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Abstract --A training procedure for a class of neural net- neural network, and f ( 0) belongs to the class of so-called

works that are asy~ptotlcally sta~le Is presented. The traln~ng neuromime functions, which are essentially positive and

procedure Is a gradient method which adapts the Interconnection monotonically non-decreasing. The condition on W that guar-

weights as well as the relaxation constants and the slopes of the ac- tivatlon functions used so as the error between the expected and an~e.s asymptOtIc beha~lour IS that.lt ~ust contaIn a~l o~ Its

obtained responses Is minimized. A method for assuring that sta- posluve entrIes on one sIde of the maIn diagonal [~]. ThIS gIves

blllty Is maintained throughout the training procedure is also glv- an easy way to check whether a neural network IS stable. For

en. Such a network was used to Identify a simulated nonlinear instance, the neural network shown in Figure I is stable provid-

system and a PUMA-560 two-llnk robot. ed that the connection wei
g hts in submatrices Wand Ware

23 34

I. INTRODUCI1ON non-positive (i.e., inhibitory). This result is extremely useful in

This paper is a summary of some recent work done in the the area of identification and .contro~. The most important fea-

area of identification of nonlinear systems using neural net- ~ure o~ a controller or model IS that It m~~t h.e stable. By start-

works. The main purpose of this work is to provide a way of Ing WIth a model as defined by (I), StabIlIty IS ensured.

establishing models of complex nonlinear systems that can be W
used in controllers. Neural networks are selected as a potential- 34

ly effective way of modeling these systems, since a trained

neural network is fast and easy to implement, properties that

are desirable in real controllers.

One problem with using a system as complex as a nonlinear ~

neural network in a control or identification setting is that they ~

are often too complex to analyze fully; in particular, their sta-

bility can not be assured. When dealing with real systems, sta-

bility is the single most important property of a controller or

model. Fortunately, a class of neural networks exists which is

known to be asymptotically stable. This class of neural net-

works is used here, and the work done on identification per- Fig. I. Sample Neural Network

tains to this class of dynamic neural networks.
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n. BACKGROUND NETWORKS

It has been shown [I] that asymptotic stability is ensured for This section discusses a method for adjusting the weights

neural networks which are described by the differential equa- and other parameters of neural networks that are stable in the

tion sense described in Section 2. The general approach that is used

O = -TO + Wf( 0) + b (I) here is to define some a criterion and then adjust the parameters

in a direction that will decrease this cost. In this sense the tech-

In (I), there are N neurons divided into k classes, and nique is similar to linear recursive adaptive methods [4] and to

classical back propagation [5]. However, since the stable neu-
0 = [0102... o~ ralnetworks described in section 2. have certain restrictions on

r l the polarity of the connection of classes, a straightforward gra-
= L 01 02 ...°~ (2) dient adjustment is not possible. A solution for this is also pre-

.sented here.
IS the state of the neural network,

A. Gradient of Cost Function

r w w w J The general equation for calculating the behaviour of the

II 12 ...11 class of neural networks of interest here is

W= : (3) O=-TO+Wf(O)+b (4)

W 11 W 12 ...W 11

using the same notation introduced in section 2.. One possible

is the network connectivity matrix, T = diag ("t.) is the diag- criterion for measuring the performance is the quadratic cost

onal matrix of neural relaxation constants, b is the input to the function



J ( e ) = 1/2 ( 0 -O d) T A ( 0 -O d) parameters of the activation function f( ) .

-1/2eT Ae B. Input Weight Adjustment
(5) Let e represent a connecting weight w I which connects

where O d is the desired state of the neural network. Matrix neuron i (input) to neuronj. Use the notati~n ~.. -ao./aW ...

A .
ed limin. fr tb h .:I' :I i ,

IS us. to e .a~ om e C?st ~y neurons w ose s~te IS Differentiating (10) with respect to w ..the differential e ua-not CruCIal. A IS a diagonal matrix with ones correspondmg to. ..i' ' q

output neurons and zero's elsewhere. As in other recursive tion for ~ji IS obtamed :

adaptive methods [2,4], parameters e in the neural network .
are adjusted along the negative gradient of this cost, i.e., l;ji = -"tj~ji+f(oJ (12)

de dJ Using this equation and the results of the previous section,

& = -11 ae (6) equation (7) may now be written as

dw..
The chain rule for differentiation is used to allow for the calcu- --.!!. --111.~.. (13)
lation of this gradient for parameters associated with neuron j: dt i }I

~ -~ ~ with 1 j calculated using (8) or (9) as appropriate.

