Decomposing Signal Transition Graphs

M. A. Escalante' and M. H. M. Cheng?

' Department of Electrical and Computer Engineering
? Department of Computer Science

University of Victoria

Abstract

Nets, process algebras and modal logics are alternative
representations of concurrent processes. This work
tackles the problem of decomposing a subclass of
interpreted Petri nets used in the specification of delay-
insensitive interface protocols of VLSI chips called
signal transition graphs. The decomposition procedure
generates a representation of the graph in Milner's
Calculus of Communication Systems (CCS) such that
the behavioral properties of the protocol are preserved.
The resulting protocol representation in CCS s
compositional and amenable to formal methods of
verification. For instance, the Edinburgh Concurrency
Workbench has been utilized to study the behaviour of
protocols which were originally represented by signal
transition graphs.

1 Introduction

Timing diagrams are commonly used to describe the
interface behaviour of hardware components. Signal
transition graphs (STG) have been used to specify inter-
facing protocols which can be derived from timing
diagrams [4]. An STG is a Petri net description of the
interface behaviour of components, which abstracts out
unnecessary implementation details. However nets in
general suffer from the complexity problem: while toy
problems are easy to solve, large-scale real systems are
difficult to analyze. Furthermore there is no known pro-
cedure that combines arbitrary Petri nets to construct
more complicated systems. On the other hand composi-
tion is an integral part of process algebras [8]. This
paper presents a procedure to decompose STG's into
agent expressions in Milner’s Calculus of Communicat-
ing Systems (CCS). As a result the new specification is
now composable.

In section 2, related work on the area of specification
of delay-insensitive VLSI circuits is introduced. The
specification of a bus arbitration protocol serves as a
motivation example in section 3. Signal transition
graphs are presented in section 4 in the context of hard-
ware protocol specification. In section 5 Milner’s CCS
is_briefly introduced. The procedure to decompose
STG's into CCS agent expressions is expounded in sec-
tion 6. This paper concludes with the final remarks and
future work.

2 Related work

Traditionally either simulation or exhaustive verification
have been used to prove correctness of VLSI systems.
However as the system complexity increases, the use of
formal verification methods becomes imperative. For-
mal specification is playing a major role in the develop-

ment of formal verification. As in other areas, such as
software programs or data communication protocols, the
specification of digital hardware components must deal
with objects which are concurrent in nature. Petri nets,
process algebras, and temporal logic are formalisms
suitable to model concurrency and communication {10].

Digital asynchronous design, which does not assume
a global clock to implement sequencing and communi-
cation, is attracting considerable interest, especially in
the area of delay-insensitive circuits. The abstraction of
uming from sequence in delay-insensitive circuits
makes them ideal candidates to specification using the
above formalisms. Not surprisingly this has been
recently an active research area.

In the Petri net thread, signal transition graphs have
been used to specify and synthesize delay-insensitive
circuits [2]. Independently action graphs, a generaliza-
tion of STG’s, have been applied to the design of delay-
insensitive bus arbitration interfaces [4].

Composition is an important property exploited in
the work done on hardware specification, verification,
and synthesis using process algebras. A CSP-like pro-
gram describing delay-insensitive digital systems is syn-
thesized by applying a “comect by construction”
procedure in [7]. A similar approach based on trace the-
ory is discussed in [3]. Formal verification of delay-
insensitive circuits using the pi-calculus on a CCS speci-
fication is reported in [6].

Temporal logic is more effective in capturing the
correctness of a system behaviour such as liveness and
safety properties. The use of temporal logic in digital
hardware specification and verification is further dis-
cussed in [1].

3 Protocol specification: an example

Protocol descriptions of hardware components are often
offered by the manufacturer in the form of timing dia-
grams. STG’s have been used to design and implement
delay-insensitive bus arbitration interfaces for micropro-
cessor-based systems. The set of primitive implementa-
tion blocks includes two-state asynchronous state
machines, event detectors, mutual-exclusion blocks and
connectors [5].

