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ABSTRACT

DAME (Design Autoination of Microprocessor-
based systems, using an Expert system approach) is an
expert system capable of configuring and designing a
customized microprocessor system from original speci-
fications. We have postulated that such an expert sys-
tem, can be easily constructed., since most of the inter-
faces used by the various microprocessors and related
peripherals are standardized. Thus, once the gross
structure of the design and the modules comprising it
have been chosen, their interconnection is fairly
straight-forward. In this work. we present as a design
example the bus arbitration interface to illustrate the
design process in DAME. Knowledge and data repre-
sentations are shown, together with a sample design for
the VMEbus.

L. Introduction.

Knowledge-Based Systems (KBSs) have recently
proliferated in several fields of human endeavor. These
systems play the dual role of categorizing and codifying
expert knowledge, and then using this knowledge in
order to solve time consuming and/or challenging prob-
lems. Examples can be drawn from several diverse fields
such as patient care [13]. geological exploration [9], etc.

Computer system design and synthesis is a very com-
plex task that involves a large search space, requires
problem-dependent decision making. and is a designer-
dependent process. Since the early 1980’s, several KBSs
for computer systems have been developed. DAA [14]
and ASP [1] are prime examples of KBS for hardware
synthesis at the register transfer level. In addition, sili-
con compilers that use a combination of algorithmic
and knowledge base approaches have become available
[21].

Systems have been developed to perform micropro-
cessor hardware design at the component level which
produce a component list from input specifications, but
do not provide information on their connectivity [19.22].
At the system architectural level. R1 was developed to
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configure computer systems but no design knowledge |,
was involved [16]. CMU’s Micon is a system synthesis
tool able to assist the designers in configuring single
board system from commercially available components
according to customers requirements [2].

DAME (Design Automation of Microprocessor-
based systems, using an Expert system approach)
[5.6.8,7,11,12] is an expert system that will be capable
of configuring and designing a customized microproces-
sor system from original specifications such as type,
application and environment, communication, and com-
putational requirements. Employing deep reasoning,
DAME attempts to exploit the general design method-
ologies using generic communication and interfacing
protocols, and to adjust and fine-tune the details accord-
ing to the specific components’ timing requirements and
their interfacing properties. The objective is to configure
the interfacing of different components intelligently
once they are selected; in order to accomplish this, it
employs rules which operate on the abstract properties
of a component rather than their instantiations.

DAME organizes the design process into a hierarchy
(5.6.7] consisting of the following phases: (1) Design
Specification; (2) Configuration; (3) Behavior Descrip-
tion; (4) Functional Block Design; (5) Implementation
and Integration.

Each hierarchical level represents an abstraction of
the given design problem. As the levels are transversed.,
the abstraction of the design is refined, until, at the last
level, the complete design is formed. Objects found at
each level of the hierarchy represent the system's concept
of the design requirement at the corresponding abstrac-
tion level.

Our basic tenet for interconnection of components
has been that the interface signals found in various
microprocessor families follow a limited number of
well defined protocols for information exchange. This
information is given both descriptively and quantita-
tively as timing diagrams by the manufacturers. The
components’ descriptions include references to these ba-
sic protocols for information exchange, which are in-
stantiated for each component. The inclusion of the ref-
erences to these basic protocols in the description of
our components provides a powerful model in that we
are able to carry out the design process by employing a
limited number of general rules which are specific to
the protocols used.



Section 2 describes the general interface problem,
and the bus arbitration protocols in particular. Action
graphs representing protocols are discussed in section
3. Representations of the data and knowledge in DAME
are presented in section 4, while a VMEDbus design ex-
ample is given in section 5. DAME is currently being
implemented in Knowledge Craft™ on a Sun™ work-
station.

2. The Interface Design Problem.

A protocol specifies the sequence of actions that
assures the correct intercommunication between compo-
nents. One example is the bus arbitration operation in a
multi-master system. The actions or elementary opera-
tions of the protocol are associated with a state or a
change of state in a boolean variable or signal [4].