ae aoj ae c. AdjustmentofStructura/Parameters
aoj The same analysis that was used to determine how to adjust

= 1 j -ae th~ co?Dection weights can al~o be used to obtain a formula for

(7) adjustmg any of the other vanables that parameterize the neu-

The notation 1 j is used to denote the derivative of the cost with ral netwo~k. ~or instan~e, a formula for adjusting a p~rameter

t t th ti. ti. f . If ..of the activation functionf( ) or the neural relaxation con-
respec o e ac va on o neuronj. neuronj IS an output. ..
neuron, this derivative is simply given by stants "t j (analogous to tIme constants for a Imear system) m a

1 --(8) way that will reduce the cost function can be obtained .Con-

j 0 j 0 dl sider an activation function of the form

In a manner analogous to traditional back propagation of the
{error [5], this gradient may be calculated for units that are not -.!--- if o ~ 0

output neurons by using the values of the gradient in all the {(0) = 1 + e-(Jo (14)

neurons k that have neuronj as inputs:a 0 ifo<O

°t
1. = E1t-
i t ao j The parameter 0' controls how much input causes the neu-

= E 1 Ll .ron to saturate; the larger it is, the harsher the nonlinearity.

t t ti (9) Since there is no way of knowing a priori what an optimal or

even appropriate value for this variable is, it makes sense to

Here, the notation Lltj has been introduced to represent the adapt it while training the connection weights. Since the value

partial derivativeaot/aoj .To calculate Lltj , it is necessary to 1j will already be available during training of the weights, the

use the differential equation which defmes the behaviour of the only further calculation required is the derivative

neural network. Rewriting (4) specifically forneuronk, and us- v. = do./aa. .Using (10), it is seen that
ing the operator D to represent differentiation results in J J J

df(oJ
('tk+D)ok = Ewkj(o) +bk (10) ("tj+D)vj = E

,.Wji~

.i

J

Differentiating(10)withrespecttoojresu1tsin
{ ~w..0.(0.25- f (0.)1 ifo.~O i..J i' , , , = . ., ,

Lltj- (-"tt>Lltj+wJ (0) .(11) .
0 If 0.<0

Note that unlike classical back propagation [5], the equation' (15)

governing the propagation of error from one class to the next is U sing this formula to calculate the value for v ., the nonlin-

a differential equation. earity parameter may be adjusted using the relati~n

All the derivatives required in (7) to adjust a parameter e d0'.
have now been obtained, except for the derivative ao./ae.The ~ = -111.v. (16)

. di th h e ..i. dt i i

next section scusses e case wen IS a connectmg weIght, and the section following that discusses the case of parameters Usmg the sam.e technique, ~t IS possible to. ~alculate

of the differential equation, such as the relaxation constant "t or ~j -aoj/a.j to adjust the relaxation constants. This IS useful

since it is not known beforehand how fast a system the neural



network will be trying to identify .The above technique yields
the differential equation for ~ j : r s +

~j+2.j~j+~j = -EWj!(0;> (17) -
i +

and an update fomlula for. j of I

d..
)!. = -11Y.~. (18

dt J J

It is important here that the relaxation constant. j not be ad-

justed at too great a rate, or else (17) is not valid since .j is Fig.2. An Architecture for System Identification

treated as a constant. To take advantage of this type of nonlinearity, the architec-

D. Weight Clamping ture of Figure 2 is proposed for general sy~tem identification.
Section 2 describes a class of neural networks that are as- In this figure, the labels I and O refer to the mput and output of

ymptoticall'! ~table. ~s condition is, gua~~ed pro~ided that the system, and 9.[J and IJ{?: refer to two classes of neural net -
the connectivIty matrIx W has all of ItS p.osltive entrIes on one works. The block marked S is a special connection of classes
side of the diagonal [1]. ~owever, (13) gl':'es a fo~ula f~r,ad- called the 'scheduler class'. The idea of this class is that it con-
justing the connection weIghts that may vIolate ~s condltio~. trols or schedules which neurons will be active and when,
To c.omba~ this, it is necessaf:)! to ch~ck the polan0/ of certam thereby emulating the movement of the 'pole' for large varia-
cruCIal weIghts after ea~h welgh.t adJustlnent. For ~sta,nce, as tions of the state variable or input. The motivation for this ar-
discussed in section 2, If the weIghts labeled W 23 m FIgure 1 chitecture is most clearly understood by exanlining the case

are guaranteed to be non-positive, then the neural network will when the unknown system and the activation function f( ) of
be stable. Thus after any weight in W 23 is adjusted using (13), the neurons are linear. In this case, equation (4) shows that the
the weight should be checked to ensure ~at it is ~ot positive. output O follows the weighted sum of the states in 9.[J .Ignor-
If it is, th~n it sho~d be cl~P<:d ,at 0. This technique en.s~s ing for the moment the effects of the scheduler class, and mak-
that inhibItory weIghts stay inhibItory throughout the traInIng ing the time constant of O small, then the state equation of this

procedure. system takes on a familiar form:

