Deadlock-preventing routing in hypercycles

Routage empéchant les impasses
lors d’hypercycles

N.J. Dimopoulos an¢ R. Sivakumar,
Department of Electrical and Computer Engineering, University of Victoria, P.O. Box 3055, Victoria, B.C. V8W 3P6

13 P

Hypercycles make up a class of multi ional graphs « d by allowing each dimension to incorporate more than two elements and a cyclic
interconnection. Hypercycles offer simple routing and the ability, given a fixed degree, to choose among a number of graphs of varying size. These graphs
can be used in the design of interconnection networks for distributed systems tailored specifically to the topology of a particular application. We present
and prove a deadlock-preventing routing strategy for a subset of hypercycles, and a VLSI hypercycle router component which implements the deadlock-
preventing routing.

Les hypercycles forment une classe de graphes multidimensionnels qui sont obtenus en permettant 3 chaque dimension d’incorporer une connexion
cyclique et plusieurs €léments. Les hypercycles facilitent le routage et offrent la possibilité, pour un degré donné, de choisir parmi des graphes de
différentes tailles. Ces graphes peuvent étre employés pour le design de réseaux d’interconnexions de systémes distribués, réseaux qui sont spécialement
adaptés 2 la topologie d’une application donnée. Nous présentons cette stratégie anti-impasse dans le cas de sous-ensembles d’hypercycles et en faisons la

démonstration pour un élément de routage d’hypercycles en VLSI.

L. Introduction

Message-passing concurrent computers such as the Hypercube [1],
Cosmic Cube [2], MAX [3]-[4], iPSC [5] and J-Machine [6] consist of
several processing nodes that interact via messages exchanged over
communication channels linking these nodes into one functional entity.

There are many ways of interconnecting the computational nodes;
the Hypercube, iPSC and Cosmic Cube, for example, have adopted a
regular interconnection pattern corresponding to a binary n-dimen-
sional cube, while MAX adopts an unstructured topology.

Hypercycles [4]-[7] are products [8] of circulants. The circulants
used range in complexity from simple rings to fully connected graphs.
Hypercycles are generalizations of many popular interconnection net-
works. Binary n-cubes, k-ary n-cubes [9], generalized hypercubes,
rings, toruses, etc., are examples of hypercycles.

Many properties and algorithms that have been introduced for
hypercubes, toruses, k-ary n-cubes, etc., can be used directly, or can be
extended to the entire class of hypercycles [10]. This makes it possible
to choose a topology that best suits the system requirements of a
specific class of applications.

A number of different routing policies have been introduced for a
variety of interconnection networks. Thus, in Hypercubes, e-cube rout-
ing [11] prevents deadlocks by ordering the resources (i.e., channels or
virtual channels) comprising a path, thereby guaranteeing that no cir-
cular dependencies exist for any paths formed. Similar approaches
have been devised for toruses and k-ary n-cubes [11]-[12], where vir-
tual channels are introduced in order to break any circular dependen-
cies. A different approach to deadlock avoidance has been introduced
with the Hyperswitch {13] and the various backtracking strategies for
hypercycles {7]. There, deadlocks are avoided by forcing a forming
path to backtrack and try again. These strategies appear to have excel-
lent throughput because they tend to utilize more available paths leading
to the destination, but they suffer from thrashing at high offered loads.
Routing complexity has been extensively studied, and lower bounds
have been established for a variety of routing disciplines and graphs
by many authors. Excellent overviews can be found in [14] and [15].

Can. J. Elect. & Comp. Eng., Vol. 19, No. 4, 1994

In this work, we present a deadlock-preventing routing algorithm
for certain hypercycles. This routing does not make use of virtual
channels and thus it is well suited for circuit-switching environments.

This work is divided into the following parts. Section II introduces
hypercycles and discusses their properties. Section III presents a dead-
lock-preventing routing strategy for a class of hypercycles. Section IV
discusses the router component which has been designed and fabri-
cated, and finally we conclude with Section V.

IL. Introduction to hypercycles

A. Mixed-radix number system

The mixed-radix representation [16] is a positional number repre-
sentation, and it is a generalization of the standard b-base representa-
tion in that it allows each position to follow its own base independently
of the other.

