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Optimal and Suboptimal Processor Allocation
for Hypercycle-based Multiprocessors

Nikitas J. Dimopoulos and Vassilios V. Dimakopoulos

Abstract—Allocating nodes in a concurrent computer system depends
on the topology of the system. In this work, we present a number of
processor allocation strategies for Hypercycle based concurrent systems.
Hypercycles is a class of multidimensional interconnection networks
which includes such widely used networks as the binary n-cubes, A-ary
n-cubes, generalized hypercubes etc. The allocation strategies presented
include a statically optimal first-fit allocation, a suboptimal-first fit, and
strategies with extended search space through the inclusion of additional
search lists formed by permuting the base through which a hypercycle is
defined. For all these strategies, we examine their optimality and present
simulation results characterizing their performance relative to each other.

I. INTRODUCTION

Message passing concurrent computers such as the Hypercube [17],
Cosmic Cube [20], MAX [18], [19], consist of several processing
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nodes that interact via messages exchanged over communication
channels linking these nodes into one functional entity.

There are many ways of interconnecting the computational nodes,
the Hypercube and Cosmic Cube, have adopted a regular intercon-
nection pattern corresponding to a binary n-dimensional cube, while
MAX adopts a less structured, yet unspecified topology. Binary n-
cubes have been extensively studied mainly because of the nice
properties of their structure. Recently, other more efficient topologies
have been proposed, an example being the k-ary n-cubes ([9]). The
networks we consider in this paper are a unification of most of these
topologies under a single class.

Hypercycles [11]-[14] can be considered as products of “basic”
graphs. The set of component “basic” graphs are circulants [5],
ranging in complexity from simple rings to fully connected graphs.
Hypercycles are generalizations of many popular interconnection
networks including binary n-cubes, k-ary n-cubes, generalized hy-
percubes {4], rings, toruses, etc.

Many properties and algorithms used for example in routing and
processor allocation can be extended to the entire class of hypercycles
making it possible to choose a topology that best suits the system
requirements of a specific class of applications.

In this work. we are examining the problem of processor allocation
for hypercycle-based multiprocessors. A number of different alloca-
tion strategies have been proposed for the hypercube multiprocessors.
Chen and Shin {6] proposed a strategy that searches a list of allocation
bits corresponding to the nodes of the muitiprocessor. Nodes whose
addresses have identical most significant bits, belong to the same
subcube and can be allocated to a request. The allocation strategy is
similar to the well known buddy-strategies. and has been proven to
be statically optimal. The use of gray codes to form the addresses
of nodes [6] doubles the number of recognized subcubes over the
buddy strategy. The authors also proposed the utilization of more
than one distinct gray codes to recognize more subcubes, ()( l"';2J )
being the number of gray codes necessary to recognize all the possible
subcubes in an n-cube. This strategy of performing a linear search
over a list of 2" allocation bits has a complexity of Q(k2") if k
gray codes are employed. Another family of bit-mapped strategies
is given in [2] allowing a more complex search over the allocation
bits. resulting in improved subcube recognition. The simplest of the
algonthms recognizes (# — k + 1) as many k-subcubes as the buddy
strategy does and has an estimated complexity of O(n2" ) in the worst
case. The extended buddy tree strategy presented in [1] genaralizes
some of the search strategies presented in [2] by controling how deep
in the buddy tree the search for a free subcube is allowed to proceed.
Mutlipte lists, as a means for parallel allocation, are also suggested
in [1] and complete subcube recognition can be had by adjusting
the number of trees each processor is responsible for, and the search
depth parameter. A best-fit allocation is also considered in [1].