IV. IDENTIFICATION
The term identification is used in this section to refer to the ~ONj ~-.W ~ ~°!1~ ~~process of devloping a model of an unknown system by ob- 1 -1 12 1 + I

serving its input/output behaviour.[2,4]. ON2 W 21 -.2 °N2 0
This section uses the results of the previous section to iden-

tify some unknown systems. A suitable neural network archi-
~ ~tecture is proposed and some m?tivation for this ~o~g~tion [ J O !II

is given. A simple computer sImulated system IS Identified, O -1 Oj
and then the neural network is used to identify a two-link robot °N2 (20)
arm. The results of the neural network are then compared to the, , ,
results obtained using a classical identification technique (re- This form can ImPle~ent fathgenerallin~ar syst~m of andY ~thr- ,

1 4] der by the proper selection o e connection matrIces an W1
cursIve east squares) [ ., ,

th bed 1 1a sufficIent number of neurons. Neurons m e sc u er c ass
A. le,ntifica~ion ~rchitecture , , .have a peaked response as shown in Figure 4. (This class of

This section discusses a motivatIon fo~ sel~tm~ a neural neurons is not a single class as governed by (4). However, the
network architecture suitable for syste?1 IdentificatiOn: Con- response shown in Figure 4 was generated using a combination
sider the simple nonlinear system descnbed by the relatIon of 4 standard classes in a configuration shown in Figure 3. For

y clarity, the scheduler neurons are discussed as a single class).
y-u- (19)

2
1+4y

If y remains relatively constant near some value y ss ' then
this system can be approximated by a fIrst order linear system Input Ou

2 -1 , , , -- r 4 tp that has a pole at ( 1 + 4 y ss) .If y vanes from this value Slg- ~

nificantly, then the 'pole' can be thought of as roving in some
sense. Although this is not an exact description of the behav- of -

iour of the system, it does illustrate one o~ the more common 52
types of nonlinearity which is encountered m real sys~~s such. .
as valve flows and airplanes cruising at various velocItIes. FIg, 3. Architecture for Scheduler class



tained through direct measurement [6]. The variables which
could not be easily directly measured were the matrices F and

...0.8 <1> .This represented four unknown scalars in total. Classical

~ 0.6 RLS parameter estimation was used to identify these four vari-
O abIes, and the final response to the input vector shown in Fig-

0.4 ure 7 is shown in Figure 8. Although Figure 8 shows that there
was some prediction error. it was found [3] that this model was

0.2 accurate enough to allow for an extremely accurate controller

° design when this mode.I was used for closed loop control. The
p fact that the model devIates from the actual response underlies

Input the difficultY in identifying complex systems using traditional
.model based methods.

Fig. 4. Response of Scheduler Neurons
Each neuron in the class has a peak p that occurs at a differ- 1

ent value. Figure 2 shows that the scheduler class receives in- ° 8put from I and 0. Thus, depending on the value of the input and .

output, different neurons in 9.[J and 9.[? will be active. This 0.6

allows the neural network to take advantage of the type of non-
linearitY discussed above. The example described by (19) is 0.4

well suited to this kind of architecture since neurons with dif-
ferent relaxation constants may be activated depending on the 0.2

level of the output. thus allowing the overall system to act as
desired. °

B. Simulation Results Time
An architecture similar to that shown in Figure 2 was used

to identify the model defined by (19). For this example. 9.[? Fig.5. Input to Model and Neural Network

was not included. since it was known in this case that there was 0.4

no need for second-ordereffects due to the nature of the differ-

ential equatio~. 9.[J contained five neurons. and there were 0.3 ~~--

five .neurons ill ~e sch~uler class. The training procedure tf"'
consIsted of a.pplymg an illpUt that was a combination of a step 0.2 /I'
of random heIght added to white noise. The training procedure ,I'

~was continued for over a million iterations. After training was / Model
complete. this simple neural network was able to follow the re- 0.1 Neural

sponse to the input shown in Figure 5. The response of the neu- Net
ral network and the actual model are shown in Figure 6. °
C. Identification of a Two-Link Robot Arm Time