Given a number, M, factored as M = m, x m, _ | X ... X my,
any number 0 < X < M - 1 can be represented as
(X)m,m, ,..m, =*n%n-1 %1 |m,m,,..m > Where 0 < x; < (m; - 1);

and the x;’s are chosen so that

M

i =1, 2, ..., n,

n
X= Zx,-wi and w; =

i=1 mymy_q ...M;

B. Hypercycles
An n-dimensional hypercycle is a regular undirected graph:

Sm ={9\C£.,£,e,}, where (P is the set of nodes, £f, is the set of

edges, m =m,, m,_\, .., my (a mixed radix), p = pn, Pr-15 - P13 Pi S
m/2 (the connectivity vector), determining the connectivity in each
dimension, ranging from a ring (p; = 1) to fully connected

(pi=Lm; /2_1), and &}, ={0,1,2,..,M -1}, Given o,peA],

we have (o, B)eE}, if and only if there exists 1 < j < n such that

Bj=(aj igj) mod m; with 1§, <p; and o; =B;;i#j.

194
The degree,
d=Y, f(m;.p;), where f (m;,p;)=
i=1 m,-—l if2p,-=m,-,

& |mi /2
and diameter, k = 2 [w], of the hypercycle have been
Pi

i=1

derived in (7).

The n-cube is a hypercycle withM =2x2x..x2=2"andp =1,
1,1, .., 1.

C. Routing

Hypercycles have routing properties similar to those of the n-cube.
Given nodes (Q)mm, ,..m, = QpOtpy ... ;.. 0y ADd (@*)pm, ., =
oy q...£...05, a walk from a to a* is formed as follows:
c;,,a,,_l...a,-...al, OpOtpgeeipen Oy, OOty - 1082000y ooy CpOLy - 1. €0y, SUCH
that

(g,‘,. +p;)mod m; if (§—§j,)mOdmi=|§j,.’§’|>pi O}
(5;, +]§j,v§|m°dpf)m°d'"i if (5“5,‘,)m°dmi=|§iiv§|>9i

and |§I~,,§|modp,~¢0 (b)

Eje1={(8), - pi) modm; if (&), -&)modm; =|&; .&|>p: © (1.1)
O) R R P T
and |g;.&|modp; 20 (@
3 if |&).8|<pi ©
& =, 1.2)
Emax = £ 1.3)

Equations (1.1)-(1.3) define all the minimum-length paths from a
source to a destination in a single dimension. Parts (a) and (c) consti-
tute a greedy strategy where the maximum step towards the destina-
tion is taken. Parts (b) and (d) form alternate paths by allowing the
step described in part (e) to be taken earlier. Observe that there is only
one step of length smaller than the maximum, and when it is taken it is
guaranteed that the remaining steps will be maximal.

Given an origin, (&)mm,_,..m, = Gy - 1...0;...01, and a destination,
B)mm,, ... m; = BaBn - 1...8:...81, we construct distinct paths of minimum
length, connecting them by sequentially modifying the source address,
each time substituting an intermediate walk digit determined accord-
ing to (1.1)-(1.3) for a source digit, until the destination is formed. The
following walk connects source to destination:

source = a0, . 1...Q30001, 0,0, . 1...0.3&10.1, 0,0, - 1...¢1§1(x1
o ¥4 P00 1...\1}2&1011, [o Ps PO]...B3§](¥|, ...B,,B,, . 1...833281 = destination.

If only the greedy strategy is followed, the result is a total of

q
l= -
! !
qn,q,,_l,...ql qn‘qn_]..

q'
a! connecting paths of minimum

length, with g; being the distance along dimension i. The total distance

CAN. J. ELECT. & COMP. ENG., VOL. 19, NO. 4, 1994

between source and destination is given as dis(a,b)=g= Zq,-.
We call such paths greedy paths.

As an example, in Fig. 1(a), both paths 01 11 10 20 and 01 00 1020
have the same minimum length and connect source 01 to destination
20.

