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Abstract-In this work, we present a probabilistic model for bilistic (statistical) infonnation available concerning the
reducIng the number of decisions (tests) that are required in a decisions at the interior nodes. Our basic goal is to develop
particular diagnostic procedure. Specifically, we consider that a model in which, relying on the given infonnation, we
a problem is structured as a bInary balanced decision tree the reduce the number of decisions that are required when we
interior nodes of which represent test points; the paths of the search for a conclusion. That can be achieved by selecting
tree correspond to different diagnoses. By assumIng that there the nodes at which an explicit decision is not taken but
exists sufficient probabilistic Information available concerning instead the branch of the tree that is to be followed is deter-
the decisions at the interior nodes, we attempt to minimize the. ...
average number of these decisions when we search for a final mIned probablllstl~lly. Such an. approach has th~ effect
diagnosis. that we may sometlmes end up with wrong conclusions. We

can then search for the correct path by appropriately back-
I. IN1RODUCI10N tracking into the tree. We must therefore choose both the

People often cope with problems in which they have to nodes where we will not test for the value but we shall
make decisions under conditions of uncertainty. This is the attain the highest probability value, and the proper back-
case because some components of the problem under con- tracking method in case that a wrong conclusion is reached
sideration are only partially known or the cost associated so that the average number of tests perfonned for every sin-
with obtaining all the necessary infonnation is high, When gle conclusion is minimized. We have fonnulated a gain
the decisionmaker faces such a situation he must base his function and we present a number of decision-tree travers-
decisions and conclusions on his experience or on avail- ing procedures which maximize this gain.
able infonnation. The whole procedure can be facilitated
when it is properly structured in a way that clarifies the n. THE GAIN FU~CI10N
particularities of the problem. Decision trees constitute an In ?rder to. develop. our ~athematlc~1 ~od~1 and create
effective representation for modeling the human reasoning. the gaIn f~nctlon that ~s subject to maxlmlzatlon we make
Different paths of the decision tree express different poli- the followIng assumptlons

cies dIat can be followed in order for a solution to be .We consider binary balanced trees of depth n.
found. Probability theory and statistics provides a range of. ...
tools by means of which predictions can be made based on. All the tests contaIned In the Intenor nodes are of the
the assumption dIat future events will fit dIe predefined same significance.
model. .We know the probabilities of all the tests ' outcomes.

The decision tree structure can be used either for maxi- Thus, each interior node holds two probabilities which
mizing an expected utility function or for expressing classi- express the frequency of occurence of dIe two possible
fication rules. In the. fonner case ([1],[2],[3]), the interior outcomes of the corresponding test.
nodes of the tree are divided into decision nodes where the. The leaves of the tree constitute a set of distinct final
decisionmaker is in control of the choice and chance nodes conclusions
which correspond to events (often called "states of nature") ..
that lie outside the control of the human experL The main. When we end up With a wrong path we can backtrack
goal of the decisionmaker is to follow the padI which maxi- and search for dIe correct one.

mizes an expected utility function that is related to the .We are able to distinguish between correct and wrong
problem parameters. In [4],[5],[6] and [7] dIe decision tree final outcomes without any cost
structure ~s used ~. a. classification tool. .The leave~ of ~e Before we proceed to the expression of the gain func-
tree constltute a diSjOInt set of classes whIle at each Intenor ti on we give the following definition of a statistical node
node the value of a particular attribute is checked. In [4],
the author desCribes how such a tree can be constructed Definition 1.1. An interior node of the tree is called statisti-
from a set of initial objects that are distinguished through cal when the test is not performed at that node but instead
the values of different attributes. Then, that tree can be used the decision is based on the probabilistic information that
for the classification of new objects. we have. The branch of the node which is followed is called

In our work a different appoach to decision problems is a statistical branch.

adopted. Specifically, we consider binary balanced decision Each statistical node has one statistical and one non-
trees and assume (as in [7]) that there exist sufficient proba-



found and b) the backtracking cost B j for each reachable
final node resulting from that partition must be minimized.
The general expression of B j is given in the next section.
In section IV two partitionIng techniques are proposed.
The problem of finding the optimal partition appears to be
a difficult and complicated one.

ill. THE BACKTRACKING COST

As it was stated in the previous section, when we end
up with a wrong diagnosis we backtrack into the tree and
search for the correct path. Such a procedure results in a
cost which is called backtracking cost. The backtracking
cost represents the number of tests that take place after a
wrong path is diagnosed and before the correct one is
found. In order to simplify our model we assume that dur-
ing the search for the correct path, after backtracking, the
probabilistic information that is available at the nodes of

Figure 1. Example Tree the tree is not taken into account any longer.

