IMPLEMENTATION OF THE ROUTING ENGINE FOR HYPERCYCLE BASED
INTERCONNECTION NETWORKS

R. Sivakumar, N. J. Dimopoulos, V. Dimakopoulos

M. Chowdhury and Don Radvan
Electrical and Computer Engineerin g Department
University of Victoria
Victoria, B.C. Canada

ABSTRACT?

In this work, we present the design and
implementation of a Routing Engine for Hypercycle-
based interconnection Networks. Hypercycles, is a class
of multidimensional graphs, which are generalizations
of the n-cube. These graphs are obtained by allowing
each dimension to incorporate more than two elements
and a cyclic interconnection strategy. Hypercycles, offer
simple routing, and the ability, given a fixed degree, 0
chose among a number of altemnative size graphs. These
graphs can be used in the design of interconnection
networks for distributed systems tailored specifically to
the topology of a particular application. For routing,
we have adopied a circuit switching back-track-10-the-
origin-and-retry strategy, whereupon paths that block
at intermediate nodes are abandoned, and a new attempt
is made. Intermediate nodes are chosen at random at
each point from among the ones that form the shortest
paths from a source to a destination. Simulation results
have established the performance for a variety of
configurations. Hypercycles, because of the richness of
their connectivity, exhibit superior performance as
compared 10 Hypercubes both in terms of throughput
and in terms of matching the size/topology
requirements of an application.

INTRODUCTION

Message passing concurrent computers such as the
Hypercube [5, 11}, Cosmic Cube [8], MAX([6, 7],
consist of several processing nodes that interact via
messages exchanged over communication channels
linking these nodes into one functional entity.

There are many ways of interconnecting the
computational nodes, the Hypercube, Cosmic Cube,
the Connection Machine {12] etc. having adopted a
regular interconnection pattern corresponding to a
binary n-dimensional cube, while MAX adopts a less
structured, yet unspecified topology.

t This work has been supporied by the Natural Sciences
and Engineering Research Council Canada, under grant
#OGP0001337 and by the Institute for Robotics and
Intelligent Systems (IRIS)

The advantages of having a regularly structured
interconnection are many-fold, and they have been
proven time and again in their being incorporated in
many recent designs [2,5,6,7,8,11,12). In these
structures, easy deadlock-free routing (3] can be
accomplished by locally computing each successive
intermediate node -for a path that originates at a source
node and terminates at a destination node- as a function
of the current position and the desired destination.
Many regular problems (such as the ones found in
image processing, physics etc.) have been mapped on
such regular structures, and run on the corresponding
machines exhibiting significant speedups.

In contrast, embedded real-time applications [6, 71,
tend to exhibit variable structures that do not
necessarily map optimally to an n-cube. In addition,
since the size of a binary n-cube is given as 20 j;
means that a particular configuration cannot be
expanded but in predefined quantum steps. This
constitutes a significant increase in resource allocation,
especially in power-mass limited environments.

Hypercycles {7,4]) can be considered as products of
"basic” graphs that allow a rich set of component
"basic” graphs ranging in complexity from simple
rings to the fully connected ones.

The Hypercycles, being regular graphs, retain the
advantages of easy routing and regularity. Yet, since we
are dealing with a class, rather than isolated graphs, we
have the flexibility of adopting any particular graph
(from the class) that closely matches the requirements
of a given application.

MIXED RADIX NUMBER SYSTEM

The mixed radix representation [1], is a positional
number representation, and it is a generalization of the
the standard b-base representation, in that it allows each
position to follow its own base independently of the
other.

Given a decimal number M factored into 7 factors

as M =mjxmyxm3z.x--xm, then any
number 0 <X <M-1 can be represented as
(X)m ;] my. = 1112"'xr lm, my..m, Where

..m,
0 SxjS(m;-1);i=12,..,r and the x;'s are

r

chosen so that X = zx‘. w;
i =1

where

M
w. =
s mlmz ...mi

HYPERCYCLES.
An r- dimensional Hypercycle, is the following regular

, aP _ (NP £P p
undirected graph: G = {Nm .Em} where N
(N”; = {0.1,2....M-1)) is the set of nodes.ir:,“:l

the set of edges, m =mj,my,m3,...,m, a mixed radix,
P=P1P2PrP; <m;l2 the connectivity vector,
determining the connectivity in each dimension which
ranges from a ring (p; =1) to fully connected

(pi=Lmi 2 J).
Given @,Be NP then (a,B)e £9 if and

only if there exists] <j <r such that
and a; = B; ;i #
The n-cube is a Hypercycle, with

M=2x2x-x2=2"and p=1,1,1,...,1.