A strategy that does not utilize allocation bits was proposed in
[15]. A list of all the free subcubes is used instead. decomposing
free subcubes to smaller ones if there is not a matching subcube
during the allocation of a request, and coalescing freed nodes to
form higher dimension subcubes during relinquishment. The objective
of the actions taken is to keep a list with the largest number of
high-dimensioned subcubes, called maximal set of subcubes (MSS).
Finding an MSS is proved in [15] to be NP-hard so approximating
algorithms were proposed that reduce the complexity to O(n2") in
the worst case. The free-list strategy proposed in [16] keeps separate
(n+1) lists, list k contains the free k-subcubes. Allocation is done the
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same way as in [15] but relinquishment is much faster due to a simpler
coalescing scheme.The free-list strategy is thus faster (but does not
keep an MSS as in {15]), statically optimal and has complexity of
O(n2"). Finaly, the strategy presented in [8] achieves complete
subcube recognition by a means of tree-collapsing transforms, is
statically optimal and on the average is usually faster than the multiple
gray codes and the free-list strategies.

In this work we are proposing several allocation strategies appli-
cable to the general class of hypercycles. These strategies include
a generalization of the buddy allocation scheme for the case of the
hypercycles and the proof of its static optimality, the introduction
of a nonstatically optimal strategy that exhibits a better performance
for dynamic loads as well as the inclusion of additional search lists.
based on permutations of the hypercycle base, for both the optimal
and the nonstatically optimal strategies. We have also identified the
permutation producing the most efficient allocation. The results are
dircctly applicable to any of the subclasses of hypercycles, so in
essence the proposed strategies are actually allocation strategies for
the k-ary n-cubes, the generalized hypercubes, etc.

Thus, Section II introduces the Mixed Radix System, and presents
a brief introduction to hypercycies and the routing policies used.
Scction I introduces the first-fit allocation strategy and proves that
it is statically optimal. In addition, a nonstatically optimal first-
tit allocation is also introduced in Section III. In Section IV we
present a number of alternative startegies that use more than one
atlocation lists and we derive the more efficient one for the case of
uniform hypercyles. Section V discusses the simulation experiments
performed to characterize the allocation strategies proposed, while
Scction VI concludes the work.

[I. INTRODUCTION TO HYPERCYCLES

A. Mixed Radix Number Svsiem

The mixed radix representation {3], is a positional number rep-
resentation, and it is a gencralization of the standard h-base rep-
resentation, in that it allows each position to follow its own base
independently of the others.

Given a decimal number A/ factored into n factors as M =

t, X i, X --- %X m, then any number 0 < X < M -1 can
be represented as

(-\ )'"""'u—l my = dndn- "'Illmnm,‘_r--ml

where 0 < v, < (m, — )10 =
s0 that

1.2.---.n. The r,’s are chosen

X= i I,

where ', = m,_ym,_y---m.and wy, = 1.

B. Hvpercycles

An n-dimensional hypercycle is the regular undirected graph
Gm = {NMn.Em}. where
M=Mp,Mn—1,Mn—-2,**,M).
is a mixed radix constituting the basis of the hypercycle,
P = PnyPr—1s s Pr=2iipi <M1 [f2,

is the connectivity vector, determining the connectivity in each
dimension which ranges from a cycle (p; = 1) to fully connected
(pi = [mi/2]), and

m=1{0,12,- M- 1} is the set of nodes.
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Fig. 1. Examples of hypereycles.

The edge set is defined as follows: given .. € \yy then (a. §) €

o

& if and only if there exists 1 < j < n such that
S0 # .
Hypercycles, have degree o and diameter & given by [11]

4, = (o, &) modm,  with 1 < <y, and o, =

d = ZI(:M..,M where  flm,.p,)
R

2,
“im, -1

L:Z[M]

=1 n

if 2p, < m,
if 2p, = m,

Hypercycles include the rings as one-dimensional cases. They
also include the binary n-cubes (M = 2 x 2 x ---x2 = 2"
and p = 1.1.1.---.1). The k-ary n-cubes are hypercylces with
M =Fkxkx---xk =k"and p = 1.1.1.---.1. Finally.
the generalized hypercubes have fully connected dimensions, i.e.
p. = Lm./2] for every i. Fig. | shows some example hypercycles.

C. Routing in Hypercycles

Before presenting the routing equations of hypercycles, we would
like to emphasize the importance of routing in the allocation proce-
dure. The processors allocated to a job should be able to communicate
efficiently which means that they should be as close as possible
to each other and that other processors in the network should not
interfere with the former ones. These conditions are met when the
allocated portion of the network is (in the terminology of the next
section) closed under the routing scheme.