III. Deadlock-preventing routing in hypercycles

In Section II.C above, we presented a routing function that estab-
lishes at least one path of minimum length from a source to a destina-
tion node. In this section, we are concerned with choosing one of these
paths. Routing must be efficient and deadlock-free. Deadlocks must
be prevented, avoided, or detected and broken. Deadlocks occur when
resources (in this case node-to-node communication channels) are allo-
cated so that the completion of a partial path requires a segment already
allocated to a different partial path, which in turn waits for a segment
in the first partial path. It is obvious that no messages can propagate
over the deadlocked paths, and the only remedy is to break the already
established and deadlocked partial paths and try again.

Deadlock may occur easily in cases where the segments that form
the paths are chosen at random. Certain routing algorithms prevent
deadlocks by ordering the resources (communication channels) to be
allocated. Thus a lower-order resource cannot be committed if a needed
higher-order resource cannot be obtained. It has been proven that the
e-cube routing [11] prevents deadlocks in the case of the hypercube.

a b
0
[1
5 2
4 3
c d

Figure 1: Examples of hypercycles: a) hypercycle G ;1; b) ILIAC IV ggg; ¢) circulant

G %; d) hypercube g;;;

" —_— -

In this section, we introduce a deadlock-preventing routing for cer-
tain hypercycles and prove that it is indeed deadlock-preventing. To
do this, we utilize the notion of a dependence graph, which describes
interdependencies between the various communication circuits as they
are formed. The proof technique consists of proving that such a de-
pendence graph is acyclic under all possible communication patterns
allowed by the routing chosen.

Definition 1: Given a graph, G, on which a circuit-switching routing is
used, we denote by P; the partially completed path between a source,
S, and a destination, D;; by J; the last node of the partial path P; and by
L; the set of all legal outgoing links from node J; which can be used in
order to complete the partial path to the destination D;.

Observe that if L; = @, then I; = D;, i.e., the path is complete, while
if P, = @, then /; = S;, and the path has not yet commenced.

Definition 2: With reference to a graph, G, on which circuit-switching
routing is used, we define the corresponding dependence graph,
? = {A; E}, where A(is the set of partially completed paths, and

(ﬂ,Pj)eziﬁazeL,-, such that [€ P;.

DIMOPOULOS / SIVAKUMAR: DEADLOCK-PREVENTING ROUTING IN HYPERCYCLES

Figure 2: Four-node hypercycle G'4.

195

Definition 3: We say that a set of source-destination pairs, (S;, D;);
i=1,2,.., 1, is deadlocked if VI€L; Jj, suchthat leP;;i=1,2,

... ity Where L; and P; are the sets of outgoing links and already formed
partial paths respectively.

In other words, a set of source-destination pairs is deadlocked if all
the links leading out of the formed partial paths are already contained
in the said partial paths.

Lemma 1: If a set of source-destination pairs, (S;, D); i= 1,2, ..., W,
is deadlocked, then the corresponding dependence graph contains at
least one cycle.

Proof: If there are no cycles in the dependence graph, then it pos-
sesses at least one terminal node, P. If P is a terminal node, there does

not exist a succeeding partial path connected to P, i.e.,, VieL 3j,

such that /€ P,-- But this contradicts Definition 3. Q.E.D.

In order to achieve deadlock-preventing routing, we introduce
asymmetry in the way each node routes messages. Take as an example
the four-node hypercycle, G'4, as depicted in Fig. 2. Node 2 can be
reached from node 0 by travelling either clockwise or counter-clock-
wise. Similarly, node 3 can be reached from node 1 by traversing the
hypercycle in two directions. If the directionality is chosen at random,
or identically for all nodes, deadlocks can occur. For example, sup-
pose that at the same time, paths 012 and 210 are in the process of
being formed, and assume that the first has already acquired segment
01, while the latter has acquired segment 21. Both paths meet at node
1 and cyclically wait for each other ad infinitum. If, on the other hand,
the directionality alternates, deadlocks are prevented, as we shall
prove.

In a similar fashion, one can impose asymmetry in the routing for
larger graphs such as the G2, as depicted in Fig. 3, where if nodes 0, 1,
4 and 5 route on a clockwise orientation and nodes 2, 3, 6 and 7 on a
counter-clockwise orientation, deadlocks do not occur. We shall name
this type of asymmetric routing the odd/even preference routing.