Although there are relatively few protocols [23],
the different possible mappings into signals are count-
less. When two components using different protocols
are to be connected, it is necessary to design an interface
that converts and maps the actions in these protocols to
one another. We base the design of the interface upon
the identification of the protocols that govern the in-
formation transfer in the component. and the protocols’
instantiations for the participating components.

A multiple-master bus is a communication struc-
ture through which several units perform independent
information transfers. The units can be classified ac-
cording to their roles as masters and slaves. A com-
mander is the module that initiates operation, while
the other units' that participate in it are called re-
sponders. A master module can act as a commander, while
a slave module can only be a responder. Since the bus is
a single resource, only one master, called the current
master (CM), is allowed to take over the bus at a given
time. Arbitration is the process that grants the bus to a

unique CM.
E)a ughterboard [[)au;{h(rrboard
1 $ 2 4

K

! ’ |
Backplane Bus

Figure 1. Multi-board multi-master system.
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2.1 Bus arbitration protocols.

In the subsequent we shall address the problem of
designing a bus-based system comprising a number of
masters sharing a common bus as shown in figure 1. A
bus provides a protocol through which a single master
can be determined at any time. Modules capable of re-
questing the bus adhere to the requester part of the pro-
tocol, while the arbiter adheres to the responder part of
the protocol. There are but a few choices of arbitration
protocols. We consider the two-signal and three-signal
bus arbitration protocols.

In the broadcast mode, several responders can accept a
piece of information from the commander.

The two-signal protocol, as shown in figure 2, is a
fully-responsive asynchronous handshake protocol be-
tween REQ* and ACK*. A requester asserts this signal
to request the bus, and negates it at the end of the use of
the bus. ACK* informs, when asserted, that the bus is
granted to the requester, and when negated, acknowl-
edges the end of the operation.
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Figure 2. Two-signal bus arbitration protocol.

The three-signal protocol is more involved (see fig-
ure 3). A device requests the bus by asserting BR*. The
arbiter responds by asserting BG* if BGACK* is not
active. There is a fully-responsive asynchronous hand-
shake between BG* and BGACK*. When the device re-
ceives the grant, it must release BR* and has to wait
until the bus is available before starting using the bus,
allowing the previous master to end its last operation.
The device informs that it will become the CM by as-
serting BGACK*. Finally the CM signals the end of
its transaction by negating BGACK*.
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Figure 3. Three-signal bus arbitration protocol.
The power of the three-signal protocol lies to the
fact that the determination of the new master can proceed
while the previous master is performing its last trans-
action, speeding thus the transactions on the bus.

3. Protocol Graph.

An action is an event monitored by the protocol, or
a change of state effected by the protocol. The sequence
of actions that define a protocol has been represented
using a state transition graph[24], or a marked Petri
net[18]. In DAME, we use an action graph to represent
the protocol as discussed in the following.

Let A be the set of actions in the protocol. We
define the relation P (for precedes) for any two actions



a.b € A, (a,b) € P iffaction b occurs after action a. We
use a weighted directed graph (A, P, t) [15] to represent
the protocol, where A is the set of vertices of the graph,
P is the set of edges, and t is a function on P that associates
a weight (t_ .t _ ), with the minimum and maximum
timing between actions, to the edges. For self-timed
circuits, the weight is (0, ).

Actions are mapped into boolean signals that are
either asserted or negated (true or false). In some cases,
signals are allowed to be disabled so that a group of
signals can share a single wire. The state of a signal can
be defined using BNF notation as follows:

state::= enabled | disabled.
enabled::= ASSERTED | NEGATED.
disabled::= TRI-STATED | OPEN-COLLECTOR.

A boolean signal can have only enabled states. A
tri-stated signal can be enabled or disabled, while an
“open-collector” signal (i.e., open-collector in bipolar
technology and open drain in MOS technology) has only
the states ASSERTED and OPEN-COLLECTOR.

A signal can be represented as follows, where the
name of the signal is a string of characters:

signal::= state signal-name.
signal-name::= {CHAR}".

When a signal changes state, a transition occurs.
We denote the transition of a signal from state 1 to
state 2 as:

transition-exp::= [state-1] ! state-2 signal-name.