Hypercycles, have routing properties that are similar to those of the
n-cube. Given nodes (a)m mp_1-mi=my = AnQp_yp - Qi a1
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and (a*)"'n'"n—-l"'"'i""'nl = (\unn—l"'g"'ﬂ'l. a walk,
from node a to node ao* can be constructed as follows:
anﬁ'n—l"'a’i"'ﬂ'l-n’nﬂ’n—l"'fl"'n'l-(\uﬂn—l"'62"'0'1»

ce-,@pap—y €+ ay, such that'

( (€, + pi)mod m,

if[(€~ &) modm, =g, €l >p. ()
(& + 1€5;, €l mod p, ) mod m;

if[(€~ &) modm, = |g,.€]] > p.

and |[¢;;,§| mod p; # 0 (b)

(€, — pi) mod m;

if [(f]. - f)mod m; = I&j;‘* EI] > pi (c)
(fji - Ifji’ fl mod p;) mod m;

if [(§; ~ ) mod m; = ¢, &[} > pi

Eiitr1 =4

and |€;,. €| mod p; # 0 @
13
L if6né < p (e)
o =, Emax = € 2.1

Equation (2.1) defines all the minimum-length paths from a source
to a destination in a single dimension. Parts (a) and (c) constitute
a greedy strategy where the maximum step towards the destination
is taken. Parts (b) and (d) form aiternate paths by allowing the step
described in part (e) to be taken earlier.

Given an origin (a)m,m,_,;--m, = Qnan—;---a; and a des-
tination (3)m,m,_,-m; = Bndni-- 31 then distinct walks of
minimum length that connect them are constructed by sequentially
modifying the source address, each time substituting a source digit
by an intermediate walk digit determined according to (2.1), until the
destination is formed. The following walk connects a to ;3

Q =a, - a3a01ian 0 cazbiagia, - e6ag:
an - P1€aaian -ty 620y:
- Ylaan; - tan - - Ha€aag:

Tt /3.-. e /33;32.31 = .5

In Fig. l(a). one can recognize the following distinct walks
of equal length, that connect source 01 1o destination 20:
{01:00:10: 20}. {01:11:10: 20}. {01: 11:21: 20}. {01: 31: 21: 20},
{01:31:30: 20}. {01 00: 30: 20}.

In interconnection networks, deadlocks must be prevented or
avoided. Routing such as the e-cube, which is applicable to hy-
pecubes, prevents deadlocks by ordering the resources (i.e., com-
munication links) to be allocated and preserving the order during
allocation. Also, various forms of two-phase locking [22] can be
employed which avoid deadlocks dynamically by forcing a blocked
path to backoff {7].

We have developed a number of backing-off and backtracking
strategies applicable to the entire class of hypercycles. In addition, we
have generalized a form of the e-cube routing and made it applicable
to a subset of the hypercycles which includes hypercubes, generalized
hypercubes, some k-ary n-cubes and some dense rings and toruses.
Details are reported in [12]-{14].

ITI. PROCESSOR ALLOCATION

In this section, we shall investigate the problem of allocating
processors in a hypercycle-based concurrent computer to incoming
jobs. The hypercycle in question has M nodes and is characterized by
the mixed radix base, m,,mn—1,-- -, m. For our purposes, a job is
considered as a collection of tasks which can execute concurrently. A
job therefore requires a portion of the processors in order to execute.

'We define ja,b| = min{(a — b)modm;. (b — a)modm,}

We consider a sequence of requests corresponding to a sequence of
incoming jobs, each requesting a minimum number of nodes. We
shall use a first-fit strategy, where the first unallocated fragment
that can accommodate the request is assigned to the incoming job.
Fragments generalize the notion of the subcube and as we shall see,
fragments can accommodate all communication needs generated by
member nodes internally, localizing thus jobs and preventing them
from interfering with other jobs running in other parts of the system.
We shall prove that this strategy is statically optimal, and it requires
minimal searching. Our strategy is a generalization of a similar one
reported in {6] for hypercube multiprocessors.