Figure 1a shows the timing diagram of a fully-inter-
locked handshake bus arbitration protocol. A potential
master requests the bus to the arbiter by setting the value
of its REQ signal to true. When the input signal ACK is
set to true by the arbiter, the requestor can take over the
data transfer bus (DTB). At the completion of the trans-
fer the master gives up the bus by resetting REQ and

waits unti] the arbiter has reset ACK to initiate another
cycle.

Figure 1b shows the signal transition graph corre-
sponding to the timing diagram. Nodes in the STG rep-
resent signal transitions and edges describe the
precedence between transitions. Tokens indicate the ini-
tial state of the protocol. Output signal transitions are
denoted by placing a bar on top of the name. Observe
that it is not clear from the timing diagram if r+ must
wait for transition g-, which is formally specified in the
graph.

I+
\l+

REQ -
ACK a-
DTB Xb+ b¥

(a) (b)

Figure 1. Fully-handshake bus arbitration protocol:
(a) timing diagram; (b) signal transition graph.

The sequential aspect of transitions in the case of a
fully-interlocked handshake protocol is evident from the
presence of a unique cycle in its corresponding STG.
Only one token is propagated throughout the edges in
this graph. A more involved bus arbitration protocol
used in the VMEBus standard {12] is shown in Figure 2.

o

(7
SN
A

Figure 2. STG describing the VME bus arbitration
protocol.

One can see that as more signals participate in a pro-
tocol, the corresponding STG becomes more compli-
cated. The aim of this paper is to demonstrate that for
the class of valid STG's it is possible to construct an
equivalent CCS expression that can be written as a par-
allel composition of agents. The number of agents in the
composition is linear with respect to the number of sig-
nals involved in the protocol.

For example the STG shown in Figure 2 can be
transformed into the CCS expression Prot=(RI1G|
GA 1 B) where R, G, GA, and B are CCS agents. The pre-
cedence between transitions is described within the
agents using synchronization actions. Were another sig-
nal s added to the protocol, the new CCS expression
would be written simply as Prot= (RIG1GA|B1S).

4 Signal transition graphs

In this section signal transition graphs are introduced
within the framework of digital hardware. Microproces-
sor components transfer information to one another in
the form of signals via wires that connect their ports.

Input ports accept incoming signals generated in output
ports. A protocol enfo:ces the correct transfer of infor-
mation by defining the order (and timing) of elementary
operations. The elementary operations in the protocol
are called actions. Signal transitions are used to encode
actions.

4.1 Ports and signal transitions

Ports are designated by unique names. Input port names
are written g, b, ¢, while output port names are written a,
b, c. Each pair of input/output ports (g, a) is assumed to
be connected through a wire. Transitions in the (binary)
value of a port are denoted by suffixing an +/- symbol to
the port name. For example a+ represents a positive
transition" in the value of the output port a which is con-
nected to the input port g.

The alphabet T is the set of all signal transitions.
Transitions a+ and a- are called opposite transiions.
When the type of transition is not important we shall use
the notation a’ for a+ or a-. For each transition a! its
opposite transition is written a/*. For a (binary) signal,
it 1s true that (a/*)* = a/. The alphabet T is partitioned
into disjoint sets, each containing the transitions that a
port can perform. The set of transitions that port g can
perform is denoted by Ma) = {a+.4-}.

Wire delay is modelled by using two different transi-
tions for the signal that propagates through the wire (see
Figure 3). The two signal frames are the initiation of the
transition in the output port and the reception of the
transition in the input port. Informally a delay-insensi-
tive circuit does not depend on gate and wire delays for
its correct operation.

Figure 3. Wire delay model.
4.2 Signal transition graphs

In this section STG's are defined in terms of a prece-
dence relation and its Petri net representation is pre-
sented.

A binary relation P (for precedes) is defined on the
set of transitions T such that a/ P b! iff a/ must immedi-
ately precede b! in the protocol. An STG (2] is a triple
(T, P, Mp) where T is the set of transitions, P is the pre-
cedence relation, My C P* is the initial marking, where
P* denotes a multiset of P. The pair (T, P) is a directed
graph where T is the set of nodes and P is the set of
edges. Thus there is an edge from a!/ to b/ iff a! P b!.

