[EEE Pacific Rim Conference on Communications, Computers and Signal Processing, May 9-10, 1991

DAME: An Expert Microprocessor-Based-Systems-Designer. An Overview and Status Report?t

N.J. Dimopoulos, K F. Li, E.G. Manning,
B. Huber, M. Escalante, D. Li, and D. Caughey

Department of Electrical and Computer Engineering
Unmiversity of Victoria
Victoria, B.C.

ABSTRACT

DAME (Design Automation of Microprocessor-based systems, using an
Expert system approach) is an expert system capable of configuring and design-
ing a customized microprocessor system from original specifications. We have
postulated that such an expert system, can be easily constructed, since most of
the interfaces used by the various microprocessors and related peripherals are
standardized. Thus, once the gross structure of the design and the modules com-
prising it have been chosen, their interconnection is fairly straight-forward. Qur
investigation into the modelling of signal behavior confirmed this premise.

In this work, we present the component library and knowledge base in
DAME. A notation is developed to allow the complete specification and the
modelling of the static and temporal behaviors of signals found in these compo-
nents. Knowledge representation using frames in a hierarchical structure is pre-
sented, together with some typical rules used for the design process. Examples of
the hierarchy, frames, and rules to design interfaces between microprocessor and
memory components are illustrated.

1. Introduction t

Knowledge-Based Systems (KBSs) have recently proliferated in several fields
of human endeavor. These systems play the dual role of categorizing and codify-
ing expert knowledge, and then using this knowledge in order to solve time con-
suming and/or challenging problems. Examples can be drawn from several di-
verse fields such as patient care [10,16), geological exploration [7], etc.

Computer system design and synthesis is a very complex task that involves
a large search space, requires problem-dependent design strategies, and is a de-
signer-dependent process. Since the carly 1980’s, several KBSs for computer sys-
tems have been developed. DAA [11] and ASP [1] are prime examples of KBS
for hardware synthesis at the register transfer level. In addition, silicon compilers
that use a combination of algorithmic and knowledge base approaches have be-
come available [14,15).

At the system architectural level, R1 was developed to configure computer
systems but no design knowledge was involved [12]. CMU’s Micon is a system
synthesis tool able 10 assist the designers in configuring single board system
from commercially available components according to customers requirements
[2]. Micron bases its design on matching the interfaces between compatible
components. This design knowledge is encapsulated in family-specific templates
which describe the relationships between the processor, other components, and
the board level bus.

DAME (Design Automation of Microprocessor-based systems, using an
Expert system approach) [3,4,5,6,8.9] is an expert system that wiil be capable
of configuring and designing a customized microprocessor system from original
specifications such as type and application, environment, communication and
computational requirements, as well as economic criteria. DAME attempts to
exploit the general design methodologies using generic communication and inter-
facing protocols, and to adjust and fine-tune the details according to the specific
components’ timing requirements and their interfacing properties. The objective
is 1o configure the interfacing of different components intelligently once they are
selected; in order to accomplish this, it employs rules which operate on the ab-
stract properties of a component rather than their instantiations.

DAME organizes the design process into a hierarchy [5,8] consisting of the
following phases: (1) Design Specification; (2) Configuration; (3) Behavior
Description; (4) Functional Block Design; (5) Implementation and Integration.

Each hierarchical ievel represents an abstraction of the given design prob-
lem. As the levels are transversed, the abstraction of the design is refined, until,
at the last level, the complete design is formed. Each hierarchical level manipu-
lates objects which represent the system'’s concept of the design requirement at
the particular abstraction level.

Our basic tenet has been that the interface signals found in various micropro-
cessor families, follow a limited number of well defined protocols for informa-
tion exchange. This information is given both descriptively and quantitatively as
timing diagrams by the manufacturers. The components’ descriptions include ref-
erences 10 these basic protocols for information exchange, which are instantiated
for each component.

The inclusion of the references to these basic protocols in the description of
our components provides a powerful model in that we are able to carry out the
design process by employing a limited number of general rules which are spe-
cific to the protocols used.

This research has been supported in part by the Natural Sciences and Engineering
Research Council of Canada under the strategic grant STR0040526 and by the Science
Council of British Columbia under Sci and Technology Development Fund
through grant SCBC #88 243.