Definition 4: In one-dimensional hypercycles, G°, where a destina-
tion can be reached through two alternate routes (i.e., when (o — 8)
mod m = (8 — @) mod m = | a, B}, where « is the source and B is the
destination), we define the odd/even preference routing so that in the
greedy mode, routes originating at source nodes with an even p-quo-
tient} proceed in the clockwise (counter-clockwise) direction, while

t Given integers a and p, we define as the p-quotient of o the quantity Lot /p] -

B

Cors

Figure 3: Eight-node hypercycle 6.

Figure 4: Dependence graph for G'u.

196

routes originating at nodes with an odd p-quotient proceed in the
opposite direction. If o* denotes the next intermediate node, then

(o +p)mod miflo/pJiseven
(oo +p)mod miflL_o/pis odd.

Example 1: To illustrate the definitions stated above, we present the
dependence graph for the odd/even routing in G4 in Fig. 4. To make
the representation of the dependence graph legible, we have omitted
the nodes corresponding to paths 012, 103, 230 and 321. These nodes
are terminal nodes and as such do not contribute to any possible loops.
As can be verified, this dependence graph is devoid of loops, and thus
the odd/even routing in G4 is deadlock-preventing. If arbitrary rout-
ing were permitted, then edges such as the one depicted by the dashed
line in the diagram would be permitted, giving rise to loops and there-
fore possible deadlocks during routing.

Theorem 1: In G !4 the odd/even preference routing is deadlock-pre-
venting.

Proof: By construction. Example 1 constructed the dependence graph
for G !4 and odd/even preference routing. A full proof can be found in
[17]. Q.E.D.

In the subsequent treatment, we make use of the terms maximum-
length and link length. One-dimensional hypercycles can be visualized
as rings with chords. Thus, any node will have links connecting it to its
two immediate neighbours lying to its left and right (i.e., to nodes
(o £ 1) mod m), but also to more distant nodes through the chords
(i.e., to nodes (a £ x) mod m, x < p). Links therefore can be differen-
tiated by whether or not they correspond to the chords, as well as by
the length of the chord.

Definition 5: The length of a link connecting nodes « and (a * x)
mod m in a one-dimensional hypercycle, Gnf, is defined to be x.
If x = p, then such a link is called a maximum-length link.

Theorem 2: One-dimensional hypercycles, G »*, of diameter two and
L. m /2 _1<2p have greedy routing as outlined in section I.C, which
1s deadlock-preventing.

Proof: Since | m/2_) <2p, any two-link path from a source to a
destination consists of a maximum-length link of length p followed by
a link of length less than p. Thus, in the dependence graph, all the
partially completed paths, P;, such that P; # @, and L; # @, consist of
maximum links, while all the requested links in the sets L; are not

maximum links. Thus V/; €L; 30, such that [; € Fs. Therefore, a

cycle cannot exist in such a dependence graph, and the routing is
deadlock-preventing. Q.E.D.

Theorem 3: Fully connected graphs are deadlock-preventing.

Proof: Since the graph is fully connected (diameter 1), all partial paths
between any source-destination pair have lengths of at most one.
Therefore, the corresponding dependence graph is devoid of cycles
since, if (P;, P;) is an edge in the dependence graph, P; = @, and thus,
according to Definition 2, there cannot be another edge of the form
(P, P). QE.D.

Proofs of Theorems 4, 5 and 6 can be found in the Appendix.

Theorem 4 establishes a class of one-dimensional hypercycles
(circulants) of diameter 2, for which deadlock-preventing routing can
be established. These hypercycles can be distinguished by the fact that
source-destination pairs at distance two can be reached either through
a maximum length link followed by a non-maximum-length link, or, if
two maximum-length links are required for the path, then there exist
two alternate paths which connect the source to the destination. The
fact that the paths are composed of a maximum followed by a non-

CAN. J. ELECT. & COMP. ENG., VOL. 19, NO. 4, 1994

maximum-length link in conjunction with the existence of two alter-
nate paths for the cases where two maximum-length links are required,
is used to guarantee that cycles do not exist in the dependence graph.

Theorem 4: One-dimensional hypercycles, G »f, with m = 4p, have a
deadlock-preventing odd/even preference routing.