First, we shall define the notion of a fragment, introduce an
ordering relation which arranges the nodes of the hypercycle, and
establish that fragments can indeed accommodate all communication
requests internally. .

Definition 1: Given two nodes b = bnbn—i---b and b =
bubn_y ---by we say that b lies before b and denote b < b iff there
exists an index 1 < & < n such that b, <bi and b, = b,:i =
n.on—1.-.- k+1

The above defined ordering relation arranges the set of nodes in
a unique sequence.

Definition 2: A region R is defined as a set of consecutive nodes,
ie, Rla,b) = [a.b] = {v|la < v < b} U {a,b}.

Definition 3: Given two regions R and R we say that R lies
before R and denote R < R iff for every node b in R and every
node b in R we have b < b.

In the subsequent, we shall use the symbol * within a sequence
of factors, to indicate that the corresponding factor may attain any
of the allowed m values (0.1..--m — 1). Similarly, the notation **
indicates a sequence of k *, i.e., a sequence of k factors each attaining
any of the allowed values. This notation is very useful in defining
sets of nodes. For example, with reference to hypercycle Gi11.3**
denotes the set of nodes {300.301.310.311.320,321}.

Definition 4: A fragment is a region whose nodes have identical
most significant digits. Nodes with identical most significant digits
belong to the same fragment. We denote a fragment as

Flbuboy - biar) Thabooy - byt =
{h]l: =byby_y---hioy I
3,e{0.1.---m, — 1}
j=kk-1.---1}.
Definition 5: The fragments {b,,b.,_,~-~I»“-IJH.“'[JH. €
{0.1.-- - my41—1}} that comprise the fragment F(bpba—y -+ biya}

are called buddies.

Definition 6: A subgraph is closed under the hypercycle routing
as defined above. iff all the intermediate nodes required to complete
a path between a source and a destination are nodes of the subgraph.

Allocating closed potions of a graph ensures locality of communi-
cation, i.e., all the links needed to form a path between a source and
a destination are inside the allocated subgraph. This way, tasks do
not interfere with each other as long as they are allocated different
subgraphs. For n-cubes it can be easily shown that subcubes are
closed under the e-cube routing. For the general class of hypercycles
we have the following equivallent result.

Lemma I: Fragments are closed under the hypercycle routing.

To see why this is true, let a = bpby_;---byyrak---a;
and 3 = babn—1---bk4+18k--- 51 be two nodes in the fragment
F(bubn—y -+ biet1). According to the routing (2.1), any intermediate
node x on the path from a to 3 will be of the form £ =
bnbu—1---br+1&k---§1 and, by definition, it will belong to
F(bpbn_y---bkt1).
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A. First-Fit Processor Allocation in Hypercycles

Because of the ordering relation < presented in Definition 1 above,
one can arrange the nodes of any hypercycle in a linear fashion and
number them from 0 to M — 1. The first-fit allocation strategy utilizes
a list of allocation bits numbered from 0 to M — 1 and corresponding
to the nodes in the hypercycle. If a processor has been allocated to a
job, its corresponding allocation bit is set to 1, otherwise it is cleared
to 0.

The first-fit allocation strategy searches the list until it discovers
a region of unallocated processors corresponding to a fragment with
a size equal to that of the request. If such a region is found, the
corresponding allocation bits are set to 1, and the strategy tries to
accommodate a subsequent request. The allocation bits are cleared as
soon as the job assigned to the corresponding nodes is terminated.

In detail, with reference to a hypercycle, the first-fit allocation
strategy can be described as follows.

1) First-Fit Allocation Strategy:

1) Let |f,| be the size of the smallest fragment that will fit the
Jth request I,.

2) Find the least integer m such that all the allocation bits in
the region [m|f;}. (m + 1)|f;| — 1] are zeroes, and set all the
allocation bits in this region to 1.

3) Allocate nodes with addresses in the region to request I,.

2) Processor Relinquishment:

1) Reset the allocation bits of the released region to zero.

