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Abstract- A training procedure for a class of neural net- guarantees asymptotic behavior is that it must contain all of
works that are asymptotically stable Is presented. The training its positive entries on one side of the main diagonal [1]. This
procedure Is a gradient method which adapts the Interconnec- gives an easy way to check whether a neural network is sta-
tIon weights as well as the relaxation constants and the slopes of ble. For instance, the neural network shown in Figure I is sta-
the activation functions used so as the error between the expect- ..o o o
ed and obtained responses Is minimized. A method for assuring ble provided that the connectIon weights In submatrlces W 23
that stability Is maintained throughout the training procedure and Ware non-positive (i.e., inhibitory). This result is ex-
Is also given. Such a network was used to Identify the dynamic 34 .o o

behavior of several nonlinear dynamlcal systems which Includ- tremely useful in the area of IdentIficatIon and control. The
ed a PUMA 560 robot and a boat based on collected rudderl most important feature of a controller or model is that it must
heading data. be stable. By starting with a model as defined by (1), stability

I. IN1RODUC11ON is ensured.

This paper is a summary of some recent work done in the \1l
area of identification of nonlinear systems using neural net-
works. The main purpose of this work is to provide a way of
establishing models of complex nonlinear systems that can
be used in controllers. Neural networks are selected as a po-
tentially effective way of modeling these systems, since a
trained neural network is fast and easy to implement, proper-
ties that are desirable in real controllers.

One problem with using a system as complex as a nonlin-
ear neural network in a control or identification setting is that
they are often too complex to analyze fully; in particular,
their stability can not be assured. When dealing with real sys-
tems, stability is the single most important property of a con-
troller or model. Fortunately, a class of neural networks Fig. 1. Sample Neural Netwolk
exists which is known 10 be asymptotically stable. This class ill PARAMETER ADJUSTMENT IN STABLE NEURAL
of neural networks is used here, and the work done on iden- .NElWORKS
tification pertains to this class of dynamic neural networks. .o o ti d o o th . hThis sectIon discusses a method or a Justlng e welg ts

II. BACKGROUND and other parameters of neural networks that are stable in the
11 has been shown [I] that asymptotic stability is ensured sense des<;:ribed in Section 2. ~e; general appro.ach that is

for neural networks described by the differential equation used here IS 10 define some a cntenon and then adjust the pa-
O = -TO + W!( 0) + b (1) rameters in a ~recti<?n ~a~ will d~rease this ocost. In ~is

sense the technIque IS similar to lInear recursive adaptIve
In (I) there are N neurons divided intok classes and ~ethods [4] and to classical back pro~agati.on [5]: However,, , slmce the stable neural networks descnbed In sectIon 2. have

r: l r l certain restrictions on the polarity of the connection of class-0 = L 0 I O2 ...0 ~ = L o I 02 ...°l!J (2) es, a straightforward gradient adjustment is not possible. A

.solution for this is also presented here.IS the state of the neural network, A G di if C F .
.ra ento OSt unctlon

~ J The general equation for calculating the behavior of the
W II W 12 ...W It. class of neural networks of interest here is

W= : (3) O=-TO+W!(0)+b (4)

W kl W k2 ...W t.t. One possible criterion for measuring the performance is the

is the network connectivity matrix, T = diag ('ti) is the di- quadratic cost function

agonal matrix of neural relaxation constants, b is the input to J ( e) = 1/2 ( 0- 0 d) T A ( 0- 0 d) = 1/2eT Ae (5)

the neural network, and !(0) belongs to the class of so-
called neuromime functions, which are essentially positive where 0 d is the desired state of the neural network. A is a
and monotonically non-decreasing. The condition on W that diagonal matrix with ones corresponding to output neurons



and zero's elsewhere. As in other recursive adaptive m th s any of e o
[2,4], parameters e in the neural network are adjust alon ne ork ].
the negative gradient of this cost, i.e.,

de a1
~ = -T];38

The chain rule for differentiation is used to allow for e c -
culation of this gradient for parameters associated wi ne -

ronj:
"1 " , iJo iJo0- w I- I ()

;38 -a;;; ae -Yiae

The notation Y is used to denote the derivative ofI
with respect to the activation ofneuronj. Ifneuronj is
put neuron, this derivative is simply given by

Y=O-O d ()I I j

In a manner analogous to traditional back propaga ion
the error [5], this gradient may be calculated for units at
not output neurons by using the values of the gradie t in
the neurons k that have neuronj as inputs:

aotYi = LYt, = LYt~tj
t 00 tI

Here, the notation ~tj has been introduced to repre nt

partial derivativeiJot/aoi. To calculate ~tj, it is nec ary
use the differential equation which defines the beha ior
the neural network. Rewriting (4) specifically for ne ron
and using the operator D to represent differentiation resul
in

('tk+D)ok = Lwk/(O) +bk (I

j
Differentiating (10) with respect to °i results in

,itj= (-tJ~tj+wt/'(o). (I

All the derivatives required in (7) to adjust a para eter
have now been obtained, except for the derivative a0/ae