We are now ready to define a deadlock-preventing routing for
multidimensional product graphs. In the generalized e-cube routing, a
link cannot be reserved uniess all the necessary links at higher dimen-
sions have been allocated to the path forming. Specifically, consider a
start node, S = a0ty - 1...04)...0¢;...a1, Which is connected to node Dy =
Qpip - 1.-:8jn. o0ty through link /; and to node D; = oyt - 320180t
through link 5. Then link /; is considered to be a higher-dimension
link as compared to link L, and this is denoted by /; < /;. For example,
in G 34 (see Fig. 1), link (00, 01) is of a lower dimension as compared
to link (00, 20), while links (00, 01) and (00, 02) are of the same
dimension.

Theorem 5: Generalized e-cube routing is deadlock-preventing on a
graph that is the product of fully connected graphs.

Examples of graphs mentioned in Theorem 5 are the Hypercube
and the Generalized Hypercubes [16].

Theorem 6: Generalized e-cube routing is deadlock-preventing on a
graph that is the product of graphs, each of which possesses deadlock-
preventing routing.

IV. Router implementation

We have designed, implemented and tested a hypercycle router
component that implements the deadlock-preventing routing discussed
in Section III. The architecture of an n-dimensional router is given in
Fig. 5. The major functional blocks of the router are:

1. n modules of e-cube decoder, one for each of the n dimensions;
2. n modules of next port generators (NPGs);
3. port selector and validator.

The e-cube decoders and next port generators establish, in each
dimension, whether the odd-even preference routing is required as per
Definition 4 and Theorems 1 and 4. The next port generator imple-
ments the greedy and odd-even preference routing. Specifically, it cal-
culates, given the destination, the address of the current node and the
topology as specified by m and p, the port that may be used to continue
the path along the dimension controlled by the next port generator in
question. Notice that for each dimension i, there are 2p; edges connect-
ing to neighbouring nodes in the graph. Each of these edges represents
a bidirectional communications channel. A number of ports on each
router are used to deliver the messages to the communication media
used to realize the interconnect. Depending on the topology, subsets of
these ports are allocated to each dimension, and the next port genera-
tor calculates the appropriate port to be used [18]. The set of next port
generators in the router will therefore yield one or more ports over
which the path may be extended towards the destination. The port
selector and validator module is responsible for choosing one of the
ports suggested by the next port generators to continue the path. Ac-
cording to the generalized e-cube routing as discussed above, the path
must be extended along the port corresponding to the highest dimen-
sion. If this port is free (i.e., it is not being used by any other path), it
is selected by the port selector; otherwise, a No_Ports_Available sig-
nal is generated, indicating that the path is blocked and a wait is re-
quired until the port is freed. Specifically, the port selector and
validator module performs the following functions:

1. checks whether the programmed hypercycle configuration is ad-
missible for deadlock-preventing routing;

2. validates the computed ports by comparison with available free
ports;

3. selects the highest-dimensioned port if it is free; otherwise, gener-

ates a No_Ports_Available signal;

signals when the next computed port address is ready;

informs whether the destination has been reached.

wn b

DIMOPOQULOS / SIVAKUMAR: DEADLOCK-PREVENTING ROUTING IN HYPERCYCLES 197

my Pn m, P
b 4 r'd 4
y
Ecube Ecube
Decoder Decoder
Dimension n .o Dimension |
odd/even , odd/even ; |
/ Y
= Next Port = Next Port
&, —»—m»| Generator &, —~—p»{ Generator
By ——»] | B g
PPn —ps—pwi Dimension n PP} —ptpge] Dimension }

PORT,| DR

ECUBE,

PORT,| DR,| ECUBE,

Y

Port Selector and Validator

Available Result

Ports

Ready

Next Port No_Ports_Available Ecube Destination
Address (Break/WaitSignal Reached

Figure 5: Block diagram of the deadlock-preventing router.

A VLSI chip implementing the discussed deadlock-preventing rout-
ing strategy for hypercycles has been designed and fabricated using
1.2 um NTE CMOSA4S technology (Figs. 6-7). The micrograph of the
chip is given in Fig. 5. The designed router is programmable and can
be configured for any hypercycle interconnection network with up to
15 nodes per dimension, and up to four dimensions. There is a maxi-
mum of 16 ports. Examples of large deadlock-preventing hypercycles

implementable with this router include the gggszsz with 4096 nodes,

the g3, 3, 4 4 with 2304 nodes, the g3 3, 1 } with 1584 nodes,

etc. The chip has 51 pins housed in a 68-pin PGA and it incorporates
19 624 transistors.