DAME compriscs a library of availabie components (the knowledge base),
the rulc base, and the user interface. The rule base uses information from the li-
brary in order to choose the appropriate components and to eventually produce a
valid design. The library of components incorporates such diverse information as
names, signal protocols and timing, as well as packaging and availability, We
have chosen the frame paradigm [17] 10 organize this diverse information. This
was necessitated because of the diversity and repeatability of the information. In
addition, several expert system tools provide a frame development environment.
For example, Knowledge CrafiTM yses schemata to structure its data.

A model is needed 10 encapsulate the specifications of microprocessor com-
ponents. The data describing the component include information required at each
design phase. The components, the capabilities of components, their signals and
signal timings are some of the objects included in the representation. The nota-
tion and data structures developed for these objects are presented in Section 2. A
component editor (o aid the knowledge engineer in the entering of pertinent in-
formation is presented in Section 3. Abstract interface design is described in
Section 4. Examples of knowledge and rule representations, and the design ob-
tained of a bus arbitration subsystem are given in Section 5.

2. Library of Components

DAME includes a library of components. The component model is specific
enough o allow the complete design to be accomplished, including the intercon-
nection and the interfacing of incompatible modules. Components in DAME are
represented as networks of schemata. Networks of schemata that represent com-
ponents within a class (e.g., microprocessors, memories, peripherals, etc.) have
identical structures. Such networks of schemata are generally organized hierarchi-
cally with more detail becoming evident as the hierarchy is transversed.

A major portion of such structures is devoted in describing the ways that in-
formation can be communicated to/from the components. This includes the pro-
tocols involved as well as timing and electrical characteristics of the participating
signals.

The “information exchange” part of the description is considered as a
collection of capabilities that describe abstract capabilities of the component
(c.g., data transfer). Each capability is refined into a collection of protocols
which describe the capability’s functions and operations. For example, the data
transfer capability of a processor component comprises the read, write and read-
write protocols while the data-transfer capability of a Read Only Memory in-
cludes the read protocol only.

A protocol contains details of the fundamental operations it describes. It
comprises several timing parts, typically including the control and the transfer
parts. The transfer part, may be further distinguished into address, and data trans-
fer, or a combination of both. These timing parts describe in detail timing rela-
tionships of the participating signals. The timing parts are instantiations of tim-
ing templates which are generic relationships (patterns) describing timing rela-
tions between the transitions and the interactions of abstract signals. A study of
a variety of timing diagrams from microprocessor specifications [5,9] has pro-
duced a number of such templates as well as protocols and capabilities.

The whole concept of DAME is based on the above observation concerning
“information exchange”. The capability to relate the description of a component
to a well-defined structure of abstract objects enables us to produce a design in
the abstract space using a limited number rules, and subsequently instantiate the
design with the specified components. The following describe the different levels
of knowledge representation, starting at the lowest in the hierarchy.

2.1 Event Description Language

At the lowest level of the representation, signal transitions are related to
cvents which must precede them and are considered for our purposes as their
causes [8]. An event description language has been developed through which ar-
bitrarily complex events, collections of signal transitions with imposed timing
constraints and precedence, can be described. In addition, causal relations, relating
events to transitions, can also be expressed. We use this language in order to en-
code the information in the timing diagrams provided for by the manufacturers.

2.2 Control and Transfer Protocols

At the second level of the representation, collections of limited numbers of
causal relations describe basic control or transfer protocols, using the description
language. An example is the two signal handshaking protocol found in many in-
formation transfer subsystems.

Handshake Template

SIG1

SIG2
handshake template

! ASSERTED SIG1 —> ! ASSERTED SIG2 @ T1
! ASSERTED SIG2 —> ! NEGATED SIG1 @ T2
! NEGATED SIG1 —> ! NEGATED SIG2 @ T3

2.3 Standard Behaviors

At the highest level of the representation, collections of basic protocols as
they exist at the second level, constitute Standard Behaviors. In general, a
Standard Behavior describing the capability is comprised of two parts: the control
part which describes the behavior of the control signals participating in this be-
havior, and the information transfer part which describes the actual information
transfer.

Examples of Standard Behaviors are data transfer behaviors such as the ones
found in processors and which incorporate both a control protocol and the actual
transfer protocols necessary for the delivery of addresses and data on a bus. In
contrast, the data transfer behavior of static memory components are devoid of
the control protocol. This absence of a control protocol illustrates the inability
of a memory component 1o initiate activity.