The first-fit strategy has worst-case complexity of O{ M) where M
is the number of processors in the hypercycle. This is because every
allocation bit is checked only once and at most all the M allocation
bits have to be checked.

Definition 7: If requests are constrained to have sizes equal to
those of fragments, an allocation strategy is statically optimal if
u can accommodate any sequence of requests {I.}/_, such that
Sl €my xmyoy X+ xmy = M.

In what follows we adopt the terminology used in [6] and prove
that the above algorithm is statically optimal.

Definition 8: A fragment F(bpbn_y---bry1) = babu_y---
hi.1*' is said to be a hole if and only if this region is available, but
at least one of the fragments? b,b,—y - - - [bxs1 ] +* is not.

Let {h,05)}'=, denote the sequence of holes resulting from the
allocauon of fragments to the sequence of requests {I.}/_,. Fur-
thermore, the sequence is arranged in lexicographical order so that
the ith and Ath holes, /,(j) and hi (), satisfy h,(j) < b (j)if i < k.

lLemma 2: Ifh(j)=bybnoy--- bk.H*k for some /. then by 4 #
0.

Proof: Suppose that by = 0. Then the region bpbn_ -+ - 0*F
is a hole. which means that at least one of the fragments
buby-y---[0].** is unavailable. But this contradicts the first-fit
search of the allocation strategy.

[

Lemma 3: Given a sequence of holes {h:(j)}/=, resulting from
the sequence of requests {I.}/_,, we will have:

1) Ihr(.l)l < 'hl+l(j)|;i<u

2) If there exists ¢ such that |h;(j)|<|his1(j)| then
o= R (] < TRitr (5)]

Proof:

1) Suppose that there exists ¢ such that A =
fRi(jH>lhi+1(j)] =  he. This means that hole
hiz1(j) = babn—1---brj1** is located after hole
hi(j) = 5n5"_1---5k+,+1*"+’(a > 1). Since the

2[bk41]: denotes the ith element of the set [bgyq] = {0.1.+ -+ . mE4r1 ~
1} = {bxy1 }-
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fragment bpbn_,---bey1** is a hole, then the fragment
bnba_1---0% of size h, is occupied. But this is contrary
to the first-fit allocation strategy, since the fragment
bbp_1 brygs 0---0*% of size hp lying before
bnbu—1---0** is available (as part of hole h;(j)).

2) Given the hole it = bnbn_ - - - bkt1** of size |h| = my x
mg_y X .-+ x m,. observe that it is located in the region
R = babn_y---bryo* ™! and by Lemma 2, the fragment
F = bubp_y---bry20** has been allocated. If there was a
hole of size |h| before the region R, then the fragment F
should not have been allocated since its allocation would have
contradicted the first-fit allocation strategy. Similarly, if there
is a hole of size |h| in a region R’ = biby_y - biyp***!
which lies after region R. then, by Lemma 2, the fragment
F' =blbl,_, - b, ,0%F is allocated. But this is also contrary
to the first-fit strategy since the hole h is before the fragment
F'. The conclusion is that there exist at most mg4+; — 1 other
holes of size |h|. Thus if h41(j) = bnbn_y ceebpr*t s a
hole. there exist at most

{m, — 1) holes of size |
{m2 — 1) holes of size m,

{mi — 1) holes of size my_; X --- x m,

while the size of b, 41 (J) is |h41(J)| = mexme_ X+ -xm,.
Thus -

t k p—1
SN < S (mp = 1) [ ma
p=1 r=1 A=1

= X mg_y X--Xmy—1

<mg Xy X x g = e ()]

Theorem 1: The first-fit allocation strategy is statically optimal.

Proof: Let {I,}/_, be a sequence of requests such that
I H € my xm oy x - M. where M is the
number of nodes in the hypercycle. We will prove the theorem by
induction on 4. If we had only one request. it would trivially be
allocated as long as it requires at most M nodes. Assume now
that the sequence of requests { [, }22} can be accommodated by the
first-fit strategy. and denote by {h,(j — 1)},=, the sequence of holes
resulted from this allocation. We shall prove that {I, }/_, can also be
accommodated. i.e. |h, (j —1){ > |I,|. provided that ©/_ |I.| < M.