Each decision cycle of the hypercycle router is composed of a Load
followed by an Execute phase. During the Load phase, the router is
loaded with the Destination address and the list of available ports. The
Execute phase computes the next port address and outputs it, provided
that the port is free. A No_Ports_Available signal is generated if the
required port is not free, and a Destination_Reached signal is gener-
ated when the present node is indeed the intended message destina-
tion.

The Load phase requires two clock cycles (one each to load the
available ports and the destination), while the Execute phase requires
four clock cycles for a total of six clock cycles per decision.

The chip was characterized by a worst-case propagation delay of
78 ns. The propagation delay is defined as the time between the onset
of the load phase and the time at which the port number appears at the

..,"-'ff:*'?;n’ iw i

4 i Ay iy Mmm.,Jﬁ'r i

’#tﬂ-.'

S TINAEE | S

Figure 6: Layout of the deadlock-preventing router in 1.2 u NTCMOS4S technology.

198

output. Because of the large propagation delay incurred at the output
pads, the load phase can be overlapped with the output phase of the
previous decision cycle, with a commensurate decrease in the latency
to 62 ns.

The deadlock-preventing router discussed in this section will form
part of a routing engine capable of being configured for a number of
hypercycles and a variety of routing policies. The structure of such a
routing engine is depicted in Fig. 8. It comprises a controller, a crossbar,
an interface and a number of routers. The controller intercepts messages
arriving at the routing engine either from the local node or the neigh-
bours. It extracts the destination from the header of the message and
passes it to one of the routers, which will compute the port through
which the message is to be forwarded. Then the controller configures the
switch to effect the connection prescribed by the router. Observe that the
existence of a number of different routers (i.e., backtracking [21], dead-
lock preventing, etc.) allows the use of the most appropriate routing
policy based on the traffic characteristics.

V. Conclusions and discussion

In this work, we presented the hypercycles, a class of multidimen-
sional graphs which are essentially generalizations of several well-

0O D0 000D OoO00O00o0OCoo

Available Ports

Address Decoder Register

Control

Register:Banks
]

2 ! 3

f
i
1
i
|
! H

| .
Next Port Gener:ator
amli Ecube Decoder Modules
'
! 2 [3

T
|
|
|
|
|
!

i

Port Validator & Selector
Module

0O 00000000 ooDooOm

Output
Register

Iy w3 e Y s o R e s R e e Y i Y e s

Figure 7: The floor plan of the router depicted in Fig. 6.

To Local Node To Neighboring

Nodes

[mp {

From Local
Node

v ¢
(0

Controller
SWITCH
| | i
Fs
£ .
g - c
£ og 2 i
- B 5 T
rt g% o3
53 A=)
2

Figure 8: The structure of the routing engine.

CAN. J. ELECT. & COMP. ENG,, VOL. 19, NO. 4, 1994

known graphs including the n-cube, toruses, k-ary n-cubes, rings, etc.

Although these graphs are not the densest possible, they are attrac-
tive because of their simple routing. Since the node addresses are rep-
resented in a mixed radix as a sequence of n-digits, each one of these
digits is processed independently and in parallel with the remaining
digits. Thus the hardware involved in the routing can be made fast
(because of the parallelism) and simple (since each module need only
handle arithmetic mod m;, as compared to arithmetic mod m;m,...m,,
needed when all the address digits are necessary, as is the case with
such networks as the chordal rings [19] or the cube connected cycles

[20]).

We have established a deadlock-preventing routing strategy for a
subclass of the hypercycles and presented a deadlock-preventing
router, which has been fabricated. We are currently developing a
programmable routing engine for hypercycles which will incorporate
a variety of routing strategies and be configurable for a large class of
hypercycle topologies.