Protocols as well as Standard Behaviors are depicted as semantic networks
(networks of schemata in Knowledge CraftTM). Templates of networks of
schemata depicting generic protocols and behaviors have been constructed. These
templates are customized when they are used in the description of the various
components within the component data base to reflect the particular signals and
timing constraints involved.

e ot —"*

has signal isa
A1-A23,00-D7,
UDS,LDSAS,
DTACK, otc MICROPROCESSOR
has capability has capability
DATA BUS DATA TRANSFER
ARBITRATION-1 CAPABILITY-23
4 <
uses read uses wri
r protocol protocol
DT READ DTWRITE
PROTOCOL-446 PROTOCOL-45 PROTOCOL-445

control data address address controt data
timing timing timing timing timing timing
UDS /LDS Do-Dis STROBE || UDS ADS DO-D15
DOTACK UDSADS TIMING {} DTACK ubpsADs
TIMING READ || TIMING READ [f 4432 TIMING WRITE || TIMING WRITE
P e e
instance of instance of .
instance of \inslance of msta{ce of
kANDSHAKE TEMPLATE STROBE-LATCH TEMPLATE STROBE TEMPLATE
A
B B8

Figure 1. MC68000 Microprocessor Component Representation Hierarchy.

Fig. 1 depicts a partial network of the schemata used to describe the
MC68000 component. This partial hierarchy details the data transfer capability
of the component as specified by the MC68000 manual [13]. The timing parts
shown in Fig. 1 are instances of timing templates which correspond exactly to
the specified timings of the component.

3. The Component Editor

Many available expert system shells provide powerful editors that can be
used to structure networks of schemata representing components. However, due

to their generality, these editors cannot exploit the inherent regularity of our
structures.

Since the number of components in the library is quite large, all of which
are represented as instantiations of regularly structured networks of schemata, we
are developing a customized editor which can exploit this regularity in order to
guide and expedite the construction of the component ibrary.

Because of the regularity of the structure, at each level of the hierarchy, there
are but a few alternate objects (represented as networks of schemata) that can be
selected for inclusions in the component. The editor therefore offers to the users
the legal alternatives, and subsequently it incorporates the selected network of
schemata to the component.

The editor is based on a mouse driven graphical user interface. The user is
able 1o edit any schemata in the component hierarchy through a consistent user
interface. A schemata has a name and contains several slots. To provide the user
with complete information about the schemata being edited, several items are
visible at all times: its name; its parent’s name; its slots; contents and permitted
contents of a selected slot; the component name currently being edited; and the
current schemata’s position in the component hierarchy. A typical window of the
editor for the MC68000 displaying the above information is shown in Fig. 2.
The component and the schemata currently being edited is MC68000 and its par-
ent is the schemata MICROPROCESSOR.

EDITING SCHEMATA: M

[C68000 DEVICE NAME: MC63000
THIS SCHEMATA IS A: MICROPROCESSOR

DAL A TRANSEL RACAPABINELY

BUS-ARBITRARTION-CAPABILITY

SLOTS SLOT-CONTENT: HAS-CAPABILITY
| SAVE l
IS-A: INTERRUPT-CAPABILITY-1
BUS-ARBITRATION-CAPABILITY-12 LOAD
USES-SIGNALS:
vsBs PACIAGE: 1
MLELE
SELECTED SLOT CONTENT IS A: E
DATA-TRANSFER-CAPABILITY [_j
HIERARCHY PERMITTED-SLOT-CONTENTS
INTERRUPT-CAPABILITY E

DS RERNN
.\\“\\.\'b\}:‘\‘\"\\\
COPY 108LOT

m
]
3

Figure 2. Schemata Edit Window for a Microprocessor Component.

Pertinent information and properties of the component are represented as the
slots of the schemata: 1S-A, HAS-CAPABILITY, and HAS-SIGNAL. Contents
of a selected slot are also shown. The editor allows users to manipulate (EDIT,
DELETE and ADD) the slot contents. The editor is also able to display and mod-
ify legal slot contents which are the legal templates available for the specific
slots. To make the user aware of which is the current schemata being edited, a
hierarchy window displays a trace of the path from the current schemata to the
device root node.

4. Abstract Interface Design
4.1 Bus Protocols

In general, computer systems comprise several interconnected modules that
include processors, memory and /0. These modules communicate through pri-
vate or shared buses that carry both information and control. In addition, well de-
fined protocols manage the orderly access and information transfer. Buses are di-
vided into the following general categories: address, data, control, status, arbitra-
tion, interrupt, serial, ID, and timing.

