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ABSTRACT?

In this work, we present the Hypercycles, a class of
multidimensional graphs, which arc gencralizations of the n-cube.
Thesc graphs are obtaincd by allowing cach dimension to incorporate
more than (wo clements and a cyclic interconnection strategy.
Hypercycles, offer simple routing, and the ability, given a fixed
degree, to chose among a numbecr of altemative size graphs. These
graphs can be uscd in the design of interconnection networks for
distributed systems tailored specifically to the topology of a particular
application. We arc also presenting a back-track-to-the-origin-and-
retry routing, whercupon paths that block at intermediate nodes arc
abandoned, and a ncw attempt is made. Intermediate nodes are
chosen at random at cach point from among the ones that form the
shortest paths from a source 10 a destination. Simulation results that
establish the performance of a varicty of configurations arc
presented. In addition our initial attempt of constructing a Hypercycle
bascd router is discussed.

1.0 Introduction

Mcssage passing concurrent computers such as the
Hypercube[11, 17}, Cosmic Cube{15], MAX[12, 13}, consist of
several processing nodces that interact via messages exchanged over
communication channcls linking these nodes into one functional
entity.

There arc many ways of interconnecting the computational
nodes, the Hypercube, Cosmic Cube, and the Connecction
Machinc{18] having adopted a rcgular intcrconncction pattcmn
corresponding 1o a binary n-dimensional cube, while MAX adopts a
less structured, yet unspecificd topology.

Scveral recent studics atiempt extensions and gencralizations of
the basic tencts of the n-cube. Broder ct. al. {4] have proposed
product graphs[14] of small "basic” graphs. Their prime concem is
to synthesize fault tolerant nctworks with a given degree of coverage.
In these multidimensional graphs, they define a single route from a
source to a destination, as the product of routes in cach of the
constitucnt dimensions. Routing is ¢xhausted in cach dimension
before another dimension is considered. Bhunyan and Agrawat (3]
have introduced the gencralized hypercubes (GHC) which are also
graph products of fully connccted "basic™ graphs. The mixed radix
system [2] is uscd to cxpress the propertics of these graphs and their
routing. Wittic [19] gives a good overvicw and comparison of
several intcrconnection networks including the spanning bus and dual
bus hypercubes. These are essentially binary n-cubes with broadcast
busses connecting the processors in cach dimension.

The advantages of having a rcgularly structured interconnection
arc many-fold, and thcy have been proven time and again in their
being incorporated in many recent designs [6,11,12,13,15,17,18).
In these structurcs, casy dcadlock-free routing {7] can be
accomplished by locally computing cach successive intcrmediate
node -for a path that originates at a source nodc and tcrminates at a
destination nodc- as a function of the current position and the desired
destination. Many regular problems (such as the oncs found in image
processing,
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physics ctc.) have been mapped on such regular structures, and run
on the corresponding machines exhibiting significant spcedups. In
contrast, cmbedded real-time applications {12, 13}, tend o exhibit
variable structures that do not necessarily map optimally to an
n-cube. In addition, since the size of a binary n-cube is given as 21,
it mcans that a particular configuration cannot be expanded but in
predefined quantum steps. For example, if a given embedded
application requircs a systcm comprised of 9 nodes, the next larger
n-cubce with 16 nodes must be chosen. This constitutes a significant
increase in resource allocation, especially in power-mass limited
cnvironments.

Hypercycles[13] can be considered as products of "basic” graphs
that allow, as compared to the Generalized Hypercubes (GHC) 3], a
richer sct of component "basic” graphs ranging in complexity from
simple rings to the fully connccted ones used in the GHC. Also,
contrary to Broder ct al (4], we define the component graphs and
provide analytical cxpressions for routing, our aim being twofold:

(@)  To provide computer interconncction networks that match the
node requirements of a given embedded system.
®) To increasc throughput of a given nctwork by providing

routing cxpressions that can be computed analytically (and
hence are candidates for VLSI implementation) and which
provide a maximum number of alicmate paths from a source to
a destination. The cxistence of alternate paths guarantees that a
message will not be blocked waiting for its single route to be
freed, but it would in wm scarch for the availability of altemate
paths. This stratcgy also provides for fault protection, since a
faulty path can be markcd permanently busy, and thus
mcessages can be routed around it..

The Hypercycles, being regular graphs, retain the advantages of
casy routing and regularity. Yet, since we are dealing with a class,
rather than isolated graphs, we have the flexibility of adopting any
particular graph (from the class) that closcly maitches the
requirements of a given application.

This work is divided into these parts. Scction 2.0 introduces the
Mixed Radix System, Scction 3.0 presents some basic graph
terminology and notation, while Scction 4.0 introduces the
Hypercycles and discusscs their propertics. Sections 5.0 and 6.0
discuss routing and cvaluate the performance of scveral example
Hypercycles.

