for INVALID QUTPUT. If the signal is
ENABLED and valid, the signal is in the VALIDO state for VALID OQUTPUT.
For example the address lines on a MC68000 will normally be enabled, but they
will only be VALIDO (correct and usable by an address decoder) during the time
when AS (address strobe) is at a low (0 volt) level. Any other ime the address
lines will be INVALIDO.

3.2.4 ASSERTED or NEGATED

If a signal is VALIDO or VALIDI it will bc at onc of two voltage levels
(usually O volts or 5 volts). The two voltage levels are described by the two
states ASSERTED or NEGATED. If a signal is dcfined as asserted low,
ASSERTED implics the signal is at a low voltage level (usually 0 volts) while
NEGATED implies the signal is at a high voltage level (usually S volis). For
example the AS signal on a MC68000 is asseried fow.

3.2.5 UNKNOWN_ASSERTED

If a signal is VALIDO, it is also ENABLED and either ASSERTED or
NEGATED. If it is not known if the signal is ASSERTED or NEGATED, the
signal is in an unknown staic called UNKNOWN_ASSERTED
(UNKNOWN_ASS).

3.2.6 STATE DEFINITIONS
The signal states are defined below:
signal_state: ASSERTED { NEGATED | UNKNOWN_ASS { VALIDO!
INVALIDO | VALIDI | INVALIDI | ENABLED | TRISTATED |
INPUT 1 OUTPUT
Signals can have morc than one logic statc. Certain staies imply other
states. For cxample a signal can bc ENABLED and ASSERTED. This implics
that the signal is also in the states of OUTPUT and VALIDO. The above signal
states can occur in the following combinations:
ASSERTED —> (VALIDI | VALIDO)
NEGATED —> (VALIDI | VALIDO)

UNKNOWN_ASS —> (VALID!1 VALIDO)

VALIDO —> OUTPUT and ENABLED and (ASSERTED |
' NEGATED | UNKNOWN_ASS)
INVALIDO —> OUTPUT
VALIDI —> INPUT and (ASSERTED | NEGATED |
UNKNOWN_ASS)
INVALIDI —> INPUT
ENABLED —> OUTPUT and (VALIDO | INVALIDO)
TRISTATED  —> OUTPUT and INVALIDO
INPUT —> (INVALIDI | VALIDI)
OUTPUT —> (ENABLED | TRISTATE)

In the above notation the | symbol implies that any one of the states
scparated by the | symbol can occur, but that all states scparated by ‘and’ will
occur if the state on the left of the —> symbol occurs.

The INPUT and OUTPUT states are presented in the above definition for the
purpose of classifying a signal's auainable stawes. In the actal implementation
for the definition of a signal and its syntax, the statcs INPUT and OUTPUT are
not allowed in the specification.

3.3 State Expressions

The state of a signal is expressed by giving the signal state followed by the
signal name:
state:
signal_state signal_name

States can be combined into more specific states using operators. The
combination of one or more statcs using operators COnstitules a state expression.
state_expression:

state
or_state_expression
and_state_expression

There are 2 operators to combinc states:

The or operator '+ is uscd 10 represent the OR between two or more states:
c.g. +(STATEI, STATE2). The resulling expression is truc iff one or more of
the arguments is truc. The order of the arguments is unimportant. The or state
expression becomes truc at the instant when the first argument of the OR
becomes truc.

The and operator A" is used to represent the AND between two or more states:
c.g. NSTATE1, STATE2). The resulting expression is true iff all of arguments
are true. The order of the arguments is unimportant. The and state expression
becomes true at the instant when the last argument of the AND becomes true.
state_list:

state_expression , state_expression

state_list , state_expression
or_state expression:

+( state_list )
and_state_expression:

N state_list)

3.4 Transitions

If a signal changces state, a transition results. The symbol to represent the
transition is ''". The " symbol is surroundcd by the old and the new states. For
example: (NEGATED ! ASSERTED SIG1) represents the transition that occurs
when SIG1 changes from NEGATED (o ASSERTED. If the first state is
missing, it is assumed that the signal changes state from the opposite state o
the given state. For example (! ASSERTED SIG1) is equivalent to NEGATED
! ASSERTED SIG1).

A transition can therefore be expressed as follows:
transition_expression:

! state
signal_state ! state

3.5 Transitions and States

At scveral instances, onc needs to specify sctup and hold times for a group of
signals so that they will be stable during the transition of another signal. This
is important in the description of complex timing patterns such as the ones
occuring during a read-modify-write cycle. This can be expressed through a
combination of a transition and statc expression in the following manncr.
transition_stale_expression:

# (transition_expression , state_expression )
# (state_expression , iransition_expression )
# [min , max Y(transition_expression , state_expression )
# [min , max Y(state_expression , transition_expression )

The significance of the above definition, is that one expects a certain state
combination (denoted through a state_expression ) to be stable coinciding with
the specificd transition, or 10 be stable within a time interval around the specified
transition,

3.6 Events

A transition, or a combination of statc and a transition, as defined above, IS
an event. The collection of one or more cvents which may or may not occur in
a specified order also is an cvent:
event expression:

transition expression
transition_state_expression
or_evenl_expression
and_event_expression
non_associative_and_event_expression



There are 3 operators to combine cvents into more restricted events:

The or operator '+ is used (o represent the OR between two ore more cvents:
e.g. +(EVENTI, EVENT2) The resulting expression is truc iff onc or morc of
the cvents is truc. The order of the arguments is unimportant. The time of
occurrence of the event is at the instant when the first argument of the OR
becomes true.