A transition is enabled by a marking M iff every
incoming edge to the transiton belongs to M. Every
enabled transition can fire. After a transition fires, a new
marking M’ is obtained from M by removing the firing
transition’s incoming edges and adding the firing transi-
tion’s outgoing edges. One token is assigned to each ele-
ment of a marking M.

1. Without loss of genenality we assume positive-logic or asserted-
high signals.

A marked Petri net [9] is a quintutple PN =(T7, P11,
0, M,) where Tr is a non-empty set of transitions, P! is a
non-empty set of places, I:PI* — Tr is the input func-
tion, O:Tr - PI” is the output function, and M, c PI™
is the initial marking. The underlying Petri net o? aSTG
is the quintuple (T, P, 1, O, M) where

I={((ab!), b!): a! P b!}, and
0 = {(a!, (a! b)) : a! P b!).

Not every STG is a valid one. An STG (T, P, My) is

said to be valid if it has the following properties:

i)Ifa'e€ Tthena'*e T

ii) There is at least one simple cycle? containing
both transitions a’ and g/*,

iii) In every simple cycle containing both transitions
a! and a/*, the transitions altemate.,

iv) There is one and only one token in each simple
cycle of the graph.

Some invalid graphs are shown in Figure 4. The
STG in Figure 4a lacks transition a-. The STG in
Figure 4b does not have a cycle containing the alterna-
tion of transitions in A/a). The STG in Figure 4c has a
simple cycle with two tokens. In the STG shown in
Figure 4d there is no simple cycle with a token contain-
ing both g+ and g-.

At e—h+ ate—ph+

Mo

b 07h

Figure 4. Invalid STG’s.

Because every edge connects only a pair of transi-
tions, the underlying Petri net of an STG as defined
above belongs to the subclass of marked graphs.

43 Signal transition graph constructs

The graphical representation of STG’s consists of nodes
corresponding to the transitions of the protocol con-
nected by edges indicating transition precedence. Four
basic constructs in STG’s are shown in Figure 5.
Sequence is described by a single edge. A transition
spawns other concurrent transitions in a fork. In a joina
transition is enabled only when all its predecessors have
already occurred. The fork/join is the most general con-
struct,

g & E; M QO : transition
@ & (o @

Figure 5. STG constructs: (a) sequence; (b) fork; (c)
join; (d) general fork/join.
2. A (directed) path is a sequence of transitions. A (directed) cycleisa
path in which the initial and the final transitions coincide. In a simple
cycle, there are no duplicated transitions,

The basic constructs described above cannot model
mutual exclusion. An extended model of STG's includes
inhibitory/enabling edges to model preconditions to fir-
ing, and exclusive-OR Join and fork constructs analo-
gous to the fork and join constructs described above to
model mutual exclusion (cf. [2]). In this paper we only
coznsider the basic model of STG’s presented in section
4.2,

4.4 STG operational semantics

In this section we give to STG's an operational seman-
tics close in spirit to the operational semantics given to
CCS by Milner (see section 5). The ﬁring of an enabled
transition a! in marking M is written M <5 M’ where M’
is the new marking after firing a’. The pair @' M') is
called an immediate a/-derivative of M. In general M’ is
an (a’... b/)-derivative (or just derivative) of M if
M5 5

A labelled transition system is the triple (S, T,
{ D re T})), where S is a set of states, T is a set of tran-
sition labels, and 4 c Sx S is a transition relation for
each 1 € T. We define the meaning of an STG in terms of
the labelled transition system (SM, T, { %}) where SM
is the set of reachable markings from My, T is the set of
transitions, and <) < SM x SM such that M M')e 2
iffM 2 M,

A derivation tree of the initial marking M, is a tree
which collects all the derivatives of M. The nodes of
the tree are the reachable markings from M. An edge of
the tree joining M and M’ is labelled with the firing tran-
sition a’ if M % M’, Derivation trees are usually infi-
nite. A transition graph can be drawn from a derivation
tree by collapsing identical markings, which have the
same immediate derivatives, into a single node. Observe
that concurrency is treated in our interpretation as the
interleaving of sequences.