A two-Iink robot arm is known to have its dynamic response Fig. 6. Model and Neural Net Responses

governed by the differential equation The identical neural network that was used to identify the
H(q) q+h (q. q) q+Fq+g (q) = <1>v (21) sim~le simulation of (19) was then trained to identify the dy-

namIC response for el. the angle that the first link makes with

where the state qcontains the angle el that the first link the vertical. Both vi (t) and v2 (t) were used as inputs to the

makes with the vertical and the angle e2 that is formed be- system. The neural network had an architecture similar to that

tween the two links; H ( q) is the 2x2 inertial matrix; h ( q, q) shown in Figure 2. except that 9.[? was not included. Class 9.[J

models the Coriolis and centripetal forces; F is the friction ma- contained 5 neurons as did the scheduler class. Convergence of
trix; 9 ( q) represents the gravitational torque; and <1> is the the response was rather slow; several million training iterations
voltage-to-torque conversion matrix [3]. All of these variables were required. However. due to the small size of the neural net-
rely on many machine-specific factors. such as dimensions work. good results were obtained after two days of training on
weights. inertia. and joint friction. Due to the complicated a Sparcstation. After training was completed, the neural net-
~anner in which these factors are combined to produce the ma- ~ork follow.00 the model closely. The response is shown in
trIces. classical identification techniques make it difficult to ~Igure ~. This reveals that the neural network tracks this par-
obtain an accurate model. tIcular mput better than the classical model obtained using

One way to mitigate these difficulties is to obtain direct least squares parameter estimation and empirical measure-
measurements of as many variables as possible. This was done ment. ~e adv~tage of the neural network is that due to its
for a PUMA-560 robot. Lengths. masses, and inertias were ob- small S!ze and s1Inple calculation procedure, it is ideally suited

to use ill real hardware controllers driven by chips such as the



HC-ll. Furtheffilore, the laborious process of physical param- 1.2
eter measurement is avoided.

1.50 I " \.., \ ' , ,
V1(t) 0.00 J 0.8 ' , ' ' .\ -

S 0.6
i'; -150 ~ ,
.5 ~ .5- 0.4 ri b ~NeuralNet 1.5 , M edCD " ; -easur
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Fig.7. Control Voltage for Link 1 and Link 2 Fig.9. Measured and Neural Net Response to Input shown in Figure 7

V. CoNCLUSIONS ACKNOWLEDGEMENT

In this pa~r, a cl.ass of neura~ ~etworks that was known to This work was supported by the the Institute of Robotics and
be stable was mvestIgated. A tralmng procedure for the neural Intelligent Systems a Canadian Network of Centers of Excel-
networks was obtained here. In addition to traditional weight lence. ,

adjustment training, other structural parameters of the neural
network, such as relaxation constants and nonlinearity thresh- REFERENCES
olds, were ada;pted. Foffilulae fo.r adjusting ~ese parameters [1] N. Dimopoulos, "A Study oftbe Asymptotic Behaviour of Neural Net-
along the gradient of a cost functIon were denved here. works," IEEE Transactions on Circuits and Systems, Vol. 36, No.5,

50 pp. 687-694, May 1989.
.[2] K.S. Narendra and K. Partbasaratby, "Identification and Control of

Dynamical Systems Using Neural Networks," IEEE Transactions on
4.0 Neural Networks, Vol. 1, No.1, pp.4-27, March 1990.

~ [3] M. Erlic, M.A.Sc. Thesis, University of Victoria, Victoria B.C., 1990.
oS [4] K.l. Astrom and B. Wittenmark, Adaptive Control, Addison-Wesley
] 3.0 Publishing Company, 1989.

~ [5] B. Widrow and M. Lebr, "30 Years of Adaptive Neural Networks: Per-
~- 2.0 ceptron, Madaline, and Backpropagation," IEEE Proceedings, Special

l -=:-- ~:~I Issue on Neural Networks, Vol. 78, No.9, Sept. 1990.
Model [6] B. Armstrong, O.Kbatib, and I. Burdick, "The Explicit Dynamic and

1.0 Measured Inertial Parameters oftbe PUMA-560 Arm", IEEE Int'l Conference on

Robotics and Automation, 1986, pp. 510-518
0.0

6.0 12.0
Time (seconds)

Fig. 8. Classical Model (Equation 21) and Measured Response to Input

AJso, a method for dealing with stability restrictions on the
connection polarity of certain classes within the neural net-
work was discussed. This training procedure was used to train
very small neural networks to identify a simulated system and
an actual two-Iink robot. The training time for the neural net-
work was seen to be rather long. The advantages of this type of
identification model were seen to be that it allowed accurate
identification and produced an easy to calculate, guaranteed
stable model of very complex systems