When state 1 is the opposite of state 2, state 1 can
be omitted (i.e., ! ASSERTED READ is equivalent to
NEGATED ! ASSERTED READ). In some cases an ac-
tion depends on transitions in several signals. An event
expression describes transitions in various signals.

event-exp::= transition-exp | and-event-exp !
or-event-exp ! state-trans-exp.
and-event-exp::= (* event-exp {, event-exp}" ).
or-event-exp::= (+ event-exp {, event-exp}” ).
state-trans-exp::= (# transition-exp state ).

A more thorough overview of the description of
signal behavior can be found in [11,12]. This notation
allows us to relate actions to signals.

Figure 4. Two-signal bus arbitration protocol graph.

3.1 Bus arbitration protocol graphs.
In the context of the definition of an action as an

event, the negation of an action is understood to cor-
respond to the negation of the associated event. Thus, if
an action & corresponds to a certain transition of a given
signal, the negation of a, denoted by a, is defined as the
opposite transition of the same signal.

The two-signal bus arbitration timing diagram of
figure 2 can be described by the graph in figure 4. The
REQ#* signal is associated to the action pair (r,F). Action
r corresponds to ! ASSERTED REQ*, and action T cor-
responds to ! NEGATED REQ*. Similarly, actions a
and a are associated to signal ACK*. Actions band b
indicate the actual use of the bus by the requester.

The three-signal protocol is modelled by the graph
shown in figure 5. Signals BR*, BG* and BBSY* encode
in their transitions the action pairs (R, R), (G, G), and
(GA.GA) respectively.

In the above action graphs, there must exist at least
one simple circuit that contains an action and its com-
plement. That guarantees that the signal associated with
a particular action will eventually return to its tnitial
state (return-to-zero condition).
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Figure 5. Three-signal bus arbitration protocol graph.

The action graphs can also be viewed as data flow
graphs. Thus, when an action takes place, a token is placed
on all its outgoing edges. An action cannot happen unless
all its incident edges have tokens. The initial state is
represented by placing tokens on certain edges. The initial
marking from figure 3 calls for tokens on the edges
from R to R, from B to B, and from GA to G.

The interface design procedure involving two pro-
tocols can be stated as the problem of finding a graph
that incorporates both protocols in which the prece-
dences between all the edges are satisfied. In the general
case there may be several solutions. Figure 6 shows a
merged graph from the protocols depicted in figures 6
and 7. In this case, the requester follows a two-signal
bus arbitration protocol, and it is connected to an arbiter
that uses a three-signal bus arbitration protocol.

In figure 6. input actions to the devices (requester
and arbiter) are encircled, and non-encircled actions are
signaled by the devices. The square blocks mark the ac-
tions that inform about the status of the bus. B represents
the end of the use of the bus by the CM, while B is the
negation of B, that includes the use of the bus by the



CM, or the idling of the bus. The interface must generate
the encircled actions. Before presenting a basic block
for the designed interface, we introduce the representa-
tion of the bus arbitration interface in the designer mod-
ule of DAME.

Figure 6. Interface of a two-signal protocol (requester)
with a three-signal protocol (arbiter).

One configuration of a multi-master system in a

daisy-chained fashion includes an arbiter that generates

the unique grant, and several requesters that pass the

grant through a daisy chain. The closest requester to the
arbiter has the highest priority and it can take the grant
before any of the other requesters. In figure 7, the arbiter
follows a three-signal protocol. Requesters may use a
two-signal protocol so that an interface for protocol
conversion is necessitated.

Interface 1 shown in figure 7 captures the structural
information of the combined protoco! graph of figure
6. An action and its complement are encoded into one
line. For instance, the action pairs of the two-signal
protocol (r,T) and (a, ) are described by req-in and ack
respectively. Similarly for the three-signal sub-graph
the pairs (R, R). (GA, GA) and (B, B) are represented
by req-out, grant-ack and bus-busy respectively. The
grant pair (G, G) is covered in the following section.
These lines are converted into single signals within the
interface.

