DEADLOCK-PREVENTING ROUTING IN HYPERCYCLES

N.J. Dimopoulos & R. Sivakumar
Dept of Electrical & Computer Engineering
University of Victoria
Victoria, B.C, Canada - V8W 3P6
Email: nikitas | rsiva@ece.uvic.ca

Abstract

Hypercycles are a class of muitidimensional graphs
which are products of circulant graphs obtained by
allowing each dimension to incorporate more than two
elements and a cyclic interconnection. Hypercycles,
offer simple routing, incremental expansion, variable
diameter, enhanced fault-tolerance, and the ability,
given a fixed degree, to choose among a number of
alternative size graphs. These graphs can be used in the
design of interconnection networks for distributed
systems tailored specifically to the topology of a
particular application. In this work, we present a
deadlock-preventing routing strategy for a subset of
hypercycles and a 12 ym CMOS VLSI Hypercycle
router component which implements the deadlock
preventing routing.

1. Introduction

Message passing concurrent computers such as the
Caltech’s Cosmic Cube [1], MAX [2.3] and Intel's
iPSC [4] are examples of hypercubes that conmsist of
several processing nodes that interact via messages
exchanged over communication channels linking these
nodes into ane functional entity. The binary n-cube or
hypercube [5.6] that has been proven to be efficient with
significant speedups in many real time applications such
as computational aerodynamics, quantum physics and
image processing. However, embedded real time
applications[2,3] tend to exhibit varied structures that do
not necessarily map optimally onto the hypercubes.
Observe that the binary n-cube expands as a power of 2
and the number of communication links at each node is
given by log ,n. This constitutes a significant increase in
resource allocation especially in space, mass and power
limited environments such as in spacecrafts.

1.1 Hypercycles
Recently, a new class of multidimensional graphs called

7-75

hypercycles [1.8] have been introduced. These graphs
are products of circulant graphs [9] and offer simple
routing, variable connectivity, enhanced fault-tolerance
and range in complexity from simple rings to fully
connected graphs. They are generalizations of several
popular interconnection networks such as rings, toruses,
binary n-cubes, k-ary n-cubes(10] and generalized
hypercubes[11].

The mixed radix representation [12] is used in defin-
ing a Hypercycle. An n- dimensional Hypercycle, is a

regular undirected graph given by Q‘; = {2, £}
where AP is the set of nodes, £° is the set of edges.
m=m,,m, ;- m amixed radix, p =p,, p,; " P

ISP;SL’".'/2_J' the connectivity vector, and

A, =1012,..M-1}. Given a,B€ A, then (a, B)
€ £) if and only if there exists 1<j<n such that
ﬁj=(aj:t &j)mod mijt.h 1$§j$pjand ai=5‘_;i¢j.

Some examples of Hypercycles are shown in Fig. 1.
Msny properties and algorithms used for example in
routing and processor allocation can be extended to the
entire class of hypercycles making it possible to choose

a topology that best suits the system requirements of a
specific class of applications.

2. Deadlock-Free routing

Deadlocks occur when resources (in this case node
to node communication segments) are allocated so that
the completion of a partial path requires a segment
already allocated to a different partial path which in turn
waits for a segment in the first partial path. It is obvious
that no messages can propagate over the deadlocked

paths, and the only remedy is to break the already
established and deadlocked partial paths and try again.
Thus routing algorithms should be designed such that
deadlocks must be prevented, avoided or detected and
broken. A number of different routing policies have
been introduced for a variety of interconnection
networks. Thus in hypercubes e-cube routing [13]
prevents deadlocks by ordering the resources (ie.
channels or virtual channels) comprising a path thus
guaranteeing that no circular dependencies exist for any
paths formed. Similar approaches have been devised
for toruses and k-ary n-cubes [13-15] where virtual
channels are introduced in order to break any circular
dependencies. A different approach of deadlock
avoidance has been introduced with the Hyperswitch [5]
and the various backtracking strategies for
hypercycles [13]. There, deadlocks are avoided by
forcing a partially formed path to backtrack and try
again. These strategies appear to have excellent
throughput because they tend to utilize more available
paths leading to the destination, but they suffer from
thrashing at high offered loads. These routing schemes
do not make use of virtual channels and thus they are
well suited for circuit switching environments.