B. Input Weight Adjustment
Let e represent a connecting weight w ii which nnec

neuron i (input) to neuronj. Use the notation ~ii = ao / aw i

Differentiating (10) with respect to Wii' the differenti equ
tion for " is obtained:

..1'

C;ii = -ti~ii+f(Oi)

Using this equation and the results of the previous
equation (7) may now be written as

dwI' "~ = -T]YI"ii

with Y calculated using (8) or (9) as appropriate.J
C Adjustment of Structural Parameters

The same analysis that was used to detennine ho to a
just the connection weights can also be used to obtai a f r



shown in Figure 4. (This class of neurons is not a single class the difficulty in identifying complex systems using tradition-
as governed by (4). However, the response shown in Figure al model based methods.
4 was generated using a combination of 4 standard classes in A neural network was trained to identify the dynamic re-
a configuration shown in Figure 3. For clarity, the scheduler sponse for e the angle that the fIrst link makes with the ver-
neurons are discussed as a single class). I' .

tical. Both VI (t) and v2 (t) were used as rnputs to the

system. The neural network had an architecture similar to

that shown in Figure 2, except that ~2 was not included-

Input T utP Class ~1 contained 5 neurons as did the scheduler class-
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Each neuron in the class has a peak p that occurs at a dif- .~ 3.5
ferent value. Figure 2 shows that the scheduler class receives :;
input from I and 0. Thus, depending on the value of the input CJ)-

and output, different neurons in ~1 and ~2 will be active. 2.5
-Model

B. Identification of a Two-Link Robot Arm
A two-link robot ann is known to have its dynamic re- 5

sponse governed by the differential equation I.

H(q)q+h(q,i[)i[+Fi[+g(q) = <1>v (15) O 3 6 9 12

Time (seconds)
where the state qcontains the angle el that the fIrst link Fig.6. Classical Model (Equation 15) and Measured Respoose to Input

makes with the vertical and the angle e2 that is formed be- Convergence of the response was rather slow; several mil-

tween the two links;H (q) is the 2x2 inertial matrix; h (q, i[) li<?n training iterations were r9uired. Good result8: were ob-
models the Coriolis and centripetal forces; F is the friction taI':le.d after two days of trarnlng on a SparcsmtlOn. After
matrix; 9 ( q) represents the gravitational torque; and <1> is traInIng was completed, th~ neural ':let,,:,ork followed the
th l tn t . tn. [8] All f th model closely. The response IS shown In FIgure 7.

e vo wge-to- orque conversIon ma x. o ese
variables rely on many machine-specific factors, such as di- 1.2
mensions, weights, inertia, and joint friction. To obmin an
accurate model, one measures directly as many variables as 1 /I ' J\ (\ 1\ I~ A
possible. This was done for a PUMA-560 robot. Lengths, \):1 "'I! \~ ¥ \\J \
masses, and inertias were obtained through direct measure- ~ 0.8 /" ' ,

ment [9]. Variables which could not be easily directly mea- .~
sured were the matrices F and <1> .This represented four] 0.6 i

unknown scalars in total. Classical RLS parameter estima- 9 .p
tion was used to identify these four variables, and the final re- '-' -0.4 ~ I Neural Net I
sponse to the input vector shown in Figure 7 is shown in CJ) ;1 1- Measured I
Figure 8. Although Figure 8 shows that there was some pre- 0.2 '.
diction error, it was found [8] that this model was accurate .
enough to allow for an extremely accurate controller design 0 ,; 60 120
when this model was used for closed loop control. The fact T. .ds .
that the model deviates from the actual response underlies. Ime (secon )

Fig.7. Measured and Neural Net Response to Input shown in Figure 7



This reveals that the neural network tracks this particular els of very complex systems.
input better than the classical model obtained using least
squares parameter estimation and empirical measurement 0
The advantage of the neural network is that due to its small. ~~
size and simple calculation procedure, it is ideally suited to] 0. 7

( \use in real hardware controllers driven by chips such as the ~ 0
HC-ll. Furthermore, the laborious process of physical pa- ~ .J ,
rameter measurement is avoided e 0. --~

o
c. Identification of a Boat b 0.

A boat may be treated as a SISO system, with the rudder i 0.
angle as the input and the heading as the output Extensive oj 0 Measured .
wrafOrk[3h]as been done to produce accurate models for marine ~ .Neural Ne~ : c t .0.1

Figure 8 shows the data which was used to train the neural
network. This is equivalent to approximately 2 minutes of ° .
data collected from the boat and shows both the rudder angle TIme
and the response which the onboard gyroscope yielded. Fig. 9. Measured and Trained Neural Net Response

The training method consisted of applying the input to the
neural network, calculating its response, and using the mea- 1
sured heading to generate an error signal for weight adjust- r\
ment Figure 9 shows the response of the trained network to ~ 0.8 .I \ r.. N r -,\ ,
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