§ Calculus of Communicating Systems

Let A be a set of action names and 4 be the set of co-
names. Let T denote the silent action, Finally le}
Act=AUAU (1}. The set e of CCS agent expressions
consists of all expressions generated by the following
context-free production rules, where £ 1» E; are already
ine:

E == Nil (Null process)
I X (Process variable)
b ek, (Action Prefix)
| EHE, (Summation)
| E)IE, (Composition)
I E;\L (Restriction)
I Ejlql] (Relabelling)
I WXE, (Recursion)

L C Act is a set of labels and Q:Act 3 Actis a
renaming function such that P(t) =1 and Qi) = o(n).
We use the interleaving transitional semantics based on
a labelled transition System as presented in {8]. We shall
use frequently the following notation,

3. For an introduction to CCS see [11).

Definition.- The agent{a,. a,)-P is defined recur-
sively by

(..a; 3P =%;a;.(.....)P)
(@)P=alf
where 2,~P,~-_= wt P+
Agent (a;, ..., @,).P is capable of performing each
action g, ... , @, once in any order and then it becomes
agent P.

As discussed in section 3, protocols are cyclic in
nature. One may want to differentiate the activation of a
transition from one cycle to another. This can be done
easily by introducing a cycle counter ¢ which parameter-
izes an agent or an action. For example, A’ = a s A
describes the agent which during cycle ¢ can perform
sequentially actions g and 5 before proceeding to the
next cycle. The indexing mechanism will prove effec-
tive in the definition of the transitional rule for AND
actions which is presented in section 6.1. If confusion
does not arise, we shall not write the cycle index,
although we shall assume it implicitly. Thus we write
A =a.s A instead of the previous indexed agent expres-
sion.

6 From signal transition graphs to CCS
agent expressions

Desirable features which we look for in a decomposition
procedure are amenability to composition, suitability to
be automated and generation of expressions in standard
concurrent form. To achieve the above characteristics in
our decomposition procedure we take advantage of the
parallelism of ports to yield a compositional description.
Also we introduce a special type of synchronizing
actions to express precedence between the transitions in
the protocol.

The importance of a port is that it represents the fin-
est grain in concurrency. In our framework, we try to
express maximum concurrency, and thus we associate
one agent to each port. For the sake of simplicity we
shall utilize the return-to-zero assumption according to
which at the end of a protocol cycle every port retums to
its original value, although it is not difficult o general-
ize this scenario to agents having larger alphabets in
which the symbols not necessarily alternate (i.e. multi-
valued logic ports) or even reach the same final value
(i.e. non-return-to-zero schemes).

6.1 XOR and AND synchronization

CCS operational semantics provides synchronization
between agents via composition and complementary
actions a and @, possibly localized by restriction. For
example consider the following three agents Al = a Al’,
A2=agA2, and A3=aA3. The compositc agent
A=(Al1A21A3)\ {a} has two immediate t-deriva-
tives: (Al'1A2'1 A3)\{a} and (Al' |A21A3")\{a}.
We call the behaviour of actions @, a of type XOR
because only one pair of complementary actions is
allowed to occur.

We define a new type of actions called AND actions
such that all of them must occur simultaneously. For
example if s, s are AND actions then agent S = (s.51' |
5.52' 15.53')\ {s) has only one t-derivative: (51" | 52’ |
5$3)\ {s]. At first glance it may seem unnecessary o
assert directionality in AND actions. In section 6.2 we

shall give an interpretation to output AND actions in the
context of sync edges.

Thus in our framework actions are partitioned into
two disjoint sets, Aciyor and Actsyp such that
Act = Actyor U Actanp U (T). In the sequel we shall
write actions a, b, ¢ € Actypr and s, t, u € Aclunp.

The interpretation of the operational semantics of
CCS using a labelled transition system in the context of
XOR and AND actions is extended as follows:

i) The transition rules defined in [8] apply only to
XOR actions.

ii) For AND actions s, s we introduce the following
AND synchronization rule:

Vi, A, D A o=sors

A, IT1B, » I1A/ |T1B;
with Vj,A (B) N {s. s} = ¢, where A (g) is the syntactic
sort of expression € and IT A; denotes the parallel com-
position of agents A;.