Appendix

A. Proof of Theorem 4

Since m = 4p, one can number the nodes of this hypercycle as {0, 1,
wsPp=1,pp+1,..,2p~-1,2p,2p + 1, ..., 4p — 1}. Now partition these
nodes into p groups of four nodes each, as follows: g, = {kp + a; k = 0,
1,2,3}a=0,1,2,..,p— 1. Observe that {kp + a + p} mod 4p =
{(k+1)p +a} mod 4p ¢ g,. Thus, every node in each group g, can
be reached from any other node in the same group, with a path that
consists entirely of nodes in g,. Therefore, for routing purposes, G n°
can be partioned in p groups, each of which is closed under the
hypercycle routing, and each can be mapped onto G !4 (kp + a <> k),
for which it has been proven (Theorem 1) that the odd/even routing is
deadlock-preventing.

For routes which originate at a node in one of the groups and termi-
nate at a node in another group, observe the following. Any arbitrary
node in the graph belongs to a specific group, g,, or is directly acces-
sible from a node in this group. Indeed, a node n can be written as n =
kp+x=(kp+rx)ymodm=(kp+a+(x—a))modm; 0<a<p-1.
Since 0 £ x < p ~ 1, therefore - (p — 1) x — a < p — 1, and thus node
n is directly accessible from node kp + a € g,. Also, since m = 4p, the
diameter of G, is 2. Thus, routes which connect nodes belonging to
two different groups, g, and g,, comprise either one link or two links:
one of maximum length p (within the group containing the node of
origin), followed by a link of length less than p. Thus the argumenta-
tion used in proving Theorem 2 applies as well. Q.E.D.

B. Proof of Theorem 5

Assume that there is a cycle present in the dependence graph. Name
the sequence of partial paths which form the cycle as P; i = 0, 1, 2,
- k, such that P;, L; # @. Since this sequence of partial paths forms a
cycle, therefore VI3l; € L;, such that /; € P . 1) mod k- Observe now
that because of the generalized e-cube routing, a link of a higher di-
mension cannot be allocated unless all the lower-dimensioned links
required have been allocated. Thus /; < lishymoaws i=0,1, ..., k. But
this is a contradiction because of the transitivity and strict ordering of
the relation < .Q.E.D.

C. Proof of Theorem 6

In a similar manner to that employed in Theorem 5, assume that
there is a cycle in the corresponding dependence graph. Then, there
will be a sequence of partial paths, P, i = 0, 1, 2, ..., k, such that P;,

L;#@ and V! 31[EL[, such that [; ¢ P(,',, 1) mod -

Observe now that because of the generalized e-cube routing, one
cannot allocate a link to a partial path unless all the required links of a
lower or equal dimension have been allocated. Thus, [; < li+ 1) mod &3
i=0, 1, .., k. This implies that all the requested links must lie at the
same dimension. Thus, one can form a cycle in the dependence graph,
consisting of portions of the partial paths relevant to this dimension.

DIMOPOULOS / SIVAKUMAR: DEADLOCK-PREVENTING ROUTING IN HYPERCYCLES 199

But this is not possible, since we assumed that each of the component
graphs in the product graph possesses a deadlock-preventing routing.
Q.E.D.

Acknowledgements

This work has been supported by the Natural Sciences and Engi-
neering Research Council of Canada under grant #0GP0001337, by
the Institute for Robotics and Intelligent Systems under the National
Networks of Centres of Excellence Program, and by the Canadian
Microelectronics Corporation.

References

{1] J.C. Peterson, J.O. Tuazon, D. Lieberman and M. Pniel, “The MARK III hypercube-
ensemble concurrent computer,” in Proc. 1985 Int. Conf. on Parallel Processing,
1983, pp. 71-73.

{21 C.L. Seitz, “The cosmic cube,” CACM, vol. 28, no. 1, Jan. 1985, pp. 22-33.

[3] R.D. Rasmussen, G.S. Bolotin, N.J. Dimopoulos, B.F. Lewis and R.M. Manning,
“Advanced general purpose multicomputer for space applications,” in Proc. 1987
Int. Conf. on Parallel Processing, 1987, pp. 54-57.

[4] R.D. Rasmussen, N.J. Dimopoulos, G.S. Bolotin, B.F. Lewis and R.M. Manning,
“MAX: Advanced general purpose real-time multicomputer for space applications,”
in Proc. IEEE Real Time Syst. Symp., San Jose, Calif., 1987, pp. 70-78.