Modules utilizing a bus can be characterized as masters and/or slaves as well
as requestors or responders. Bus masters can obtain the use of the bus and initiate
data transfers, while bus slaves, merely can participate in a transaction if re-
quested by a master. A requestor requests services, while a responder responds o
such requests.

The method used by the bus for signaling its valid usage is called a bus pro-
tocol. Bus protocols are classified as synchronous, where all modules involved
use a common clock; asynchronous, where the protocols are self-timed; and the
hybrid semisynchronous.

4.2 Bus Arbitration Interface Design

In the subsequent, we shall address the problem of designing a bus based sys-
tem comprising a number of masters sharing a common bus. Normally, a bus
provides a protocol through which a single master module can be determined at
any time. An arbiter adhering to the bus protocol is attached to the bus either as
a dedicated module or it is distributed among the particioating modules. Modules

capable of requesting the bus adhere 1o the requestor part of the protocol, while
the arbiter adheres to the responder part of the protocol. There are but a few
choices of such protocols. They are distinguished as 2- or 3-signal arbitration
protocols. Arbitration structures can be centralized or distributed.

<
>
REQ* ;;}\“’ ®

(&}
>
@

evD

ACK*

DATA TRANSFER BUS

Figure 3. 2-signal Bus Arbitration Protocol (Requestor part).

- -
z H
BR*
o
s H
B8G*
©w0
2 3
BGACK*
Bus Available &
DATA TRANSFER BUS —(

Figure 4. 3-signal Bus Arbitration Protocol (Responder part, ¢.g., MC68000).

Figures 3 and 4 illustrate the 2-signal and 3-signal arbitration protocols
through their timing diagrams. The 2-signal requestor protocol is a fully respon-
sive asynchronous handshake protocol between REQ* and ACK*. REQ* is an
output signal indicating, when asserted, a request to use the bus, and when
negated the end of the current bus use. ACK* is an input signal that when
asserted informs the device that the bus is available, and when negated that the
transaction is terminated.

In the corresponding 2-signal responder part, the same REQ* and ACK*
signals are present, but in their dual role. REQ* is an input to the arbiter indicat-
ing, when asserted, that there is at least one requesting device, while the ACK*
is an output indicating that the bus is available for the next master 1o use.

In the 3-signal Bus Arbitration protocol the input signal BR* indicates,
when asserted, that an external device is requesting the bus. The arbiter responds
to this request by asserting BG* if BGACK* is not asserted (which indicates that
the previous fully responsive asynchronous transaction has ended). The external
arbitration mechanism then has to decide which device is to take the bus. Once a
device is selected, it must release its BR* and it has to wait until the bus is
available (BAV* asserted) before starting using the bus. The device informs that
itis the owner of the bus by asserting BGACK®*. Finally the selected device sig-
nals the end of its transaction by negating BGACK*.

4.3 A 3-signal Multi-master System Example

As an example, we shall present the structure of a system, where several
master modules share a bus employing a 3-signal arbitration protocol.

arbiter

bus-iree -
grant-ack fef——

request | ‘)

req-0 bus Qack req-o
%8 |ntartaces free intertace2
grant grant-in grant-out nt-in grant-out
(three-signal ack req-in grant ack reg-in

!

gack g

requesl 5
@
]
g
requestert requester2
(two-signal (three-signat
protocol) WW%

Figure 5. The Structure of a Multi-master System.

We shall assume that the bus is driven by a 3-signal arbiter, and that the
modules are arranged in a daisy chain reflecting their relative priorities. This
example reflects the structure of systems which may incorporate a VME bus, an
MC680XX processor as the lowest priority master and bus arbiter and several
DMA devices. 2- and 3-signal modules are interfaced in a daisy chained fashion
1o a 3-signal arbitration bus. The general structure is given in Fig. 5.

The primary responsibility of an interface module, is to propagate the grant
in a daisy chain fashion and to acknowledge the grant when it is received and
while the request from their comresponding master is asserted.

req-out

ack, gack

req-in *
bus-free

qu—in

Figure 6. The sequential machines comprising Interface 1.

grant grant-out

1T gant-in .

req-in

“grant-in «

req-in

Tg rant-in

1 grantm

a. b.

Figure 7. The sequential machines comprising Interface 2 (ACK and REQ-IN
are wired directly to GACK and REQ-OUT respectively).

The sequential machines necessary for the generation of the correct signals
are given in Figs. 6 and 7.