The and opcrator ' is used to represent the AND between two ore more
cvents: ¢.g. NEVENTI, EVENT2). The resulting expression is truc iff all of
arguments are truc. The order of the arguments is unimportant, The time of
occusrence of the event is at the instant when the last argument of the AND
becomes true. A timing valuc can optionally be associated with the associative
AND by preceding the list of events with a number. To be true the events in the
AND must occur in the specified time interval. ¢.g. (220(EVENTI, EVENT2))
implics that EVENT1 must occur within 20nscc of EVENT2,

The operator ‘&' is used represent the non associative AND between two
events: ¢.g. &EVENTI], EVENT2). The resulting cvent is truc iff both cvents

‘truc and occur in the specified order. The time of occurrence of the resulting
event is at the instant when the last event is truec. Timing information can
optionally be associated with the non associative events in the form of timing
values. The meaning is that the sccond cvent in the sequence must occur within
the timing interval specificd by the timing values: ¢.g. & [+10,+~]) (EVENTL,
EVENT2) means that EVENT2 must occur at least 10nsec after EVENT1.
event_list:

event_expression , event_expression
event_list , event_expression
or_event expression:
- +( event_list)
and_event_expression:

T Nevent_list)

Anumber ( eveni_list )
non_associative_and_event_expression

&( event_expression , evenl_expression )

&[min , max } (event_expression , event_expression )

min:
number
max:
number
e~

The detection of an cvent is then used to specify the state transition of a
given signal. This is expressed through the causal_relation construct which is
defined below.

3.7 Causal Relations

A causal relation is defined as an event_expression that causes a transition to
occur at a certain time by the use of the —>' operator:
causal_expression:
even!_expression —>transition_expression
event_expression —>transition_expression @{minmax }
event_expression—>transition_expression @ number

3.8 Parsing

We have developed a parscr (based on unix’s YACC and LEX tools) that is
capable of parsing the language defined above. We are currently capable of
extracting transition precedence from descriptions signal behavior defined as per
the discussion above and displying this information as a timing diagram. An
cxample is shown in Figure 1, together with the user interface which we are
currently developing.

4 Templates for System Interface Signals

The following arc some examples of the templates developed to represent
some common signal intcrfacing that can be found in microprocessor systems.
Each signal can cither be an actual signal or cach edge in a signal can represent a
different event. Note that the foliowing signals are assumed ASSERTED low.

Also presented are the timing relationships for some of the signals of the
MC68000 microprocessor using the syatax of section 3 and the example
templates introduced here.  The timing values given are for a 12.5 MHz
MC68000, according to Motorola specification (7).

A typical signal handshaking scquence occurs when onc signal follows
another as in the figurc below:

1499

SIG2 follows SIGI
SIG1

1 Y

SIG2

SIG2 follows SIG1

! ASSERTED SIGl —> ! ASSERTED SIG2 @ Ti
! NEGATED SIG1 —> ! NEGATED SIG2 @ T2

An example of the SIG2 follows SIG1 template is the timing of the
LDS/UDS strobes and the data bus for the MC68000 microprocessor.

DS b B O'ﬁ
DATA z —

DS / DATA TIMING (READ)
! ASSERTED LDS —> ! VALIDI DO-D7 @ {-~,(50 + T6)]
! NEGATED LDS —> ! INVALIDI D0-D7 @ (0,20}

! ASSERTED UDS —> 4 VALIDI D8-D15 @ [-~,(50 + T6)]
! NEGATED UDS —> ! INVALIDI D8-D15 @ [0,20]

In the above equation, T6 is DTACK assericd delay from LDS / UDS signal
in the LDS/UDS/DTACK timing.

Another typical template is shown below:

EVENT2 follows and triggers SIGI

SIG1 _.»l
\
SIG2 q

EVENT2 follows and triggers SIG1

! ASSERTED SIG1 —> ! ASSERTED SIG2 @ Tl
{ ASSERTED SIG2 —> ! NEGATED SIG1 @ T2

This template can be used to describe the handshaking between the BR and
BG signals for the MC68000 microprocessor:

T el

—L/

ACTIVE BG follows and triggers BR

BR

BG

! ASSERTED BR —> ! ASSERTED BG @ [1.5CLK 3.5CLK]
! ASSERTED BG —> ! NEGATED BR @ {0.+~]

In the above notation BG will go asserted 1.5 to 3.5 clock cycles afier BR
gocs asserted, and BR in tum can go negated any time afier BG goes asserted.

6 Conclusion

In this work, we provided the framework of DAME which is an expert
system capable of configuring and designing customized microprocessor based
systems from original specifications.

DAME, is organized as a hicrarchy of design levels, each one of which refines

the design provided by the previous level, by following established practices in
the field of hardware design.



We have postulated that the use of an expert system at this level of design

activity is achicvablc, since the design methodology is well established, and the
interfaces for most of the components used are standardized.

We presented our approach in modelling the behavior of the various signals

associatcd with the components used for the design of microprocessor-bascd
sysicms. Notations and templates for typical timing specification are presented
with cxamples shown for the MC68000. We uscd objects and relations to
capture both the static and temporal behavior of these signals. We implemented
these objects by using schemata as defined in Knowledge Craft {3]. We have
also devcloped a parser that is capable of intcrpreting signal timing specifications
and uscd o create timing diagrams corresponding to the specifications.

Currcatly, we are implementing a user-friendly interface that will be used in

capturing the relevant information and creating a nctwork of schemata that will
describe the propertics of a component. Our approach is to use templates of
networks of schemata describing partial propertics and incorporate those
templates into the final network. Our user interface is window based, mouse
drivers and is implemented as a “work center” in knowledge craft. An example
!of this interface is given in Figure 1.
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Figure 1. The DAME interface window with timing specification output.

Causal Relation for the timing depicted in the figure
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