ROUTING

Hypercycles, have routing properties that are similar 10
those of the n-cube. Given nodes

(a)ml my..m;..m, = aI a2....ai...a, and

(a')ml,nZ mym, = QO ay...§..a, , a walk, from
node a to node a*, can be constructed as follows:
oA 0. Q ajog..§1..0 . ajap..£2...a .

ajo..§...a . such thatd

,

32
| . m
a. Hypercycle G‘l, 3 b. Binary 3-cube G,

1
i3
-1»*'
-
o
{
S s a8 A naAR AT

¢ TixTVGyg dRng G,

Figure 1. Examples of Hypercycles

(&, +p:) mod m, it [(6-¢,) mod m =g, &[]>p (a)
(&, +|¢;. .£| modp,) mod m, i [(&-¢;,) mod m;<|¢;,.&|]>#: and|¢; .§| modp; 20 (b)
£ =1(8), -p:) mod m, it [(&,-&) mod m=|g,,.£[]>p: (©)
(8, -|¢,..&| modp) moam, it [(&,-£) moam-|¢; &[]-p. and ¢ L modp20 (@
B if ‘ﬁh,ﬁlsp, (e)
S0 = Emax = & Egn. 1

¥ We define la, b! = min{(a -b)modm, . (b -a)modm, }

Equation 1. defines all the minimum-length paths
from a source to a destination in a single dimension.
Parts (a), and (c) constitute a greedy strategy where the
maximum step towards the destination is taken. Parts
() and (d) form alternate paths by allowing the step
described in part (€) to be taken earlier. Observe that

6.4.2

there is only onc step of length smaller than the
maximum, and when it is taken it is guaranteed that the
remaining steps will be maximal. This is because

l(éj' ilfj. ,.fl modp,.) mod m‘.él modp, =0

Given an origin (a)m/ my..m, = @ Q;y..a, and a

destination (B)m1m2 ..m, = By By...B, then distinct

walks of minimum length that connect them are
constructed according by sequentially modifying the
source address, each time substituting a source digit by
an intermediate walk digit determined according to
equation 1, until the destination is formed. The
following walk connects source to destination.

source =a; @y a;..a,; a;§, a, -a; o gy

v 1 S a ;s

a; v .a,a Sov, a; &, B;
e SR
B; B, B; .8, =destination
If only the greedy strategy is followed, the so formed
paths are calied greedy paths.

Figure la., gives an example of two distinct paths

of equal minimum length that connect a source 10 a
destination, for a Hypercycle.

DEADLOCK AVOIDANCE IN ROUTING.

Deadlocks may occur easily in cases where the
segments that form the circuit connecting a source o a
destination are chosen at random. Certain routing
algorithms (e.g. virtual channels, e-cube routing {3})
prevent deadlocks by ordering the resources (channels)
to be allocated. Thus a lower order resource cannot be
commitied if a needed higher order resource cannot be
obtained. The disadvantage of this approach in an
interconnection network is that it limits the number of
paths connecting a source t0 a destination to exactly
one, even though several alternate free paths may exist
at a particular moment. For Hypercycles, we have
adopled a routing strategy where deadlocks are avoided
by requiring a blocked partial path to backtrack to its
origin and retry.