As it can be seen (Fig. 6a), the bus request (REQ-OUT) is asserted by the
interface in case that the corresponding module is requesting (REQ-IN asserted),
the grant is propagated if the corresponding module is not requesting (Fig. 6b)
while the grant is "arrested” by the interface block and acknowledged in case that
the module is requesting.

5.0 Representation

As was described in Section 2, components are represented as networks of
schemata. The bus arbitration capability comprises both a requestor and a re-
sponder protocols. The design knowledge base is structured in clusters of rules
pertaining to specific aspects of the design. The design process is organized in a
hierarchical manner and proceeds through a continuous refinement of the struc-
tures arrived at the previous layers of the hierarchy. Clusters of rules at particular
layers are activated to carry the design forward. For example, in the functional
block design layer, there exist clusters of rules dealing with the design of the ar-
bitration subsystem. Figure 8 presents such a cluster of rules.

Consistent with the design philosophy of DAME, these rules apply to the
abstract design necessitated by the presence of particular types of protocols in the
participating modules rather than the specific instantiations of the protocols. The
knowledge base is capable of instantiating the abstract design based on the in-
stantiations of the protocols in the modules.

This technique of abstraction, allows us to use but a limited number of
powerful gencral rules rather than a plethora of specific rules which apply to spe-
cific instances of participating components.

Interface blocks are produced complete with the description of their function
and their interconnection. Subsequent layers (implementation layer) are responsi-
ble of implementing the functionality of these blocks in a particular technology.

5.1 Arbitration Subsystem Design Example

As an example, we present the design produced by DAME for a system in-
corporating the VME bus, an MC68000 processor acting as the lowest priority
master as well as driving the arbitration of the bus, and three DMA devices ar-
ranged as a daisy chain.

The overall structure of the system is identical to the one shown in Fig. 5
while Fig. 9 shows some of the resulting schemata describing the produced inter-
face blocks, their functions and interconnections.

Bus Arbitration
Interface
design rules

Notebook
creation

Y

Interface
Block
creation

Arbitration
Structure
selection

[}
daisy-chain
Y self-arbitration
Protocol
analysis

2-to-3wir
protocol
interfacing

fixed
priority

3-to-3wir
protocol
intertacing
cluster

2-to-2wire
protocol
interfacing

v

Structural
knowiedge

(signal

Functional
knowledge

(state machine)

Figure 8. The Structure of the Cluster of Rules that Accomplish the Bus
Arbitration Subsystem Design.

6. Conclusion

In this work, we provided the framework of DAME which is an expert system
capable of configuring and designing customized microprocessor based systems
from original specifications. We presented our approach in modelling the
behavior of the various signals associated with microprocessor components.
Notations and templates for typical timing specification are presented with ex-
amples shown for the MC68000. We used objects and relations to capture both
the static and temporal behavior of these signals. We implemented these objects
by using schemata as defined in Knowledge CraftT™ and stored it in a compo-
nent library.

A component editor was presented which allows the knowledge engineer 10
easily enter new component information into the component library or to modify
existing components. Taking the advantages of the regularized structure, the edi-
tor can guide an inexperienced user and expedite the entry procedure. This is ac-
complished by providing the user with several valid choices of objects that can
be entered at each level of the component hierarchy. We have started formulating
the design rules necessary for interfacing the various modules based on a bus sys-
tem.

References

[1] Baldwin, D., “A Model for Automatic Design of Digital Circuits,”

Technical Report 188, University of Rochester, Department of Computer
Science, July 1986.

Palm Nefwork Cdiior

[ewas]

-~ *THI-STATE - A5~

i

- &
— :-@i—*_ *TW-ETATE-ASH-T
T S TYO-ETATE AR
5
1

i e Y STATE AN

ATYD-TATE=ASi-11
/" WO STATE- A4 1R

e -sLock et — IWTERF MCE-E 00K :{'E__g. *TWO-TATE D=3
ighesdai o - T
\: e TVO-ITATE-4%4-3
\ - TVO-STATE-A54- 14
b r" VO-STATE-AIH-13

"L IHTERFAEE-BLOCK I{q-l_-";—\._. T = STATE~ A= 13
AT-STATE-AD4-3
TN TTATE

I

Falatlon Kays
1} ENITANCE
(2] MAT-LTee TNV

[2] Birmingham, W.P., et al., “The Micon System for Computer Design,”
IEEE MICRO, pp. 61-67, October 1989.

{3) Dimopoulos, N.J. and H.C. Lee, "Experiments in Designing with DAME:
Design Automation of Microprocessor Based Systems using and Expert
Systems Approach,” Proc. of Intern’l Computer Symp., pp. 1858-1868,
Tainan, Taiwan, Dec. 1986.

