Systems Identification using Recurrent Asymptotically Stable Neural Networks

Chris M. Jubien, Nikitas J. Dimopoulos

Department of Electrical and Computer Engineering,
University of Victoria,
PO Box 3055, Victoria, BC, V8W 3P6
CANADA

Abstract— A training procedure for a class of neural net-
works that are asymptotically stable is presented. The training
procedure is a gradient method which adapts the interconnec-
tion weights as well as the relaxation constants and the slopes of
the activation functions used so as the error between the expect-
ed and obtained responses is minimized. A method for assuring
that stability is maintained throughout the training procedure
is also given. Such a network was used to identify the dynamic
behavior of several nonlinear dynamical systems which includ-
ed a PUMA 560 robot and a boat based on collected rudder/
heading data.

I. INTRODUCTION

This paper is a summary of some recent work done in the
area of identification of nonlinear systems using neural net-
works. The main purpose of this work is to provide a way of
establishing models of complex nonlinear systems that can
be used in controllers. Neural networks are selected as a po-
tentially effective way of modeling these systems, since a
trained neural network is fast and easy to implement, proper-
ties that are desirable in real controllers.

One problem with using a system as complex as a nonlin-
ear neural network in a control or identification setting is that
they are often too complex to analyze fully; in particular,
their stability can not be assured. When dealing with real sys-
tems, stability is the single most important property of a con-
troller or model. Fortunately, a class of neural networks
exists which is known to be asymptotically stable. This class
of neural networks is used here, and the work done on iden-
tification pertains to this class of dynamic neural networks.

II. BACKGROUND

It has been shown (1] that asymptotic stability is ensured
for neural networks described by the differential equation

0 =-TO+Wf(0) +b a

In (1), there are N neurons divided into k classes, and

0=10,0,..0) =[o,0, ... 0y)
is the state of the neural network,

Wy Wy, ... W,
w=|: G)

Wkl Wk2 Wkk

is the network connectivity matrix, T = diag (t,) is the di-
agonal matrix of neural relaxation constants, b is the input to
the neural network, and f(O) belongs to the class of so-
called neuromime functions, which are essentially positive
and monotonically non-decreasing. The condition on W that

guarantees asymptotic behavior is that it must contain all of
its positive entries on one side of the main diagonal [1]. This
gives an easy way to check whether a neural network is sta-
ble. For instance, the neural network shown in Figure 1 is sta-

ble provided that the connection weights in submatrices W,
andW,, are non-positive (i.e., inhibitory). This result is ex-
tremely useful in the area of identification and control. The
most important feature of a controller or model is that it must

be stable. By starting with a model as defined by (1), stability
is ensured.

Fig. 1. Sample Neural Network

HIII. PARAMETER ADJUSTMENT IN STABLE NEURAL
NETWORKS

This section discusses a method for adjusting the weights
and other parameters of neural networks that are stable in the
sense described in Section 2. The general approach that is
used here is to define some a criterion and then adjust the pa-
rameters in a direction that will decrease this cost. In this
sense the technique is similar to linear recursive adaptive
methods [4] and to classical back propagation [5]. However,
since the stable neural networks described in section 2. have
certain restrictions on the polarity of the connection of class-
es, a straightforward gradient adjustment is not possible. A
solution for this is also presented here.

A. Gradient of Cost Function

The general equation for calculating the behavior of the
class of neural networks of interest here is

O = -TO+Wf(O) +b @)

One possible criterion for measuring the performance is the
quadratic cost function

J(e) =1/2(0-0)"A(0-0) =1/2¢"Ae)

where O, is the desired state of the neural network. 4 is a
diagonal matrix with ones corresponding to output neurons

and zero's elsewhere. As in other recursive adaptive methods
{2,4], parameters O in the neural network are adjusted along
the negative gradient of this cost, i.e.,

a9 aJ

—_— = -N— 6
Z HEvs ©)