[5] iPSC User’s Guide, Intel Corp., Portland, Ore., No. 17455-3, 1985.

[6] W.I. Dally, J.A. Stuart Fiske, J.S. Keen, R.A. Lethin, M.D. Noakes, P.R. Nuth, R.E.
Davison and G. Fyler, “The message-driven processor: A multicomputer processing
node with efficient mechanisms,” IEEE Micro, vol. 12, no. 2, April 1992, pp. 23-40.

[7] N.J. Dimopoulos, D. Radvan and K.F. Li, “Performance evaluation of the backtrack
to the origin and retry routing for hypercycle based interconnection networks,” Proc.
Tenth Int. Conf. on Distributed Syst., Paris, 1990, pp. 278-284.

[8] G. Sabidussi, “Graph multiplication,” Math Z., vol. 72, 1960, pp. 446-457.

9
[10]

(1]

(12}

[13)

[14]

[19]

[16]

(17]

(18]

(19}

{201

[21]

W.J. Dally, “Performance analysis of k-ary n-cube interconnection networks,” JEEE
Trans. Comput., vol. C-39, no. 6, June 1990, pp. 775-784.

NJ. Dimopoulos, S. Radhakrishnan and D. Radvan, “Routing and processor alloca-
tion on a hypercycle-based multiprocessor,” Proc. 1991 Int. Conf. on
Supercomputing, Cologne, Germany, June 1991, pp. 105-114.

W.J. Dally and C.L. Seitz, “Deadlock-free message routing in multiprocessor inter
connection networks,” IEEE Trans. Comput., vol. C-36, no. 5, May 1987,
pp- 547-553.

D.H. Linder and J.C. Harden, “An adaptive and fault tolerant wormhole outing strat-
egy for k-ary n-cubes,” [EEE Trans. Comput., vol. C-40, no. 1, Jan. 1991, pp. 2-12.
E. Chow, H. Madan and J. Peterson, “A real-time adaptive message routing network
for the hypercube computer,” in Proc. Real-Time Systems Symp., San Jose, Calif.,
1987, pp. 88-96.

D.P. Bertsekas and J.N. Tsitsiklis, Paralle! and Distributed Computation, Englewood
Cliffs, N.J.: Prentice Hall, 1989.

L.G. Valiant, “General purpose parallel ures,” in Handbook of Theoretical
Computer Science, J. van Leeuwen, Amsterdam: Elsevier Science Publishers B.V.,
1990, pp. 945-971.

L.N. Bhuyan and D.P. Agrawal, “Design and performance of generalized intercon-
nection networks,” IEEE Trans. Comput., vol. C-32, no. 12, Dec. 1983, pp. 1081-
1090.

N.J. Dimopoulos and R. Sivakumar, “Deadlock preventing routing in hypercycles,”
in Proc. Int. Workshop on Principles of Parallel Proc. (OPOPAC), 1. Lavallé and Y.
Paker, Eds., Paris: Hermes, 1993, pp. 47-61.

D. Radvan, “Performance evaluation and router design for backtrack-to-the-origin-
and-retry routing in hypercycle-based interconnection networks,” M.A.Sc. thesis,
Dept. of Electrical and Computer Engineering, University of Victoria, Victoria, B.C,,
1990.

M. Imase, T. Soneoka and K. Okada, “Connectivity of regular directed graphs with
small diameters,” JEEE Trans. Comput., vol. C-34, no. 3, Mar. 1985, pp. 267-273.

G.E. Carlsson, J.E. Cruthirds, H.B. Sexton and C.G. Wright, “Interconnection net-
works based on a generalization of cube-connected cycles,” JEEE Trans. Comput.,
vol. C-34, no. 8, Aug. 1985, pp. 769-772.

R. Sivakumar, N.J. Dimopoulos, V. Dimakopoulos, M. Chowdhury and D. Radvan,
“Implementation of the routing engine for hypercycle based interconnection net-
works,” in Proc. 1991 Can. Conf. on Very Large Scale Integration, Kingston, Ont.,
1991. pp. 6.4.1-6.4.7.

e