2.1 Deadlock-Prevention in Hypercycles

Deadlocks may occur easily in cases where the seg-
ments that form the paths are chosen at random. Certain
routing algorithms like e-cube prevent deadlocks by
ordering the resources (channels) to be allocated. Thus a
lower order resource cannot be committed if a needed
higher order resource cannot be obtained. It has been
proven that the e~cube routing [13,14] prevents dead-
locks in the case of the hypercube. We now introduce a
deadlock-preventing routing strategy called the priori-
tized dimension routing for a certain class of Hypercy-
cles of diameter 1 and 2 and prove that it indeed is
deadlock-preventing.

Definition 1. Given a graph G on which a circuit switch-
ing routing is used, we denote by P, the partially com-
pleted path between a source S; and a destination D,, by
1, the last node of the partial path P, and by L, the set of
all legal outgoing links from node /, which can be used
in order to complete the partial path to the destination D,

Observe that if L; =@, then I; =D; i.e. the path is
complete, while if P; =@, then /; =S; and the path has not
commenced yet.

Definition 2. With reference to a graph G on which cir-
cuit switching routing is used, we define the correspond-
ing dependence graph P = {A/E}, where A(is the set of
partially completed paths, and (P;, P) €Eiff 31 € L;
such that/ € P;.

Definition 3. We say that a set of source-destination
pairs (S, D)i=12..p is deadlocked if
VieL, 3j suchthat l€ Pii=12 .. .

Lemma 1. f a set of source-destination pairs
(S, D):i=12...10 is deadlocked, then the corresponding
dependence graph contains at least one cycle.
Proof. If there are no cycles in the dependence graph,
then it possesses at least one terminal node P. If P is a
terminal node, there does not exist a succeeding partial
path connected to P, i.e. Vi€ L —3j suchthat/€ P. But
this contradicts definition 3.
QED.
In order to achieve deadlock preventing routing, we
introduce asymmetry in the way each node routes mes-

sages. Consider the example of 2 4-node hypercycle gf,
as depicted in Fig. 1a. Node 2 can be reached from
node 0 travelling either clockwise or counter clockwise.
Similarly, node 3 can be reached from node 1 traversing
the hypercycle in two directions. If the directionality is
chosen at random, or identically for all nodes, deadlock
can occur. If on the other hand, the directionality alter-
nates, as we shall prove, deadlocks are prevented.

In a similar fashion, one can impose asymmetry in
the routing for larger graphs such as the g§ as depicted
in Fig. 1b, where if nodes 0, 1,4, and 5, route on a clock-
wise orientation and nodes 2,3,6 and 7 on a counter-
clockwise orientation, deadlocks do not occur. We shall
name this type of asymmetric routing the odd/even pref-
erence routing.

Definition 4. The p—quotient of a one dimensional

hypercycle G is defined as t!J where 0<g<m-1.
]

7-76

2.2 Odd-even preference routing

In one dimensional hypercycles Gﬁ where a
destination can be reached through two alternate routes
ie..(a-p)modm = (B~ c)modm = |a B where a is
the source and P is the destination, we define the odd/
even preference routing so as in the greedy mode, routes
originating at source nodes with an even p— quotient
proceed in the clockwise (counterclockwise) direction,
while routes originating at nodes with an odd p—
quotient, proceed in the opposite direction. If a* denotes
the pext in termediate node, then
(a+p)modm if { a/p] iseven
(a-p)modm if | a/p]| isodd

L]
a =

As an illustration, we present the dependcnce graph
shown in Fig. 2 for the odd/even routing in g4 To make
the representation of the dependence graph legible, we
have omitted the nodes comresponding to paths 012, 103
230and 321. These nodes are terminal nodes and as such
do not contribute to any possible loops. As it can be
verified, this dependence graph is devoid of loops and
thus the odd/even routing in (}fisdeadlockfme.lf
arbitrary routing was permitted, then edges such as the
one depicted by the dashed line in the diagram would be
permitted, giving rise to loops and therefore possible
deadlocks during routing. It can be shown easily that the
odd/even preference routing is deadlock preventing in
g 4 and the detailed proof is given in [16].