The chain rule for differentiation is used to allow for the cal-
culation of this gradient for parameters associated with neu-
ron j:

o _Y oy 0
% 30,00 Va8
The notation Y; is used to denote the derivative of the cost
with respect to the activation of neuron j. If neuron j is an out-
put neuron, this derivative is simply given by

=0.— 8
Y, = 9; Odj (t3]

In a manner analogous to traditional back propagation of
the error [S], this gradient may be calculated for units that are
not output neurons by using the values of the gradient in all
the neurons k that have neuron j as inputs:

aok
Y= g = XNby ®
k 0; k

Here, the notation A,; has been introduced to represent the
partial derivativedo,/do; . To calculate A, ;, it is necessary t0

use the differential equation which defines the behavior of
the neural network. Rewriting (4) specifically for neuron k,
and using the operator D to represent differentiation results
in

(t,+D)o, = Ewkjf(oj) +b, 10)
J

Differentiating (10) with respect to o i results in

Ay = (=1) Ay +wf'(0)). n
All the derivatives required in (7) to adjust a parameter 0
have now been obtained, except for the derivative do,/ 6.

B. Input Weight Adjustment

Let © represent a connecting weight w i which connects
neuron i (input) to neuron j. Use the notation &j.‘. = ao,./ awj,..
Differentiating (10) with respect to w,, the differential equa-
tion for 2’;1.‘. is obtained:

éji = _Tjgj,' +f(0‘-) (12)

Using this equation and the results of the previous section,
equation (7) may now be written as

i
dt
with Y; calculated using (8) or (9) as appropriate.

= —T‘Ylgj,' (13)

C. Adjustment of Structural Parameters
_ The same analysis that was used to determine how to ad-
just the connection weights can also be used to obtain a for-

mula for adjusting any of the other variables that
parameterize the neural network [6].

D. Weight Clamping

Section 2 describes a class of neural networks that are as-
ymptotically stable. This condition is guaranteed provided
that the connectivity matrix W has all of its positive entries
on one side of the diagonal {1]. However, (13) gives a formu-
la for adjusting the connection weights that may violate this
condition. To combat this, it is necessary to check the polar-
ity of certain crucial weights after each weight adjustment.
For instance, as discussed in section 2, if the weights labeled
W.,, in Figure 1 are guaranteed to be non-positive, then the
neural network will be stable. Thus after any weight in W,

is adjusted using (13), the weight should be checked to en-
sure that it is not positive. If it is, then it should be clamped
at 0. This technique ensures that inhibitory weights stay in-
hibitory throughout the training procedure.

IV. IDENTIFICATION

The term identification is used in this section to refer to the
process of developing a model of an unknown system by ob-
serving its input/output behaviour.[2,4].

In this section, we propose a suitable neural network archi-
tecture and use it to identify the dynamic behavior of a
PUMA-560 two-link robot and that of a boat.

A. Identification Architecture
Consider the nonlinear system described by the relation

(14)

y=u-
1+ 4y2
If y remains relatively constant near some value y__, then
this system can be approximated by a first order linear sys-

tem with a pole at (1 +4)’i) l. If y varies from this value,
then the pole can be thought of as “roving” in some sense. Al-
though this is not an exact description of the behavior of the
system, it does illustrate one of the more common types of
nonlinearity which is encountered in real systems such as
valve flows and airplanes cruising at various velocities.

+ S +
*_
O—(5—©
_ +
(23

Fig. 2. An Architecture for Sysiem Identification

To take advantage of this type of nonlinearity, the archi-
tecture of Figure 2 is profposed for general system identifica-
tion.Labels I and O refer to the input and output of the
system, and AJ and N2 refer to two classes of neural net-
works. The block marked S is a special connection of classes
called the “scheduler class” and it controls or schedules
which neurons will be active and when, thereby emulating
the movement of the pole.