statistical branch. Each non-statistical node has two non- Fro.m ~q. 1) it is clear .that ~or a s~~ific ~artitioning
statistical brances. By partitioning the interior nodes of the of th~ Intenor n~es ~~ ~atn G IS maximized If the back.-
tree into statistical and non-statistical, we separate the set track~ng co~t Bj IS. mInimized for every .reacha?le node J.
of final nodes F into two disjoint subsets : the subset of the In thlS secUon a sln,gle pa~ of the tree !S consld~r~ and
reachable nodes F I and the subset of the non-reachable the general expression. of ItS backtrackIng cost IS given.
nodes F 2. This can become more obvious by considering The results can be applied to each path of the set F 1.

the tree of figure I. The tree has depth n = 4. The shaded If we follow a path which has m statistical nodes, say
circles represent the statistical nodes while the statistical S l' S 2' ..., S m ' and the final diagnosis turns out wrong,
branches are highlighted. The shaded squares constitute that happens because in at least one statistical node a
the non-reachable final nodes. In general, a path which wrong decision was taken. Therefore, in the backtracking
corresponds to a reachable final node has the following procedure, only the statistical nodes need to be considered.
characteristics A particular statistical node Si, I ~ i ~ m , has two charac-

teristics
1. The number mj of its statistical nodes. .,

2 Th b b .I' t D th th th .. be f II ed .The helght hi which also represents the number of tests
.e pro a I I y Ipj at e pa IS goIng to o <?~ ..between that node and a leaf node.

Ppj can be expressed as the product of the probabilities
of the non-statistical branches of the path ([8]). .The probability of correct backtracking P i. P i is the prob-

3 The probabl.ll.ty D that th th . t . ha .ability that the first wrong decision took place either at
.'-Cj e pa IS correc given t t It. .

has been followed. PCj is the product of the probabilities the node Si or at a node which follows Si In the paLh
of the statistical branches of the path ([8]). (.S.i + l' ..., S m) .In ol!ter words P j expresses the proba-

blllty that we are goIng to find the correct final node
4. The backtracking cost Bj. The backtracking cost repre- after backtracking Lo the node Si and crossing the tree by

sents the number of tests that take place aft~r the path j performing all the tests at the nodes we meet. P i can be
turns out wrong and before the correct path IS found. Its calculated exclusively from the probabilities of the sta-
general expression is given in the next section. tistical nodes of the path ([8]).

We can show that the g~n G ~hich expresses the num- The general expression of the backtracking cost for a
ber of tests that are saved In a sIngle traversal of the tree single path of the tree is derived as
when the probabilistic information is taken inLo account
can be written as follows Theorem 2.1. If SN ' SN ' ..., SN are the q statistical

1 2 q
nodes at which we back up with I ~ q ~ m. S N the first

G = L PPj. [mj-Bj. (I-PC)] (1) node at which we backtrack and SN =SI'the backtrack-

j E F 1 ing cost B can be written in the follo~ing form

For a particular partition of the interior nodes of the q
tree, all the components of equation (I) except for Bj are B = L hN .( 1- PN ) , .PN = O (2)
known and well-defined. Therefore, in order for the gain G .= I i i + 1 q + 1
to be maximized, two specific tasks must be accom- I

plished: a) the optimal partition of the nodes inust be To achieve the minimum value of the backtracking



cost B we solve the following optimization problem tations during the maximization procedure. For these rea-
L q J sons the exhaustive evaluation of the gain for each

min L hN.. (I-PN. ) (3) possible.~ar~tion is a~oided. However, in the following
i = I I I + 1 two paruuonmg techniques are proposed. In both of them

..while the computational complexity is kept relatively low,
In general, If there are m statistical nodes, we have the gain obtained seems to be high enough.

2m -I different b~cktracking procedures which result in A. The Threshold Method
2m -I costs. That IS SO because the last node at which weback up is always node SI and 2m-1 is the number of all As it was stated in section 1, each interior node (test) k
the possible combinations of the remaining m- 1 nodes. holds two probabilities that add up to 1 and represent the
Out of these 2 m -I procedures there is one (or probably freq~ency of occure~ce of the two possible test outcomes.
more) with the minimum cost given in (3). In other words Obvlou~ly, the maximum of these two probabilities, say
there is a combinations of q nodes, 1 ~ q ~ m, which mini- P~ax ' IS greater than or equal to 0.5. We define a thresh-
mizes the backtracking cost given in (2). By exhaustively ol~ t to be a number. in the interval [0.5, I]. When the node
examining all the possible combinations, the minimum k IS reached P~ax IS compared to the threshold I. If it is
cost B for a particular path of the tree can be obtained. If greater than or equal to I we follow the branch with the
we then repeat the same procedure for every path j of the maximum pro~ability without performing any test at the
set F 1 and substitute the results in (1) the maximum G for node. Otherwise, the branch which will be followed is
a specific partition of the interior nodes of the tree can be determined according to the test outcome. Any threshold I,
achieved. We must note that it is not necessary to calculate ~.5.~ I ~ 1, separates.th~ interior nodes of the tree into sta-
the costs of all the possible backtracking procedures. The usucal and n?n-staUsUcal as follows: all the interior
backtracking process which results in the minimum cost nodes the maximum probability of which is greater than or
has special properties the application of which reduces equal to I are considered statistical and the rest become
sig.nificantly the n.um~r of cost evaluations. These prop- non-s.tatistical. Therefo~ .' the gain G is .expressed as a
erues are summanzed m the following (for the proofs see function of the probability threshold I m the interval

[8]): [ 0.5, 1] .