Theorem 1. One-dimensional hypercycles G; of diam-

eter two and | m/2] <2p have greedy routing [16] is
deadlock preventing.
Proof Since (m/2) <2p it means that any two-link
path from a source to a destination, consists of a maxi-
mum link of length p followed by a link of length less
than p. Thus, in the dependence graph, all the partially
completed paths P; such that P, » @, and L, * P coasist
of maximum links while all the requested links in the
sets L; are not maximum links. Thus
vi;€ L;i~3osuch that/ ;€ P. Therefore, a cycle cannot
exist in such a dependency graph, and the routing is
deadlock preventing.

Q.ED.

Theorem 2. One dimensional Hypercycles G with
m=4p have a deadlock preventing odd/even prefer-
ence routing.

Proof Since m = 4p, one can number the nodes of this

7-77

hypercycleas {0, 1...p-1,p, p+1,..2p-1, 2p,
2p +1. .., 4p -1}. Partition now these nodes into p
groups of four nodes each as follows.

& "= {kp+a;k=0,1,2,3}a=0,1,2,...,p-1
Observe
{kp+a+p}moddp = { (k+1)p+a} moddp€ 84
Thus, every node in each group g, can be reached from
any other node in the same group, with a path that con-
sists entirely of nodes in g,,.

Therefore, for routing purposes, an can be partitioned
in p groups, each of which is closed under the

hypercycle routing, and each can be mapped onto Qi
(kp+a e t), for which, it has been proven in Theo-
rem.] that the odd/even routing is deadlock preventing.

QED.
Theorem 3. Fully connected graphs are deadlock free.
Proof. Since the graph is fully connected (diameter 1),
all partial paths between any source-destination pair
have lengths of at most one. Therefore, the correspond-
ing dependence graph is devoid of cycles since if (P;, P)
is an edge in the dependence graph, P; =@, and thus, ac-
cording to definition 2, there cannot be another edge of
the form (P, P)).

QED.

Theorem 4. One dimensional Hypercycles g‘; with
m = 4p -k wherek = 1,2, .., 2p-2 are deadlock-free

under greedy routing.

Proof. Since (m/2) = | (4p-k)/2)j<2p for
k=12 .,2p-2, the diameter of G, is 2 and
Thearem 1 applies.

Theorem 5. One dimensional Hypercycles g" with

m
m = 4p — k wherek = 2p - lor2p are deadlock-free un-
der greedy routing.
Proof. When k = 2p-1lor2p, the diameter is 1 and
Theorem 3 applies.

QED.
Theorem 6. Generalized e-cube routing is deadlock pre-
veating on a graph that is the product of graphs each of
which possesses deadlock preventing routing.

Proof. Assume that there is a cycle in the corresponding
dependence graph. Then, there will be a sequence of
partial paths Py;i = 0,12...k, such that P, L. »® and

Vi 31‘.€L‘. such that I‘.€P(i”)modk

Observe now that because of the generalized e-cube
routing, one cannot allocate a link to a partial path unless
all the required links at a lower or equal dimension have
been allocated. Thus, I,.~<I(‘.H)modk;i =01..¢%

This implies that all the requested links must lie at the
same dimension. Thus, one can form a cycle in the
dependence graph, consisting of portions of the partial
paths relevant to this dimension. But this is not possible,
sinoeweassumedthmeachofthecomponentgraphsin
the product graph possesses a deadlock preventing

routing.
QED

2.3 Algorithm

The generalized ecube prioritized dimension routing
proceeds as follows: Routing from a source to
destination node is accomplished in order of decreasing
dimension. Given an n-dimensional hypercycle, the
following priority levels are assigned by definition.
Dimension 7 has the highest priority while dimension 1
has the least priority. When a destination address is
presented. the algorithm checks whether the destination
has been reached in dimension i, (i=n .. 1) by
comparing the source(current) and destination address
bits. If it has not, then the next shortest path address in
dimension i based on the greedy strategy is generated
based on the odd-even preference scheme using the
greedy strategy. The computed port address is then
validated based on the available ports and this
constitutes the next port address to forward the message;
otherwise a break signal is generated. On the other hand.
if the destination has indeed been reached in the i*
dimension, routing proceeds in a similar fashion in the
remaining j dimensions (of lower priority) for
Jj = i=1...1 till the source and destination address bits
are equalized.