Neurons in the scheduler class have a peaked response as

shown in Figure 4. (This class of neurons is not a single class
as governed by (4). However, the response shown in Figure
4 was generated using a combination of 4 standard classes in
a configuration shown in Figure 3. For clarity, the scheduler
neurons are discussed as a single class).

+
ﬂ @ Outp
+ A
©),

Fig. 3. Architecture for Scheduler class

17
08}
0.61
04}
0.2}
0 i
P

Input

Output

Fig. 4. Response of Scheduler Neurons

Each neuron in the class has a peak p that occurs at a dif-
ferent value. Figure 2 shows that the scheduler class receives
input from I and O. Thus, depending on the value of the input

and output, different neurons in A1 and A2 will be active.

B. Identification of a Two-Link Robot Arm
A two-link robot arm is known to have its dynamic re-
sponse governed by the differential equation

H(@)§+h(q,9)4+Fq+g(q) = Ov (15)

where the state gcontains the angle 0, that the first link
makes with the vertical and the angle 6, that is formed be-

tween the two links; H (q) is the 2x2 inertial matrix; h (g, §)
models the Coriolis and centripetal forces; F is the friction
matrix; g(q) represents the gravitational torque; and @ is
the voltage-to-torque conversion matrix [8]. All of these
variables rely on many machine-specific factors, such as di-
mensions, weights, inertia, and joint friction. To obtain an
accurate model, one measures directly as many variables as
possible. This was done for a PUMA-560 robot. Lengths,
masses, and inertias were obtained through direct measure-
ment [9]. Variables which could not be easily directly mea-
sured were the matrices F and &. This represented four
unknown scalars in total. Classical RLS parameter estima-
tion was used to identify these four variables, and the final re-
sponse to the input vector shown in Figure 7 is shown in
Figure 8. Although Figure 8 shows that there was some pre-
diction error, it was found [8] that this model was accurate
enough to allow for an extremely accurate controller design
when this model was used for closed loop control. The fact
that the model deviates from the actual response underlies

the difficulty in identifying complex systems using tradition-
al model based methods.
A neural network was trained to identify the dynamic re-

sponse for 6, , the angle that the first link makes with the ver-

tical. Both v, (¢) and v, (t) were used as inputs to the

system. The neural network had an architecture similar to

that shown in Figure 2, except that A2 was not included.

Class .‘7\[1 contained 5 neurons as did the scheduler class.
1500

750

0 Time (seconds) 12
Fig. 5. Control Voltage for Link 1 and Link 2
4.5
LEXR
3
°'~d
2.5
— Model
= Measured
L5 T T T 1
0 3 6 9 12

Time (seconds)
Fig. 6. Classical Model (Equation 15) and Measured Response to Input

Convergence of the response was rather slow; several mil-
lion training iterations were required. Good results were ob-
tained after two days of training on a Sparcstation. After
training was completed, the neural network followed the
model closely. The response is shown in Figure 7.

1.2 -
14 -
/j\/ AYAAYA"A
5 0.8 | ! :
g
% 0.6 4 /
E o
£ 0.4 1 . N Neural Net
@ ;’ —— Measured
0.2 4 A v
0 U — . . .
4 6.0 12.0

Time (seconds)
Fig. 7. Measured and Neural Net Response to Input shown in Figure 7

This reveals that the neural network tracks this particular
input better than the classical model obtained using least
squares parameter estimation and empirical measurement.
The advantage of the neural network is that due to its small
size and simple calculation procedure, it is ideally suited to
use in real hardware controllers driven by chips such as the
HC-11. Furthermore, the laborious process of physical pa-
rameter measurement is avoided

C. Identification of a Boat

A boat may be treated as a SISO system, with the rudder
angle as the input and the heading as the output. Extensive
work has been done to produce accurate models for marine
craft[3].

Figure 8 shows the data which was used to train the neural
network. This is equivalent to approximately 2 minutes of
data collected from the boat and shows both the rudder angle
and the response which the onboard gyroscope yielded.