2.0 Mixed Radix Number System

The mixed radix representation {2], is a positional number
representation, and it is a gencralization of the the standard b-basc
representation, in that it allows cach position to follow its own basc
independently of the other.

Given a decimal number M factored into r  factors as
M=m;Xmyxm3x--xm, then any number 0 <X S M-/
can be represented as

=x,%5...%, |  where 0 Sxj<(mj-1);

215”’;

i=1l

x )m,mz...m, my my ...m

i=12.r and the x;'s arc choscn so that X =

M

where Wi = —
mmy ---m;

3.0 Graph Notation

An undirccted graph G is defined as: G = (N, E), where N is
the set of nodes



N={ a; 1 i=12,.N}, and E the set of cdges
£= {e‘-ji = (a‘..ﬂj')jiz 12,...d; ;i =1,2,..N }
with o, Bj. € N and d; the degree of node o . The degree of a

graph, d(G ) , is the maximum of the node degrees. A walk in G [5]
is ascquence of edges e e ... €7, such that if e; = (o, @jy p ) then
€i+] =(04 1, 04 2) and ; € E. The distance, dis(y,8), between

nodes ¥ and & is defined as the shortest walk between yand 6 if
any, otherwise, dis(%,8) = . The diameter £, is the maximum

distance between any pair of nodes. A graph is regular, if all nodes
have the same degree.

4.0 Hypercycles.
An r- dimensional Hypercycle, is the following rcgular

e

m =mj,mp,m3,..m, a mixed radix, p = p1,p2,....p, ;
p; <mj/ 2 the conncctivity vector, determining the connectivity in

undirected graph: G,ﬁ where

each dimension which ranges from a cycle (p; =1 ) to fully
connected (p; =[m; /2 |).andN P =(0,1,2,..M-1}. Given
a,Be N b then (@, ) e EP irand only if there exists

I Sj<r suchthat B, = (a;+ & )modm; with ] <&.<p,
o i I J =¥
and o = f; ;i#f

Hypercycles, have degrees [8] d = ZI (m; .p;) where
i=1

2p. if 2p; <m,;
Slm;p;) = {m‘--‘l it 2p; =m,
and diameter k 1.
[ = 2 I-Lmi/?..]
i=1 p;
The n-cubce is a Hypercycle, with

M=2x2x-x2=28and p=1,1,1,...,1.

4.1 Routing
Hypercycles, have routing propertics that are similar to those of
the n-cubec. Given nodecs

-
(a )m,mz wmi..m, o aZ"“ai"'ar and (a )m, my..m;..m,
= o a,.8.. a, . a walk, from node & to node a”, can be
constructed as follows:

B o5 RN P S § [ RN R S alaz...ég....ar R

ajap.&..a . suchthat

1 The function Lx] denotes the

largest integer smaller than or

cqual to x, while ry] dcnotes the

smallest integer larger than or

equal to y.

¥ We define la, bl = min((a -b)modm, , (b -a)modum; )

279

(5,‘,- +Pz) mod m;

if[(§—§j,-) mod rm; =|§j,~-§”>Pi
Sjivr= (ﬁji -Pi) mod m; if[(éj,- -é) mod m; =|§j;v§|]>Pi
¢ ifle;; &<

o = o
Eqn. 4.1.1

We call the tength 1, ,, of such a walk, the distance along
dimension

Given an origin  (a )ml”12 m, = @, 0.0 and a
ceem,

destination (8 )mlmz...m, = B;B,...B, and if g; denotes their
distance along dimension ¢, the total distance between the origin and

the destination nodes, denoted as dis(a,8 ) and dcfined as the sum
of the individual distances along all the dimensions, is given as

dis(a, B)=¢q = 2 q; - For these nodes, there are a total of ¥
i=l

q9 !

d q;+92 -4, 9! 9! ~q,!
distinct walks of length ¢ that connect them . These are constructed
by scquentially modifying the source address, each time substituting
a source digit by an intermediate walk digit , until the destination is
reached. The following walk connects source to destination.

source =@, ay 03 .0, a; &, a5 .., a, €y, ..a,;
a8 o a by, a, a, &, B a

B, B,B; .8, =destination
Figure 1a., gives an example of two distinct walks of cqual
length that connect a source to a destination, for a Hypercycle.

4.2 Average Distance Calculation

Given an r-dimensional hypercycle G,ﬁ ,and denoting by n, the

number of nodes at distance ! from a source node (o )ml my.m, =
Lm,

a; o,...a,, the average distance between any two nodes in G ﬁ

can be calculated as{8}
zlnl

- i=1
T m my m,
Somc typical distances arc given in TABLE 1.