BACKTRACK-TO-THE-ORIGIN-AND-RETRY
ROUTING

For Hypercycle-based interconnection networks,
because of the existence of cycles in each dimension,
the use of an e-cubc type routing that prevents
deadlocks, is impossible. We have adopted instead a
deadlock avoiding routing strategy. According to our
backtrack-to-the-origin-and-retry routing we identify, at
each node, all nodes that can be used for the
continuation of the path. For all such identified nodes,
we also identify the corresponding ports that can be
used in-order to continue the path. Since several paths
may bc forming in paraliel, some of these ports may

already be allocated to some other path. After excluding
all the allocated ports, we select one of the remaining
free ports at random. The subsequent link in the path is
then established through the selected port, and the
procedure repeats itself until the destination is reached,
or no free ports could be found. If no free ports are to
be found at an intermediate node in the path, then a
break is returned to the origin (through the already
established partial path to the blocking node), the
partial path is dissolved, and a new attempt for the
creation of the required path is initiated. The backtrack-
to-the-origin-and-retry routing is a type of two-phase
locking [10], where as resources we consider the
various links necessary for the completion of the
source-to-destination circuit.

We have used Extend™? 1o construct a simulator
capable of simulating any Hypercycle based network.
Simulation results depicting the average delay in
forming a circuit and transmitting a message for
various hypercycles ,are depicted in fig. 2.

3007
- (33)-dimensional Hypercycle
-+ 3-dimensional binary cube
® 4-dimensional binary cube
-o- 4-dimensional binary cube
2007

(e-cube routing)

delay

offerea ioad

Figure 2. Delay vs. offered load for the 4-cube using
backtrack-to-the-origin and e-cube routing. The offered
load is normalized to the capacity of the network. The
delay is normalized to the message transmission time.

The performance of the backtrack-to-the-origin-and-
retry for both binary cubes and hypercycles of similar
sizes, is clearly superior to that of the e-cube. This is
attributed (o the fact that the backtrack-to-the-origin-
and-retry can use alternative paths to the destination
instead of the single path allotted by the e-cube routing.
Generally, system throughput and delay are functions of
both average distance and the average number of
aliernate paths between any two nodes.

HYPERCYCLE ROUTING ENGINE
The functionality of the backtrack-lo-the-origin-
and-retry as discussed above, includes routing in the

Extend is a trademark of Imagine That inc.

forward direction as well as backtracking, and message
request management. These functions can be partitioned
into two components. The first component (the router)
implements the forward routing complete with the
random selection of one of the available channels and
the detection of a blocked route. The second component
(the controller) implements the remaining functionality
which includes backoff policies, and message
management.

A general structure of the envisioned system is
given in Fig. 3.

Memory CPU

o 1

()]
£
o w
ST
Universal _8;';
niversal |
Controller [4—» Switch ”
Router #
Incoming
k Ports

Routing Engine

Figure 3. The structure of a hypercycle system's
node.

As it can be seen, messages arrive at the node
through the incoming ports or are generated by the node
itself. During routing, only the header of a message
participates in the establishment of the route, while the
body of the message is queued at the originating node
and awaits the completion of a route to its destination
before it is transmitted. In the ensuing discussion, we
are using the term message to mean its header for the
route establishment and the complete message during
transmission. Messages are intercepted by the
controller, which queues them. The controller passes

the destination address found in the message to the
router, which finds a valid port for the continuation of
the message's route. If the router cannot find an
available port, the message is considered blocked, the
controller decides on a backoff according to the
established policy and proceeds with the next message.
If a valid port is obtained, then the controller configures
the switch so that the port through which the message
arrived is connected to the selected outgoing port, and
thus the message is forwarded to the subsequent node of
its route.

In this work, we are presenting our
implementation of the router component.

Fig. 4 gives a block diagram of an r-dimensional
Hypercycle router. As it can be seen, we are
implementing our router as a system having four
modules, namely the Destination Address Register, the
Next Port Generators, the Port Validator and the Port
Selector comprising a Valid Port Counter, the Random
Number Generator and an r out of k Selector...

Destination Address Register

& —{ Next Port Next Port

M—1Generator Generator

P ——»1 Dimension 1 Dimension r

y 4
—> Port Validator
\“SSsssssssscsas~ 2 Bt ~ -~ 5
A 3
\ P‘——." \
: Port :
\ Counter '
\]
\ - '
A]
\ \
\ [}
\ Random :
N Number Selector)
\ Generator \
\]
]]
N J, j -
AvailablePorts 1 Next Port

/ Y

Port Selector
No_Ports_Available

Destination_Reached

Figure 4. Block diagram of the Hypercycle routing
engine. Routing in each dimension is done in paralicl.