1} Assume that {h,(j — 1)| > {h,—1(j — 1}{- Then, by Lemma 3,

X o=

=1

Y b = D<= 1)

n=1

@a.n

Also. the number of nodes allocated plus the number of nodes
still unallocated (i.e.. in holes) equals the total number of nodes
in the network, that is,

1=

S G-+ S L =M=
A=l

r=1
u—1 J—1
hui= D1+ D> G = DI+ D =M=
A=1 r=1
u=—1
(= DI+ D hati = 1
A=l

J—1 .
=M=~ || 215l G2
r=1 .-
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because of the assumption /_,|I.| > M. Combining (3.1)
and (3.2), one obtains

2|hu(j - )| > |1

Since both A, (j — 1) and I, are fragments, and since there are
no fragments available such that 2|h, (j — 1)| > |I;] > |hu(j —
1)}, then |I;] < [hu(j — 1)].

2) Assume that [hy(j — 1| = |hy—,(j — 1)| and denote by a
the number of holes in the region where holes {h,(j — 1] and
[hu-1(j—1)| are located. If by (j—1) = bpbn_y - - - b, ¥ 1,
then from the definition of a hole and footnote 2, a < Mg,
Then, in the sequence of holes {h;(j - 1)}, produced by the
first (j — 1) requests, there are a holes of equal size followed
by zero or more smaller holes. Thus,

(G — Dl =lhuci(G = 1) =+ = |hy_(auny(j — 1)|>
>lhuctaeiy-1(G = D2+ > |h(j - 1)

Lemma 3, gives

u—(a—1}-1

2

A=1

Jha(j - 1)| < hu—(a-13(s = 1)} 3.3)

Also, because the sum of all the holes and allocated fragments

sums up to the number of nodes in the hypercycle, we have

u j—1
DG =D+ Y =M=

A=1 r=1
Yo G -1
A=u—(a—1)
u—=(a—1)—1 j—1
+ 3 G-I+ YL
A=1 r=1

u—(a-~1)-1

2

A=

= M= ah,(j - 1) + i -1

1—1
M= > L) (3.9

because of the assumption T!_, |.{ < M. Combining now
(3.3) and (3.4), we obtain

(a+ Dlhu(j = 1) > |1,]

Since both hy(j — 1) and I; are fragments, and since there
is no fragment F available such that m, |H.(j — 1)}
> [F1> {hu( = 1) then |I;} < hu(j = 1))

B. Nonstatically Optimal First-Fit Allocation

‘The first-fit allocation as described in Section HI-A above is
statically’ optimal, but it allocates processors in fragments. These
fragments (depending on the population of nodes in each dimension)
offer a limited way to partition the hypercycle, and thus waste
resources by allocating the next larger fragment to a given request.
The next larger fragment is normally larger than twice the size of the
immediately smaller fragment.

In order to alleviate this problem, we are proposing a nonstatically
optimal first-fit allocation strategy which can allocate portions of a
fragment (called segments). In this section, we shail describe the
nonstatically optimal first-fit allocation strategy, and show that this
strategy is not statically optimal. Yet, simulations as presented in
Section V, have determined that it outperforms the optimal first-fit
allocation under dynamic loading, while retaining similar complexity.

01

00 02

11

segment

10 12

21
20 t 21

31
30 32

fragment

Fig. 2. Fragments and segments in a hypercycle.

Definition 9: A segment is a subset of a fragment and is defined as
S(bnbp_y - bk+1[lk, Tk])
={b)b =bpbn—1 - brgroi Iy Ay
L Lo <re,3;€{0,1.---m, = 1}:
j=k-1,---,1},

where I < ry and

my . my
re—lk<{ 2 lfpk<[7J~
mi +1, otherwise

A segment is a collection of contiguous fragments of the immedi-
ately lower dimension; it includes (r, — /i) fragments of dimension
k — 1. Observe that if px = |m/2]. then full connectivity exists
in dimension k and a segment may inciude any number of the
my (k — 1)-dimensional fragments. In the case that dimension &
is not fully connected, a segment may include up to only half this
number. This is a necessary limmitation in order to maimtain closure
for segments under the hypercycle routing.