3.2 Daisy chain model.

The arbitration process belongs to the general ex-
clusive access problem for resource allocation, the al-
located resource being the bus. The selection of the CM
in a daisy-chained fashion corresponds to a distributed
arbiter structure. Therefore the arbitration takes place
in the interfaces. Basically the grant given out by the
arbiter is received by a requester that has to decide if it
will take the token or pass it through the daisy chain.
The intemal grant in the interface signals the first event,
while the grant-out is connected to the next requester

in the chain.

The asynchronous nature of the arbitration makes
it vulnerable to the synchronization problem {17], in
which in lieu to the fact that physical systems require a
finite time to respond, two tautochronous requests to
an arbiter may yield a metastable state in which the
output is unpredictable. Although this unstable state
will decay, there is no upper bound for that moment.
There are circuits that minimize the likelihood of the
metastable state and avoid the hazards that arise in this
kind of situation [20] (i.e.. emitting two grants to two
different requesters that will take over the bus, produc-
ing a collision that may even damage the hardware).
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Figure 7. Bus arbitration model for a multi-
master system with a daisy-chain scheme.

The basic element in those circuits is the Mutual
Exclusion block [31, shown in figure 8 for the multi-
master system depicted in figure 7. Even if the reg-in
and grant-in transitions occur simultaneously, eventu-
ally only one of the two outputs will be asserted. [f
req-in occurs earlier than grant-in, the requester is
granted the bus via the grant signal, otherwise the grant
is propagated through the daisy chain to the lower-
priority requesters.
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Figure 8. Basic blocks in DAME: Mutual Exclusion
element and Two-state ASM.

A bare daisy-chain scheme of distributed arbitration
has the problem of live-lock, in which the lower priority
devices can starve because of the possibility that the
higher priority devices take turn in keeping the resource
busy ad infinitum. We have incorporated a fair design in
the daisy-chain structure as described in [4]. In that fair-
ness scheme, a requester that has just released the bus
cannot start another request until all pending requests
have been served. For this purpose the interface includes
an input line ¢c-req to monitor the requests from other
devices.



3.3 Two-state ASM.

The two-state asynchronous state machine (ASM)
is a basic building block used in our interface design.
The Mealy machine representation of the two-state
ASM in figure 8 indicates that a change in state from O
to 1 occurs when the input event !l takes place, resulting
in an output event !O1. While in state 1, a event 10
will reset the state machine to the initial state O, causing
a event output '00.

1f 'O1 and 00 represent a pair of actions (a, a), 'I1
marks the moment in which all the actions that must
precede a have occurred and !10 does the same for a. In
this manner, the designer uses the two-state ASM’s to
generate the encircled actions in figure 6. Figure 9 shows
the resulting sequential machines that constitute inter-

face | in figure 7.
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Figure 9. The sequential machines that
define part of interface |.

A description of the function for the two-state
ASM using the behavioral language in SILOS 1I™ (SBL)
has been used for the verification of our design. SILOS
11 permits the description of digital circuits at different
levels. hence a top-down approach of the design becomes
natural. We have incorporated the interface design in
DAME as we shall discuss in the subsequent.
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Figure 10. Partial semantic network describing the
MC68000 microprocessor.

4. Representation.

Components are represented as networks of sche-
mata. These networks are in the form of a tree that in-
corporates in sub-trees the description of the participat-
ing protocols.

As it has been described in earlier works [11,12,10],
there exist but a hmited number of protocols, and the
protocol sub-trees incorporated in the semantic net-
works of the component are instantiations of these well
defined protocols. Figure 10 presents a partial semantic
network describing the MC68000 microprocessor with
emphasis on the bus arbitration protocol. The bus arbi-
tration capability comprises both a requester and a re-
sponder protocols. These protocols are related through
the IS-A relations to the protocol templates that define
them.

4.1 Design Knowledge Base.

The design knowledge base is structured in clusters
of nules pertaining to specific aspects of the design. The
design process is organized in a hierarchical manner [7]
and proceeds through a continuous refinement of the
structures arrived at the previous layers of the hierarchy.
Clusters of rules at particular layers are activated t2
carry the design forward. For example, in the functional
block design layer, there exist cluster of rules dealing
with the design of the arbitration subsystem. Figure 11
presents such a cluster of rules.
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Figure 11. The structure of the cluster of rules that
accomplishes the Bus Arbitration Subsystem Design.