For example consider the agent D =A°1B°IC°,
where A'=al.(¢NillA*)), B'=sb!'B"*, and
C=sc'C*. A fragment of the derivation tree
describing the behaviour of agent D is shown in
Figure 6. After a! occurs, agent D can perform a/**/ or
1, the latter_corresponding to the firing of the AND
actions (¢, 5). After 1, both actions b/ and c/' are
enabled. Observe that s* does not belong to the syntactic
sort of A™,

(@' (ENillA®D 1 bl 15l)

la!

(SNillA*! 1 s'b! A5t L)
T

(A B el)

Figure 6. Partial derivation tree illustrating the
operational semantics of AND actions.
Transitions of STG’s can be expressed by CCS
actions (i.e. a+,a-, a’ € Actyog) and a new set of ANP
synchronization actions (s, s € Actnp) IS addedto Act”.

6.2 Decomposition procedure

We view each port as an independent process and thus
we assign one agent to each port. Before stating our
decomposition procedure, some definitions come to
order.

Definition.- For every port a there is a CCS agent
S(a).

Definition.- For each action a! in the graph the fan-in
and fan-out sets of edges are defined respectively by

filah) = {(b!,a’): b! P a! Ab! € Ma)},and
fo(a!) = {(a!,b!) : a! P b! A b! € Ma)}.

Often we use the shorthand A to denote agent S(a)
which represents port a in CCS. The fan-in and fan-out
sets of an action a/ contain the incoming edges to and
the outgoing edges from a! respectively not including
(a’, a'*) and (a’*,a!). Both fi(a!) and fo(a/) may be
empty.

4. AND actions can be simulated in standard CCS.

Definition.- For each non-empty fi(a’) there is a
unique sync action name s, associated to fa!). Each
action name s; generates the input and output sync
actions s;, 5; € Actynp.

In the absence of sync actions, the behaviour of each
agent S(a) is a sequence of actions a’.a’*. ... ad infini-
tum. Sync actions are used to describe the precedence
between the XOR actions in the protocol by restricting
the initially free behaviour of each agent S(a). Observe
that each edge in the graph that connects two actions
belonging to different ports is associated to a sync name.
All edges sharing the same sync name $; are called
generically s; sync edges.

Lemma 1.- The edge (a!, b!) in an STG does not
have a sync action name associated to it if b/ & AMa).

Proof. Both fi(b!) and fo(a’) do not contain (@, b)) if
b! € Ma).

The following definitions are used to determine the
action a! that is performed first by agent S(a).

Definition.- For each cycle in a valid STG, the initial
edge is the pair (a/, b') € P such that it also belongs to
the initial marking M,,

Definition.- The initial action of an agent S(a) is the
first action a! € A{a) to appear in a simple cycle contain-
ing both a’ and a/* starting from the initial edge.

Lemma 2.- There is a unique initial action for each
porta.

Proof. We have to show that if there are several sim-
ple cycles containing both a’ and a/* all the respective
tokens are close 1o only one of the actions. Suppose that
there are two simple cycles in the valid STG which
include both a/ and a’* such that the token in one of
them is closer to a! while the token in the other cycle is
closer to a/*. Then one can construct another simple
cycle consisting of the two partial paths with a token on
them of each of the cycles. This simple cycle would
contain two tokens, which is a contradiction,

Definition.- The set of initially enabled edges of an
STG is:

IEE = {(a!.b!): b! € Ma) A (a!, b)) € M)

Definition.- The set of initially enabled edges w.r.t.
an action a! is:

1E(a!) = IEE fo(a!)

The decomposition procedure recursively writes
agent S(a) starting from its initial action by annotating
sync edges (o actions belonging to other agents S(b).
Input and output sync actions are used to represent such
edges. We write s; to identify the Sync actions corre-
sponding to the head of a sync edge; likewise input sync
actions s, represent the tail of sync edges.