Fig. 2 further illustrates the notions of a segment and a frag-
ment. There, the following sets of nodes arc examples of frag-
ments Fo = {00.01.02,10,11.12,20.21.22.30.31.32}. F, =
{30.31.32}. while {10,11,12,20,21,22} is a segment of F,. and
{30.31} is a segment of F;.

Lemma 4: Segments are closed under the hypercycle routing.

Proof: Let a = and
3 = baba-1---bk41Br-+-B1 be two nodes in the segment
S(bnby_y---bigi[le,7e]). According to the routing (2.1), any
intermediate node £ on the path from a to .3 will be of the form
€ =Dbubn_1---brs1&k -+~ &1 In the case where pi < [1ni/2]. since
i apide <riand re — I < my /2, we must have [, < & < ry.
In case of full connectivity, i.e. pr = [m/2|. then necessarily
e S& = 3k <ri. Thus £ € S(bnbn_y -« brs[li. ri]) always.

bnbn_l ""U;-’-I“L AR d B

]
The nonstatically optimal first-fit allocation, searches a list of
linearly arranged nodes of the hypercycle, in a similar fashion as the
first-fit discussed in Section III-A above. It searches the allocation list
until it discovers a region of unallocated processors corresponding to
the smallest segment capable of accommodating the request. If such a
region is found, the corresponding allocation bits are set to 1, and the
strategy tries to accommodate a subsequent request. The allocation
bits are cleared as soon as the job assigned to the corresponding
nodes is terminated.
In detail, the nonstatically optimal first-fit allocation strategy can
be described as follows. Note that since all the allocation bits may
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N <<&<<>

Request Sequence 1 2 1 2

Fig. 3. Counter example for the nonstatically optimal first-fit strategy.

be checked, the worst case complexity of the algorithm is, as in the
first-fit case, O(M).
Nonstatically Optimal First-Fit Allocation

1) Let |s;| be the size of the smallest segment comprising »
fragments of size | f| that will fit the jth request I,. Denote by
| f*| the size of the immediately larger fragment that contains
the segment s;.

2) Find the least integers m and & such that k|f]| + |, < |f*]
and all the allocation bits in the region [m|f*| + k| f}. m|f*| +
E|f| + |s;| — 1] are zeroes, and set all the allocation bits in
this region to 1.

3) Allocate nodes with addresses in the region to request /,.

Processor Relinquishment:

1) Reset the allocation bits of the released region to zero.

Theorem 2: If requests are limmited to a segment, the nonstati-
cally optimal first-fit allocation strategy is not statically optimal.
Proof: Through a counter example. As depicted in Fig. 3
given the hypercycle G}i and the sequence of segment requests
{1.2.1.2.2.2}. this sequence cannot be accommodated in the said
hypercycle eventhough the total number of requested nodes exactly
maiches the total number of nodes in the graph.
|
One should note that static optimality by no means guarantees a
good dynamic performance. The nonstatically optimal first-fit strategy
is expected to perform much better than the statically optimal first-fit
stategy simply because it partitions the hypercycle in smaller portions.,
and is less redudant for the case where requests do not match the
size of frgaments. This is indeed the case as it will be demonstrated
through simulations in Section V; the nonstatically optimal strategy
achieves superior results as compared to the first-fit allocation in terms
of delay. Note, also, that the nonstatically optimal first-fit startegy
reduces exactly to the first-fit startegy when the sizes of the requests
match those of fragments.

[V. PERMUTING THE HYPERCYCLE BAasis

Further improvement to the performance of the allocation can be
had if there was a way to include in the search more fragments and
segments or to choose the size of the fragments so as to best fit the
size of the requests.

The use of multiple gray codes was proposed in [6] to improve the
efficiency of the first-fit allocation in the case of hypercubes. The use
of more gray codes permits the recognition of more subcubes and
thus increases the efficiency of the allocation.