3. Architecture

Fig. 3 gives a block diagram of an n-dimensional Hyper-
cycle router. The major functional blocks of the router
comprises of the following:

1. Four modules of Ecube decoder, one for each of the
4 dimensions.

7-78

2. Four modules of Next Port Generators (NPG).
3. Port Selector and Validator.

The Decoders and Next Port Generators establish
whether the deadlock preventing routing can be used on
the Hypercycle configured. The next port generator
implements the greedy and odd-even preference routing.
The Port Selector and Validator selects the highest
dimension if it is free, otherwise a No_Ports_Available
is generated which will cause the routing to stop and
wait until the required port is freed.

The router is programmable in that the Hypercycle
Network on which the routing is performed is described
through its mixed radix m and connectivity p vectors.
These vectors together with the node address, available
ports and destination address are stored in registers.

4. Implementation

The proposed deadlock-free router chip has been
designed and fabricated in 1.2 pum NTE CMOS
technology. The micrograph of the chip is illustrated in
Fig. 4. The designed router can be configured for a 16
port, 15 node per dimension, 4-dimensional Hypercycle
network with a maximum of 50,625 nodes. The chip has
51 pins housed in a 68-pin PGA Each decision cycle of
the Hypercycle router is composed of two phases,
namely

1. Load phase
2. Execute phase

In the Load phase, the router is initialized with data
needed for its operation during system configuration. In
this phase, the controller loads the router with
information such as the connectivity, current address,
destination address, population, offset and available
ports. Note that the above data is needed only once
during configuration,

In the Execute phase, the data loaded into the router is
processed and the resulting next port address (if an
available one is found) together with the destination
reached or wait signal is generated. The router operates
on a synchronous mode with the clock, providing a
result every 4 clock cycles after the data has been loaded
into the memory bank. It takes one clock cycle to load
eachregister.'l’hechipisdcsignedtoopemtcata
maximum frequency of 125 Mhz with 6 clock cycles per
routing decision. It incorporates approximately 20000

transistors and the measured throughput using the IMS
XL-60 test bed is 16 millioa routing decisions a second.
The router is fully testable with a fault coverage of 97 %
for single stuck-at faults. The CAD tools used in the
design process comprise of Cadence. SILOS,
VERILOG and Logic-IIT (UVIC). This router is part of
a programmable routing engine for Hypercycles which
will incorporate in addition to deadlock preventing
routing deadlock avoiding routing and be capable of
adopting the most suitable routing.

5. Conclusions and Discussions

In this work, we presented the Hypercycles, a class
of multidimensional graphs, which are esseatially
generalizations of several well known graphs including
the n-cube, toruses, k-ary n-cubes, rings etc.

Although these graphs are not the densest possible,
they are attractive, because of their variable
connectivity, simple routing, incremental expandability
and ease of implementation makes them attractive for
designing interconnection networks for concurrent
computers. Since the node addresses are represented in
a mixed radix as a sequence of n-digits, each one of
these digits is processed independently and in parallel
with the remaining digits. Thus the hardware involved in
the routing can be made fast (because of the parallelism)
and simple (since each module need only handle
arithmetic modm, as compared to arithmetic
modmm,..m, needed when all the address digits are
necessary as is the case with such networks as the
chordal rings [17], or the cube connected cycles [14].

We have established a deadlock preventing routing
strategy for a subclass of the hypercycles and demon-
strated a practical and viable silicon implementation of
a router that prevents deadlocks. We are currently de-
veloping a programmable routing engine for hypercy-
cles which will incorporate a variety of routing
strategies and be configured for a large class of hypercy-
cle topologies.

Acknowledgement

This work has been supported by the Natural Scienc-
es and Engineering Research Council Canada, under
grants #OGP0041188 and #STR013422, by the Institute
for Robotics and Intelligent Systems under the National
Networks of Centers of Excellence Program, and by the
Canadian Microelectronics Corporation

7-79

6. Bibliography

1. C. L. Seitz, “The cosmic cube”, CACM, vol. 28, pp.22-
33,Jan 1989

2. R.D.Rasmussen, N. J. Dimq)oulos, G. S. Bolotin, B. F.
Lewis, and R. M. Manning “MAX: Advanced General
Purpose Real-Time Multicomputer for Space plica-
tions™ Proceedings of the [EEE Real Time Systems ympo-
sium pp. 70-78, San Jose, CA_, Dec. 1987.

3. R.D.Rasmussen, G. S. Bolotin, N. J. Dimopoulos, B. F.
Lewis, and R. M. Manning “Advanced General Purpose
Multicomputer for Space Applications” Proceedings of
the 1987 International Conference on Parallel Processing
pp. 54-57, 1987.