Decomposition procedure

Given a valid STG = (T, P, M) do:

1. For each port g and corresponding agent S(a)
identify the initial action and call it g!.

2. For each port a and initial action g/ define agent
S1 (a!) recursively in two steps as follows:

* Phase 1 (Prefix);

If fia!) is empty then S1(a?) = al!S2(a?),

else S1(a!) = 5,.a!.52(a!)
where s, is the sync action name associated to Sfiah.

* Phase 2 (Suffix):

If fo(a!) is empty then S2(a’) = §1 (a’*),

else $2(a’) = 5, Nil I 5,.Nil | ... | Sl(a'*)
where s;; is the sync action name associated to fi?) for
each b/ such that (a/, b/) € fo(a?).

3. If IE(a!*) is empty then write S(a) = S1(a!),

else write S(a) = ... | s, Nil | ... 1 SI(a!)
where there is a term 54, Nil for each sync action name
S associated to fi(b/) such that (a/*, bl) e IE(a'™).

4. The CCS agent expression Prot that corresponds
to the STG is the composition of all agents S(a) written
as follows:

Prot=(S(@)!..)

a+_ S,

Xb+
XN

A =spa-.a+.(spNil | A)
B =b-55.b+.(s; Nil | B) (before step 3)
Prot =(AlB)

B =5;.Nil| S1(b-) (after step 3)
S1(b-) = b-.50.b+.(s,.Nil | S1(b-))

Figure 7. Enabling the initial marking in CCS agents.

The recursion in step 2 of the decomposition proce-
dure terminates when expression S2(a!*) is expanded in
phase 2. At that moment S/(a!) is recursively defined by
a CCS expression £ which only contains SI(a!) as free
variable. Step 3 ensures that the initial marking is ini-
tially enabled, otherwise the resulting agent could dead-
lock, as shown in the example shown in Figure 7. Agent
Prot cannot execute any action with B = Si1(b!) defined
after step 2 because A is guarded by action s, which is
blocked in B. The correct expression for agent B enables
the sync edge s, of the initial marking (see Figure 7).

Definition.- A pure fork is represented by a set of
edges {(a’, b,!) such that each Ay has cardinality one
and fo(a’)y = \U fih,’).

s X fo(ah) X foah)
i S‘
b! b!
c! al* c! al*

Figure 8. Collapsing of sync edges in a pure fork.

In the case of a pure fork it is possible to associate a
unique sync action name to fo{a!) which replaces the
original sync actions in the fork>, one for each fib?), as
shown in Figure 8.

The interleaving transitional semantics of a valid
STG and its corresponding CCS agent expression are
observation-equivalent (8). This is important because it
means that the decomposition procedure preserves the
external behavioral properties (i.e. liveness and safety)
of the original graph. Therefore it is possible to study
the behaviour of the protocol in the CCS domain,

5. Also observe that (s, $)Nil = 5:Nil | s..Nil.

@)
(®) R=r+.(GoNill Sy R)
G= spg+.GyNill spg-. (53Nill G))
GA= soNillSl(ga+)
Sl(ga+)= s;.ga+.(5; Nil | s3.ga-(soNil | SI{ga+))
B= Sz.b#. (;J.Nll | b-.B)
Prot=(RIGIGAIB)
(€©) R=r+s3, SyI-. R
G= So.x*".}). 5.8 }3. G
GA= sp s;ga+s; syga-.GA
B= S2.b+.<§3, b*).B

Prot=(RIGIGAIB)

Figure 9. Bus arbitration protocol: (a) STG;
(b) corresponding CCS expression;
(c) reduced CCS agent.

The decomposition procedure described in this sec-
tion produces agent expressions Prot which are not in
standard concurrent form (SCF), i.e. Prot is not written
as the composition of purely sequential agents §(a). In
some cases it is possible to reduce the CCS expressiong
further to SCF in the presence of handshake edges
between two agents. Figure 9a shows the STG of the
bus arbitration protocol defined in the VMEbus
standard (12]. The CCS agent in Figure 9b is obtained
after applying the decomposition procedure. Due 1o
handshake edges, particularly between agents G and
GA, the CCS agent can be reduced to the one shown in
Figure 9c.