~roposilion 1. The optimal backtracking procedure, that In a binary tree of depth n there are s = 2n- I interior
IS, the one which achieves the minimum cost given in (3), nodes and therefore there exist s probabilities that are
~oes not. contain a node SI such that hl/ P I > hl where hl greater than or. equal to 0.5. For simplicity and without
IS the height of node S I loss of generality we can assume that these probabilities
Proposition 2. The optimal backtracking procedure does are dis~nct and differe~t. ~an .0:5 and. I. Under this
not contain two consecutive nodes S and S such that ~ssum~tion,. these probablllues dlvld~ the mterval [~.5, 1]
h < h / p I k mto 2 submtervals. Among the submtervals there IS one
k I, , I. (or probably more), say (Pr'Pr+ 1 ] , such that if

ProposUion 3. The opumal backtracking procedure does I E (Pr, Pr + I] the gain G is maximized. The value of G
not s~ at a node which is located below the node with is constant in each of the subintervals. That is so because,
the mmlmum value of hi/ p i' I ~ i ~ m. for each value of the threshold in a particular interval the

IV p resulting partition of the nodes is the same. In order to get
.AR~ONINGOFTHEINfERIORNODES the maximum value of G, (Eq. 1) must be evaluated in

It was mentioned before that in order for the maximum each of the subintervals. We must note that the maximum
v~ue of the gain G, given in (1), to be attained the appro- of G so obtained is not the absolute maximum discussed
pnate partition of the interior nodes of the tree must be before. It simply is the optimal gain achieved by applying
f?und. This partition is called optimal. Under the hypothe- the threshold method. The gain as a function of the thresh-
SIS that the optimal separation of the nodes is given the old for a tree of depth 4 is shown in figure 2. For the pro-
maxi~um gain G can be obtained by minimizing the back- duction of the probabilities of the tree a uniform random
~ck..ng cost B j for all j in F I. In general, if there exist s generator has been used.

mtenor nodes, 2s possible partitions of them into statisti- B. An Alternative Method
cal and non-statistical can be encountered. For each of. ..them the maximum gain must be calculated according to Irrespectiv.e of their heights, ~e threshold method han-
(I) and (3) and the results must be compared to each oth dies nodes w~th the same maximum probability in like
in order for the optimal gain to be obtained M .:r manner. But, m general, a node which is located in ligher
cally, in a tree of depth n there exist 2n- I ..t o~e Specl -levels of the tree corresponds to a higher backtracking
As it is clear the corresponding number f m er~~~ nod~~ cokst. Theref~re, except fo~ the the maximum probability
tions is I E .o poSSI e p~ .P max' the height of an arbitrary node k must be also taken

too h. h ar(2~~ ).ven l !or .a tree With .n = 5 that number IS mto account when we search for a partition of the interior
Ig resu Ungm an excessive amount of compu- nodes of the tree.



I.. i Gl % G2 %

1.4 I 1.907 23.8 2.284 28.6

2 1.873 23.4 2.228 27.9
I 3 1.719 21.5 2.195 27.4

4 1.107 14.8 1.639 20.5
o 5 1.960 24.5 2.479 31.0
.0.8

~ 6 1.271 15.9 2.016 25.2
0.6 Table 1. Perfonnance of the two Methods for n = 8

0.4 observe that in general the second method perfonns better
than the threshold method.

0.2 V. SVMMARY-CONCLVSIONS

In this paper we presented a proba.bilistic model for
~j O.SS 0.6 0.65 0.7 0.7S 0.8 0.&5 0.9 O.9S reducing the number of tests that are required is a.specific

decision procedure. We assumed that a problem IS struc-Threshold, t . I d d .. d tt tedtured as a bInary ba ance eclslon tree an we a emp

..to select the nodes of the tree where a probabilistic deci-Ftgure 2. The GaIn versus the Threshold sion is taken. A gain function was built up and the expres-

..sion of its parameters was derived. Two heuristic methods
We ob.serve f~om ~uauon (~) ~at dIe backtrackl~g were proposed for the selection of dIe nodes were a deci-

c.ost asso.c~ted wldl a sIngle p~th IS Increased when staUs- sion is taken probabilistically and they were co.mpared to
tlCaI decisions take place at hlg~ levels of the tree. That each other in tenns of the value of the gain achieved. Our
happens because when. ~e end ~Ith a wrong path we back model can be probably improved by investigating other
up with some probabilIty to high level~ of the tree and methods for the selection of the nodes of dIe tree.
then we have to cross dIe tree by perfonnlng all the tests at
the nodes we meet. Therefore, if we reduce dIe numbe~ of ACKNOWLEDGEMENT
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