5.0 Deadlock Avoidance in Routing.

In scction 4.1, we have given a method that establishes at lcast
onc path from a source to a destination node. In this part, we are
concemed with optimally choosing onc of the paths. Routing must be
efficicnt and deadlock frec. Deadlock occurs when resources (in this
casc node to node communication scgments) are allocated so that the
complction of a partial path requires a segment already allocated to a
diffcrent parial path which in turn waits for a segment in the first
partial path. It is obvious that no messages can propagatc over the
dcadlocked paths, and the only remedy is to break the already
cstablished and deadlocked partial paths and (ry again.

Deadlock may occur casily in cascs where the segments that form
the paths arc choscn at random. Certain routing algorithms (c.g.
virtual channels, e-cube routing{7}) prevent deadlocks by ordering
the resources (channels) to be allocated. Thus a lower order resource
cannot be commilted if a nceded higher order resource cannot be
obtained. The disadvantage of this approach in an interconnection
network is that it limits the numbcer of paths connecting a source to a
destination to exactly one, even though scveral altemate free paths

tFOI’ the definition of a multi

ial number, see {1] pp 32.



may cxist at a particular moment. We are proposing to adopt a
stratcgy where deadlocks are avoided by requining a blocked partial
path to backtrack to its origin and retry.

6.0 Backtrack-to-the-origin-and-retry routing

For Hypercycle-bascd interconnection nctworks, because of the
existence of cycles in each dimension, the use of an c-cube type
routing that prevents deadlocks, is impractical. We arc proposing
instcad a dcadlock avoiding routing stratcgy. According to our
backtrack-to-the-origin-and-retry routing we identify, at cach node,
all nodes that can be used for the continuation of the path. For all
such identificd nodes, we also identify the corresponding ports that
can be uscd in order to continuc the path. Since several paths may be
forming in parallel, some of these ports may already be allocated 10
somc other path. After cxcluding all the allocated ports, we sclect one
of the remaining free pons at random. The subscquent link in the
path is cstablished is then established through the sclected pon, and
the procedurce repeats itsell until the destination is reached, or no free
ports could be found. If no free ports arc to be found at an
intcrmediate node in the path, then a break is returned to the origin
(through the already established partial path to the blocking nodc),
the partial path is dissolved, and a new attempt for the creation of the
requircd path is initiated. This routing stratcgy avoids dcadlocks
through backtracking, and also guarantces that the formed path will
be of a minimum length, since cach subscquent link is sclected
according 1o cquation 4.1.1. The backtrack-to-the-origin-and-retry
routing is a type of two-phasc locking [16)], where as resources we
considcr the various links necessary for the completion of the source -
to-destination circuit.

Wec have used Extend ™ 1o construct a simulator capablc of
simulating any Hypercycle based network. For this simulator, we
implemented both the backtrack-1o-the-origin-and-retry as well as the
e-cube routing stratcgics. The c-cube routing can only be used for
binary cube nctworks. For cach node, we assumed a Poisson
message generator which generates packets with uniform distribution
of destinations. Each packet carries the destination address which is
uscd for routing. Links arc assigned prioritics, so that collisions can
be resolved. We assumed a packet transmission time (over an
established source to destination path) of 100 simulation-clock ticks.
We usc the simulator 1o obtain the throughput and dclay
characteristics of severat networks for both c-cube and backtrack-to-
the-origin-and-retry in tcrms to the offered load. Both the offered
load and the throughput were normalized in terms to the maximum
capacity of cach network taken to be proportional to the number of
links in the corresponding graph. The average delay was expressed
in actueal timc units necessary 1o establish a source-to-destination
circuit. Simulation results are depicted in figs. 2, 3,4, 5 and 6.

As it was cxpected, the performance of the backtrack-to-the-
origin-and-retry for both binary cubes and hypercycles of similar
sizcs, is clearly superior to that of the c-cube as it can be seen in figs.
2 and 3. This is attributed to the act that the backtrack-to-the-origin-
and-retry can usc alternative paths to the destination instcad of the
single path alloucd by the c-cube routing. The additional advantage of
the backtrack-to-the-origin and-retry is its inherent fault tolerance.
Indced, if onc of links in the network failed, it could be marked as
permanently busy, and packets would be routed around it. This
obviously is not the case for the c-cube routing.

Figure 2. further shows that under heavy loads, c-cubc routing
has slightly higher throughput rates for a given load than backtrack-
to-the-origin. Figure 4 shows the reason for this anomaly. Backtrack
routing docs not cffectively route packets of longer distances because
the path is dissolved as soon as a blocked route is cncountered,
which has a high probability of occurrence under a heavy load. An
adaptive algorithm which altemates between backtrack-to-the-origin
and c-cube routing under heavy loads may solve this instability.