7 Final remarks

7.1 Results

We have used the Edinburgh Concurrency Workbench
(CWB version 6.0) to test our ideas. We have been able
to write CCS expressions of various protocols. CWB
has allowed us to verify some propertes of the proto-
cols, such as the absence of deadlock. We have also
experimented with adding extra sync edges and ports to
the protocols. For instance we have corroborated empir-
ically that the more handshake edges an STG has, the
more restricted the behaviour of the protocol becomes.
Thus by being able to represent protocols in CCS we
have also gained access to a set of verification tools.

7.2 Summary

In microprocessor-based systems the components’
external behaviour can be modelled by their interfacing

6. A pair of edges (a!. b/) and (b!,a’*) between the actions of two
agents S(a) and S(b).

protocols. Signal transition hs, which can be
derived from timing diagram specifications, are capable
of expressing the interaction that occur between the ele-
mentary operations in a protocol. However STG's are
not very amenable to composition. Process algebras
such as CCS overcome this problem by using a parallel
composition operator that allows the designer to com-
bine modules to build up more complicated systems.

In this paper we have suggested a decomposition
procedure that converts STG’s into CCS agent expres-
sions. Not only does this procedure exploit the natural
concurrency among the signals involved in protocols
but also does express the handshake edges between
agents more explicitly. A new type of actions called
AND actions is introduced to describe multi-way syn-
chronizations which occur in general join/forks con-
structs. AND actions can be simulated using standard
CCS actions so that tools such as the CWB can be used
to analyze our protocol agents.

7.3 Future work

The main contribution of this paper is perhaps the dem-
onstration of how to transform valid STG’s into a com-
position of CCS agents. The application of the general
decomposition procedure results in agent expressions
which are not written in standard concurrent form
(SCF). We are currently investigating the conditions
under which it is possible to reduce further an agent Prot
to SCF. The next step we would like to pursue is the
development of interface design methodologies that can
deal with incompatible protocols. A complete system
consisting of two components would be of the form
System = Protl | Interface | Prot2 such that the interface
preserves the partial order defined on the transitions by
the protocols.

References

[1} G. V. Bochmann, *Hardware specification with temporal
logic: An example,” IECE Trans. on Computers, vol. g)'jl

. 223-231, Mar. 1982.

] T.-A. Chu, “On the models for designing VLS! asynchro-
nous digital systems,” INTEGRATION, the VLSI journal,
no. 4, pp. 99-113, 1986.

{3] 1. C. Ebergen, Translating programs into delay-insensi-
tive circuits, No. 56 in CW1 Tract, Centrum voor Wiskumde en
Informatica, 1987.

{4] M. A. Escalante, “Bus arbitration modelling and design in
DAME: An expert microprocessor-based-systems designer,”
Master s thesis, University of Victona, 1991.

{S] M. A. Escalante et. al., “The implementor subsystem in
DAME: Using OASIS to complete the design automation of
microprocessor-based systems,” in Canadian Conference on
VLSI, pp. 139-146, Oct. 1992.

{6] Y. Liu, “Reasoning about asynchronous designs in CCS,"”
Tech. Rep. No. 92/492/30, University of Calgary, 1992.

[7] A.J. Martin, “Synthesis of asynchronous VLSI circuits,”
in Formal methods for VLS! design, North-Holland, 1990.

(8] R.Milner, Communication and Concurrency, Prentice
Hall, 1989.

[9] T.Murata, “Petri nets: Properties, analysis and applica-
tions,” Proc. of the IEEE, vol. 7{cpp. 541-580, Apr. 1959.
(10] E.-R. Olderog, “‘Nets, terms and formulas: Three views of
concurrent processes and their relationship,” Tech. Report,
Universitit Oldenburg, FB Informatik, 1989.

{11] D. Walker, “Introduction to a calculus of communicating
systems,” Tech. report, University of Edinburgh, 1987.
{12)IEEE Standard for a Versatile Backplane Bus: VMEBus.
IEEE Press, 1988.