The training method consisted of applying the input to the
neural network, calculating its response, and using the mea-
sured heading to generate an error signal for weight adjust-
ment. Figure 9 shows the response of the trained network to

= 08
3
3 06
E 04
é k
s i
o0 (.2 } Rudder Angle (normalized)
é Headmg (nomM)
0.0 .
Time

Fig. 8. Rudder Angle for Training Run

the training data.The neural network follows the measured
response well. The difference between the measured and
neural net response is due to the fact that the measurement
noise in the heading is a stochastic process which cannot be
predicted by the deterministic neural net model.

To test if the neural network had completely identified the
boat at this particular speed through the water, a longer run
of data was used. This consisted of approximately 12 minutes
of collected data. The weights which had been developed on
the shorter training run were used. Figure 10 shows that the
neural network had indeed developed a good model of the
boat since good tracking was obtained throughout the longer
test run.

V. CONCLUSIONS

In this paper, a class of recurrent neural networks that was
known to be stable was investigated. A training procedure for
the neural networks was obtained Formulae for adjusting the
network parameters along the gradient of a cost function
were derived. A method for dealing with stability restrictions
on the connection polarity of certain classes within the neural
network was discussed. This training procedure was used to
train very small neural networks to identify several nonlinear
systems that included an actual two-link robot and a boat. Al-
though the training time for the neural network was seen to
be rather long, the advantages of this type of identification
model were seen to be that it allowed accurate identification
and produced an easy to calculate, a guaranteed stable mod-

els of very complex systems.

0.8y
017l ShRaaadhs
T od /
g OSWWM
< 044
.§° 0.3}
3 0.2 Measured ; ——————
= 0 1__ Neural Net [T
0
Time

Fig. 9. Measured and Trained Neural Net Response
1

A

i'
3 08 - \‘
g 0.6 / \ / i]
)) {
Z - A H
a0 0.4 \/ \\ /J
=] I
o] I
3 Wl
T 0.2 Measured —

0 Neural Net

Time
Fig. 10. Measured and Neural Net Response to 12 Minute Test Run
ACKNOWLEDGEMENT

This work was supported by the Institute of Robotics and
Intelligent Systems, a Canadian Network of Centers of Ex-
cellence.

REFERENCES

[1} N. Dimopoulos, “A Study of the Asymptotic Behavior of Neural
Networks,” IEEE Transactions on Circuits and Systems, Vol. 36,
No.5, pp. 687-694, May 1989.

[2] K.S. Narendra and K. Parthasarathy, “Identification and Control of
Dynamical Systems Using Neural Networks,” IEEE Transactions
on Neural Networks, Vol. 1, No. 1, pp.4-27, March 1990.

[3] A. Andekian, M.A.Sc. Thesis, University of Victoria, Victoria B.C.,
1993.

(4] KJ. Astrom and B. Wittenmark, Adaptive Control, Addison-Wesley
Publishing Company, 1989.

(5] B. Widrow and M. Lehr, “30 Years of Adaptive Neural Networks:
Perceptron, Madaline, and Backpropagation,” /EEE Proceedings,
Special Issue on Neural Networks, Vol. 78, No. 9, Sept. 1990.

[6] C. Jubien and N. Dimopoulos, “Identification of a PUMA-560 Two-
Link Robot Using a Stable Neural Network”, 1993 International
Conference on Neural Networks

[7) C. Jubien and N. Dimopoulos, “Recurrent Neural Networks in Sys-
tem Identification”, Proceedings, 1993 International Symposium on
Circuits and Systems

8] M. Erlic, M.A.Sc. Thesis, University of Victoria, Victoria B.C.,
1990.

91 B. Amstrong, O.Khatib, and J. Burdick, “The Explicit Dynamic and
Inertial Parameters of the PUMA-560 Arm”, IEEE Int'l Conference
on Robotics and Automation, 1986, pp. 510-518