The desunation address is used by the Next-Port
Generator 10 generate all possible ports that could be

used in continuing the path 10 the required destination.
Subsequently, the Port Validator masks out the ports
which are currently used by other paths. Finally, The
Port Selector, selects at random one of the validated
poris which is then used to continue the circuit towards
the required destination.

For the random number generator, we use a mixed
congruential random number generator of the form

Tan=(ry+¢)mod2' -1, with ¢ being an additive
parameter, to generate 16-bit random numbers. For any
hypercycle, the number of the ports available for the
continuation of any given route varies depending on the
traffic and the route itself. Therefore, in order 10 select
at random an appropriate port, we first obtain the
number k of valid ports which can be used for the
extension of the route, and then the order of the port to
be selected is determined as rnmodk +1 with r,
being a 16-bit random number generated by the mixed
congruential random number generator as discussed
above. We have implemented a modk extractor for
16-bit numbers (n = 16)and k =2 through 10 The
area-time complexity of of the extractor is calculated to
be O (po logpo) with pg =[n/k |. The selector
implements a binary search method with an area
complexity of O (n (logn)2) and time complexity of O
((logn) [9).

IMPLEMENTATION

We have completed the implementation [9) of a 16
port 4-dimensional router in NTE's 1.2u CMOS4S.
Our design has been fabricated by CMC. Statistics of
the fabricated component are given in TABLE I.

The structure of the component including the
internal registers is presented in fig. 5. while its pin
configuration is presented in fig. 6. The mask of the
fabricated component is presented in fig. 7.

The router includes eight 16-bit registers used to
hold the configuration parameters as well as the
destination address and the currently available ports.
The configuration parameters include the address of the
node, the mixed radix vector s =mj.my.m3,..m,,

the connectivity vector P=p1.p2.-..pr , the seed for
the random number generator, the additive term for the
random number generator, the port population per
dimension, and the pont offsets per dimension. A 16-bit
bidirectional bus (I/0<0-15>) is used in order to load or
read the registers. The Valid Port's address is to be
found on the port bus (PORT<0-5>).

The component operates either in a load or execute
mode. In the load mode, the registers can be read or
written, while in the execute mode, a valid port is
found and is reported on the port bus.. The
configuration (CONFIG) mode (MODE) and select (A
B C) signals are used 10 control the operation of the
component.

BK [J 1 - 401 1/00)
1/014) 0 2 39 1/0(2)
1/0(12)] 3 38 1/0(3)

PORT(2)[] 4 370 CLK
PORT(0) [5 36
GND[] 6 350
GND[] 7 34[1PORT(4)
I/O(15) 0 8 331 1/13)
cOo 321 CONFIG
1/0(4)0 10 HCR 310 1/ 1)
/o6) g 11 300 DTR
170110 12 261 B
I70¢8) [0 13 28 O RST
V.04 270 PORT(3)
15 26 {1 PORT(1)
16 2500V,
Voo O 17 240 MODE
GND[] 18 2301/ 5
170G 019 220 1/X7)
1/040)0 20 210 A

Figure 6. The pin arrangement for the Hypercycle
Router component.

It is worth noting that the router has been designed
to be programmable so that it can be used 10 perform
routing for a variety of hypercycle confi gurations,

TABLE 1

Technology 1.2 u NTE CMOS4S

Area of the chip 5263.6 X 5263.6 p2

Area of the core 4581.9 x 4581.9 p?

Number of Pins 36

Number of Standard Cells|| 5951

Number of Transistors 25842

Propagation Delay 50 ns

Area x Time Complexity 1.049¢09 ns-p2

TESTING
We have partially tested the fabricated components.
Typical AC characteristics obtained through these tests,

are presented in TABLE Il. Thesc agree with our
simulations which predicted maximum propagation
delays of the order of 50ns.

CONCLUSIONS

Woe are currently in the process of designing the
accompanying controller, and we are proceeding with
further studies of the performance of hypercycles with
respect (o alternative routing policies.