{41 Dimopoulos, N.J., C.H. Lee and N. Galatis, "DAME: Automated Design
of Microprocessor based Systems, an Expert Systems Approach,” Proc. of
the Can. Conf. on Industrial Computer Systems, pp. 20-1/ 20-7, Montreal,
Canada, May 1986.

[51 Dimopoulos, N.J., Huber, B, K.F. Li, D. Caughey, M. Escalante, D. Li,
R. Burnett, and E.Manning, "Modelling Components in DAME," Proc. of
the 3rd Intern’l Conf. on Industrial & Engg Applications of Artificial
Intelligence & Expert Systems, Vol. 11, pp. 716-725, Charleston, South
Carolina, July 15-18, 1990.

[6] Dimopoulos, NJ., K.F. Li, and E.G. Manning, "DAME: A Rule Based
Designer of Microprocessor Based Systems," Proc. of the 2nd Intern’l
Conf. on Industrial & Engg Applications of Artificial Intelligence &
Expert Systems, vol. 1, pp.486-492, Tullahoma, Tennessee, June 6-9,
1989.

{71 Duda, R.O,, PE. Hart, K. Konolige and R. Reboh, "A computer-Based
Consultant for Mineral Exploration,” Tech. Report, SRI International,
Sep. 1979.

[8] Huber, B., K.F. Li, N.J. Dlmopoulos D. Li, R. Burnett, E.Manning,
Modellmg Signal Behavior in DAME,” Proc. of the 1990 Intern’l Symp.
on Circuits and Systems, New Orleans, La., Vol. 2, pp. 1497-1500, Apr.
29 - May 3,1990.

[9] Huber, B., M. Escalante, D. Caughey, N.J. Dimopoulos, K.F. Li, D. Li,
and E.G. Manning, "Microprocessor Components and Signal Behaviour
Modelling in DAME," Proc.s of the 1990 Can. Conf. on Elec. and Comp.
Engg., Vol. 1, pp. 27.1.1-27.1.4, Onawa, Canada, Sep. 4-6, 1990.

Hudson, D.L., and T. Estrin, "EMERGE - A Data-driven Medical Decision

Making Aid,” JEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-6,

pp. 87-91, Jan. 1984,

Kowalski, T.J., “The VLSI Design Automation Assistant: A Knowledge-

Base Expert Syslcm Ph.D. dissertation, Camegie-Mellon University,

Pittsburgh, PA, April 1984,

McDermott, J., "R1: A Rule-Based Configurer of Computer Systems,”

Artificial Intelligence, vol. 19, pp. 39-88, Sept. 1982.

f13] Motorola Microprocessors Data Manual, Motorola Inc., Austin, Texas,
1985.

{14] Norton, S.W. and K.M. Kelly, "Learning Preference Rules for a VLSI

Design Problem-Solver,” Proc. of the 4th Conf. on Artificial Intelligence

Applications, pp. 152-158 Mar. 1988.

Sediff, D.E. and R.A. Rutenbar, "Knowledge-Based Synthesis of Custom

VLSI Physical Design Tools: First Steps.” Proc. of the 4th Conf. on

Artificial Intelligence Applications, pp. 102-118 Mar. 1988.

Shortliffe, E.H., Computer-Based Medical Consultation: MYCIN,

Elsevier, New York, 1976,

[17] Tanimoto, S., The Elements of Artificial Intelligence An Introduction

Using LISP, Computer Science Press (1987).

(10]

nuy

(12

(15]

(16)

KNOVLEDGE CRAFT

Currant contesil TRIO7-CINTEXY

Comfiict
o1}
Zrrana MeBgry

Faln Somesas 01 tor
seonleml JROOT-CONTEXT
TRSTAMCE p TWO-STATE-LIM
Pk THY: INTERF RCE~BLOCE -2
FURCTION; | REQUEST

IRPUTL) (ATT INTERFACE-BLOCK-T-GACK) Figure 9.
:n.u-.:';:";‘Eli pof s, Y PN Schemata
1 o -8 O -3 5 i
[AES THTESF ACE~BL0CK~2-REG-TN}) describing the
DOTPUTL: [NEQ - TNTERF AGE-RLOCK-2-KEG-0uT) resulting interface
QUTPUTS: [AST TNTERFACE-ALOCK-3-REQ-ORT) blocks.
b} |3

=