For graphs ol higher degrees, figs. 5 and 6 show the effect of
altcrnate paths on system delay and throughput. The 7 node
Hypereycle has only onc path choice per source/destination
conncction (becausc it is a fully connccted graph). This cffectively

reduces the system Lo ¢-cube style routing only. The 15-node (G 52 31 )

1 Extend is a rademark of Imaginc That inc.
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and 16-node (G 42 42 ) graphs offer two altemate routes between source

and dcstination and therefore provide higher system throughput.
Gencrally, system throughput and delay arc functions of both
average distance and the average number of altcmate paths between
any two nodcs.

The backtrack-to-the-origin-and-retry routing, as discussed
above, is currently being implemented in hardware. Figure 7 gives
the structure of a computational node in a concurrent computer that
incorporatcs Hypercycles and backtrack-to-the-origin-and-retry
routing. Figure 8 gives a block diagram of an r-dimcnsional
Hypercycle router. Figure 9 shows the details of the next port
gencrator.

As it can be scen in Figure 8. we arc implementing our routing as
a system having four modules. The destination address is used in the
Next-Port Generator to generate all possible ports that can be used in
forming the path to the required destination address. Subsequently,
the Port Validator masks out the ports which are currently used by
other paths. Finally, The Port Sclector, sclects at random onc of the
validated ports which is then used to continue the circuit towards the
required destination. For the random number gencrator, we usc a
ccliular automaton { 1] to gencrate a 27 bit random number, which we
usc o obtain its modk where & is the number of valid ports
incoming to the Port Sclcctor. It is worth noting that the system is
programmable, in the sensc that it needs the parameters m, p  as
defined carlicr and which define the structure of the network, as well
as & which the address of the current node.

We have currently finished the design of the Next Port Generator
in 74LS logic. The block diagram of the Next Port Generator is given
in Figurc 9. Wc have obtained a propagation dclay of less than 270
ns by using the 74LS technology, and we are confident that it will be
drastically reduced (to less than 100 ns) for a custom VLSI
implcmentation. We arc using this implementation technology in
order to validate our design. We arc currently completing the
implemcentation of the Random Number gencrator using the same
technology. Our next objective is to pont our design in a gate armay so
that speed and compactness could be accomplished.

7.0 Conclusions and Discussion

In this work, wec presented the Hypercycle, a class of
multidimensional graphs, which are cssentially generalizations of the
n-cubce.

Although these graphs arc not the denscst possible, they are
attractive, because of their simple routing. Similarly to the n-cube,
the destination address is used to scquentially routc a message
through intermcediate nodes as outlined in scction 4.1, Also, since the
nodc addresses arc represented in a mixed radix as a sequence of -
digits, cach onc of these digits is processed independently and in
parallcl with the remaining digits. Thus the hardware involved in the
routing can be made fast (because of the parallclism) and simple
(since cach modulc nccd only handle arithmetic modm; , as
compared to arithmetic modm my...m, nceded when all the address
digits arc nccessary as is the casc with such nctworks as the chordal
rings [10], or the cube connccted cycles [S)).

The graphs presented in this study, arc gencralizations of some
well known graphs such as the binary n-cube, 2- and 3-dimensional
meshes, and nings, which arc included as special cascs. Examples of
some special cases arc depicted in Figure 1.
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GRAPH

DEGREE DIAMETER  NODES

m = 62 6
p = 31
m = 53 6
P = 21
m = 522 6
P = 211

. m = 333 6
p = 111
m = 3322 6
r = 1111
m = 32222 6
P = 11111
m = 222222 6
P = 111111
m = 2217 6
P = 112
m = 2237 6
P = 1111
m = 357 6
p = 111
m = 555§ 6
P = 111
m = 2222222 17
P = 111111l
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AVERAGE
e
12 1.454
15 157 .
20 1.8%4
27 2077
36 24
48 2.723
64 3.047
68 3.403
84 3434
105 3.615
125  3.629
128  3.528
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Figurc 3. Dclay vs. offcred load for the 4-cubce using backtrack-to-
the-origin and c-cube routing. The offered load is nommalized to the
capacity of the interconncction nctwork. The delay is normalized to
the data transmission time.
Figurc 1. Examples of Hypercycles.
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Figure 2. Throughput vs. offered load for the 4-cube using backtrack Figure 4. Average distance (of successful packets) vs. offered load
to the origin and c-cube routing. The offered load and throughput arc for the 4-cube using backtrack-to-the-origin and ¢-cube routing,

normalized to the capacity of the interconncction network.
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Figurc 6. Dclay vs. offcred load for scveral graphs of degree six.

The offcred load and delay are normalized to the capacity of the
interconnection nctwork.
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