In this work, we presenied our implementation of a TABLE Il
router to be used in the routing engines of Hypercycle- Chip No.[iSet-Up |{Hold Load Execute
based concurrent systems. Such systems are ideal as Time Time Cycle Cycle
embedded systems because of their ability to be 1 H3.9ns }i520ns JfS9ns |38 ns
configured to match the requirements of the application. 4 [a1ns J20ns 6.1 ns {40 ns
Our design was fabricated in the 1.2 4 CMOSA4S
process, and exhibits exczllent performance, achieving
in excess of 20 million routing decisions per second.
RECO
(160
INPUT 20UTPUT REC |
(BIDIRECTIONAL) [{LR-2Y] PORT PORT
?ﬁi’» TRURReRS "%m& VALIDATOR _J"‘ cTor ?%'G:{Lﬂ'{ik Pt
f%'& | (o
| Ot e oo _1/_ A A BREAK
DEMUX e
CREC
68 AVAILABLE T RTS DESTINATION
e h REACHED
[¢L-X B\
KL
ey RN(t-1)
CQONTROL
Q_: Coutrol
sty Dats "
1
|
|
COANeIG MODE QLK RST SELECT
Figure 5. The structure of the Hypercycle Router.
REFERENCES Message Routing in Multiprocessor

1. Bhuyan, L. N., and D. P. Agrawal, "Design and
Performance of Generalized Interconnection
Networks" IEEE Trans. Comput. Vol. C-32,
No. 12, pp. 1081-1090, Dec. 1983.

2. E. Chow, H. Madan, J. Peterson "A Real-Time
Adaptive Message Routing Network for the
Hypercube Computer”™ Proceedings of the Real-
Time Systems Symposium, pp. 88-96, San
Jose CA., (Dec. 1987)

3 Dally, W.J., and C. L. Seitz "Deadlock-Frec

Interconnection Neiworks” JEEE Trans.
Comput. Vol. C-36, No. 5, pp. 547-553, May
1987.

4. Dimopoulos, N. J., D. Radvan, K.F. Li
“Performance Evaluation of the Backtrack to the
Origin and Retry Routing for Hypercycle based
Interconnection Networks™ Proceedings of the
Tenth International Conference on Distributed
Systems, Paris, France, pp. 278-284 (June
1990).

5. Pcterson, J.C., J. O. Tuazon, D. Licbcrman, M.
Pnicl "The MARK 11l Hypercube -Ensemble

Concurrent Computer™ Proceedings of the 1985
International Conference on Parallel Processing
pp. 71-73, Aug. 20-23 1985.

Rasmussen, R. D., G. S. Bolotin, N. J.~

Dimopoulos, B. F. Lewis, and R. M. Manning
"Advanced General Purpose Multicomputer for
Space Applications" Proceedings of the 1987
International Conference on Parallel Processing.
pp. 54-57. (Aug. 1987)

Rasmussen, R. D., N. J. Dimopoulos, G. S.
Bolotin, B. F. Lewis, and R. M. Manning
"MAX: Advanced General Purpose Real-Time
Multicomputer for Space Applications”
Proceedings of the IEEE Real Time Systems
Symposium pp. 70-78, San Jose, CA.,(Dec.
1987).

Seitz, C. L. "The cosmic cube” CACM vol.
28, pp.22-33, Jan. 1985.

I
=
1 s

I'.i | i

L0

bt

WAL) |

)

= Hiln i

T

11

12.

=

Sivakumar R. VLS! Implementation of a
Router for the Backtrack-to-the-Origin-and-Retry
Routing Scheme of the Hypercycle Based
Interconnection Networks M.A.Sc. thesis,
University of Victoria, 1991, .

Tanenbaum, A. .S., Operating Systems: Design
and Implementation Prentice Hall, 1987.
Tuazon, J. O, J. C. Peterson, M. Pniel, and D.
Lieberman "Caltech/JPL MARK 1l Hypercube
Concurrent Processor"Proceedings of the 1985
International Conference on Parallel Processing
pp. 666-673, Aug. 20-23 1985.

Waltz, D. L. "Applications of the Connection
Machine™ IEEE Computer Jan. 1987, pp.85-97

Figure 7. The implementation of a 16-port 4-dimensional Hypercycle Routing Engine in NTE's 1.2 u CMOS4S
process.