4. iPSC User’s Guide, No. 17455-3, Intel Corp., Portland,
Ore., 1985.

5. Peterson, J.C.,J. O. Tuazon, D. Lieberman, M. Pniel “The
MARK Il Hypercube -Ensemble Concurrent Computer”
Proceedings of the 1985 International Conference on Par-
allel Processing pp.71-73, 1985.

6. E. Chow, H. Madan, J. Peterson “A Real-Time Adaptive
Message Routiniethwork for the Hypercube Computer”
Proceedings of the Real-Time Systems § ymposium, pp. 88-

96, San Jose . 1987.

7. N.J. Dimopoulos, D. Radvan, K F. Li “Performance Eval-
uation of the Backtrack to the Origin and Retry Routing for
Hypercycle based Interconnection Networks” Proceed-
ings of the Tenth International Conference on Distributed
Systems, Paris, pp. 278-284, 1990

8. R. Sivakumar, N. J. Dimopoules, V. Dimakopoulos, M.
Chowdhury, D. Radvan “Implementation of the Routi
Engine for Hypercycle Based Interconnection Networks”
Proceedings of the 1991 Canadian Conference on Very
Large-Scale Integration pp: 6.4.1-6.4.7, Kingston, 1991

9. G. Sabidussi “GraggoMultiplicaﬁm” Mah. Zeitschr. Vol.
72, pp. 446-457, 1960.

10. W. J. Dally “Performance Analysis of k-ary n-cube Inter-
connection Networks” JEEE Trans. Comput., Vol. 39, no.
6. pp. 775-784, June 1990.

11. L. N. Bhuyan and D. P. Agrawal, * Generalized Hyper-
cubes and Hyperbus Structures for a Computer Network”
IEEE Trans. Comput. Vol. C-33, No. 4, pp.323-333, April
1984,

12. L. N. Bhuyan and D. P. Agrawal, “Design and Perfor-
mance of Generalized Interconnection Networks™ IEEE
Trans. Comput. Vol. C-32, pp. 1081-1090, Dec. 1983.

13. W.J. Dally, J. A. Stuart Fiske, J. S. Keen, R. A. Lethin, M.
D. Noakes, P. R. Nuth, R. E. Davison, G. Fyler “The Mes-
sage-Driven Processor: A Multicompufer Processing
Node with Efficient Mechanisms™ /EEE Micro pp. 23-40,
April 1992,

14. W.J. Dally and C_ L. Seitz “Deadlock-Free Message Rout-
ing in Multiprocessor Interconnection Networks” [EEE
Trans. Comput. Vol. C-36, pp. 547-553, May 1987.

15. D. H. Linder and J. C. Harden “An Adaptive and Fault Tol-
erant Wormhole routing Strategy for k-ary n-cubes” IEEE
trans. Comput. vol. 40, No. 1, pp. 2-12, Jan. 1991.

16. N. J. Dimopoulos, M. Chowdhury, V. Dimakopoulos, and
R. Sivakumar, “Routing and Broadcasting in l?ygercycles.
Deadlock Free and Backtracking Strategies”, Proceedings
of PARLE 92, Paris, July 1992

17. M. Imase, T. Soneoka, and K. Okada, “Connectivity of
Regular Directed Graphs with Small Diameters” JEEE
Trans. Comput., Vol. C-34, pp. 267-273, Mar. 1985.

] ~ - A
1 1 —
Ecwbe
Decoder
Dimessicn &
ooceven,, | | | jOdc/even
Next Port —
{n ——~! Generstor a 4y ——]
(b) # —— A ——]
'n —s—p| Dimersione P ——
PORT 2 BE PORT I DR | ECUBE
Port Selector & Validator
d
vaidable Next Port No_Ports_Avadable Ecube
() Pl o s~ oy W et

Fig. 1 Examples of Hypercycle Graphs

. 91 B Ciriiilians g§ e e Gl ; Fig. 3. Block diagram of n-dimensional

ecube prioritized dimension router

d. Hypercube ggé

Fig. 2. Dependency Graph
for Hypercycle g}

Fig. 4. Layout of the 4-D deadlock-free router in 1.2 pm
NTE CMOS technology

7-80