Consistent with the design philosophy of DAME,



these rules apply to abstract design necessitated by the
presence of particular types of protocols in the partici-
pating modules rather than the specific instantiations
of the protocols. The knowledge base is capabie of in-
stantiating the abstract design based on the instantia-
tions of the protocols in the modules.

This technique of abstraction allows us to use but
a limited number of powerful general rules rather than
a plethora of specific rules which apply to specific in-
stances of components. Interface blocks are produced
complete with the description of their function and their
interconnection. The subsequent implementation layers
are responsible of implementing the functionality of
these blocks in a particular technology.

5. Arbitration Subsystem Design Example.

As an example we present the design produced by
the DAME designer for a DMA device in a multi-board
system using the VMEbus standard in Single Level Ar-
bitration mode. In this mode the arbiter drives BG3IN*
at slot 1; BG3IN* and BG30OUT* are the bussed lines
for the daisy chain. All the requesters share lines BR3*
to initiate a request, and BBSY* to acknowledge the
grant and to take over the bus. The status of the bus is
obtained from monitoring lines BBSY* and AS* in the
bus. The DMA device (Intel 8257) uses a two-signal
bus arbitration protocol with HRQ as the request signal
and HLDA as the acknowledge signal.

Figure 12 shows the description of one of the two-
state ASM comprising interface 1.

{{ TWO-STATE-ASM-2
INSTANCE: TWO-STATE-ASM
HAS-BLOCK+INV: IB-1
ACTION: GRANT-ACK
INPUTO: (* (! NEGATED IB-1-REQ-IN)
(! NEGATED IB-1-GRANT))
INPUT!: (! ASSERTED IB-1-GRANT)
OUTPUTO: (! NEGATED IB-1-GRANT-ACK)
OUTPUTI: (! ASSERTED IB-1-GRANT-ACK)}}
Figure 12. Frame describing the
two-state ASM for grant-ack.
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Figure 13. Block diagram of interface 1.

Beside the two-state ASM and the Mutual Exclu-
sion (ME) biock that were described earlier, other blocks
that are included in interface 1 (see figure 13) are connect
blocks (C), that translate the logic level and technology
of a single signal, and detector biocks (D), which are
digital monostable circuits that detect transitions. The

and-detector (AD) is able to detect when two transitions
have occurred, as defined by an and-event-expression. Fi-
nally, the observer O monitors the bussed signals to
infer the availability of the data transfer bus.

The final VME bus arbitration design was imple-
mented manually from the design blocks produced by
the DAME bus arbitration design subsystem, by foi-
lowing conventional digital design procedures. Connec-
tion blocks were transformed into buffers. State transi-
tion diagrams were developed for the asynchronous state
machines required in this design, which were in turn
minimized and converted to a combinatorial logic im-
plementation. A circuit diagram of the implemented
circuit is shown in figure 14. This Figure also shows
the general behavior of the two state machines required.

The final design was implemented using a XILINX
3020 programmable gate array. It was also tested by
transferring the finished design to the SILOS logic sim-
ulator. The test vectors applied to the circuit consisted
of all the expected input conditions. Under all condi-
tions the circuit performed as expected. The worst case
propagation delay from BG3IN* to HLDA was mea-
sured at 273 nsec.

IMPLEMENTATION OF BUS ARBITRATION DESIGN
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Figure 14. Circuit schematic for the implementation of
the designed interface.

Conclusions.

In this work we presented the framework of the
bus arbitration sub-system in DAME, an expert designer
of microprocessor-based systems. In particular, we pro-
vided the action graphs used to represent the two-signal
and three-signal bus arbitration protocols, and the inter-
face procedure used for the two protocols. It was shown
how the design rules are clustered pertaining to specific
aspects of the design. The design example presented pro-
duced an implementation of the interface for the VME
bus and a DMA device.
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