In the general case of hypercycles, the use of gray codes is not
possible. Instead, we have chosen to permute the basis used to name
the hypercycle in use, and perform the first-fit (or the nonstatically
optimal first-fit) on the list of nodes that correspond to the chosen
permutation(s). Such permutations result in isomorphic hypercycles
{11], but with a different collection of fragments (segments) increas-
ing thus the possibility that unallocated nodes would coalesce to form
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fragments (segments) of sufficient size to be allocated to the current
request.

Of all the possible subgraphs. the first-fit strategy utilizes only a
small portion. Consider for example the hypercycle with M factored
as M = m, X mu—; X --- X my. The k-dimensional fragments
are limited to subgraphs described by addresses formed by placing &
‘*'s in the rightmost address digits. As an example, a subgraph of the
form *b,_1bn—2--- b is not recognized. The same subgraph would
be recongizable (as a fragment), if the factors of M were permuted
as M =ma_y X Ma_g X--- X M| X Mnp.

In general, k **'s can occur in any of the n positions in a subgraph’s
address. Suppose that the ith placement of these k ‘*’s occurs in the
positions described by the set pY. that is, p¥ is the set of positions
where a ‘*’ has replaced an address digit. Then the total number of
possible k-dimensional fragments is given by

() [ -
Z H m,

=1 =1
sept

4.1

The first-fit strategy can only recognize placements of the form
pt = {k.k—1.---.1} out of the (} ) possible placemems of k-
on an n-digit address. For example, the hypercycle Gilll hasa l()ldl
of 61 2-dimensional subgraphs while the first-fit allocation strategies
discussed previously, can only utilize 15 2-dimensional fragments of
the form byb «x.

By permuting the factors of M (called the basis of the hypercycle)
more fragments are recognizeable, and thus allocated. The search
space of both the first-fit and the nonstatically optimal strategies is
cxpanded by including lists of nodes that correspond to the chosen
permutations of the basis. The search proceeds sequentially over the
chosen lists of node names according to the algorithms presented
in Sections I1I-A and -B. until a region of unallocated nodes 18
found that corresponds to a fragment or a segment accomodating
the request. If such a region cannot be found. the search continues
with the subsequent list until an unallocated region is found or the
available lists are exhausted. All the lists are mapped to the same
sequence of allocation bits.

In using several lists, holes which appear separate in onc it
may combine to produce a larger hole in another list. und thus
accommodate a larger request. One such example of the usc of the
permuted basis is given in Fig. 4. As it can be seen, a request for
three nodes cannot be allocated since the unallocated nodes 06 10
20 do not constitute a hole under the original (unpermuted) basts
(Fig. 4(b)). On the other hand. if the search is extended to include
the list associated with the clock-wise rotation, the above three nodes
are combined into a hole (Fig. 4(c)) which can now be allocated.

If I’ permutations are used then the compexity of the allacation
strategy becomes (O(PP )M ). that is. there exists a tradcoff between
performance and running time. As (4.1) suggests, an cxcessive
number of permutations is needed for complete fragment recognition
as was also observed for the case of hypercubes in [6]. Nevertheless,
our simulation studies showed that a relatively small number of
permutations are enough to improve the performance considerably.

A. Multiple List First-Fit for Uniform Hypercycles

Notice that in general the factors of the hypercycle are different
and, thus, permuting them results in different fragment sizes, so that
the selection of the best set of permutations becomes intractable. The
case is different, though, when all the factors of M are equal to each
other. Such hypercycles are called uniform; the binary hypercubes
and the k-ary n-cubes are two important topologies in this class. A
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Fig. 4. Allocation utilizing two lists corresponding to naming permutations
of the same hypercycle.

uniform hypercycle has M = m" = 1 x 11 x - -- x m nodes. In this
section we derive the set of two permutations that result in optimal
performance when used with the multiple-permutation strategies.

Moreover, the incorporation of the additional list(s). does not alter
the static optimality of the strategy since any sequence of requests
with a total size being less than or equal to the size of the hypercycle
can be accommodated according to the first-fit strategy as discussed
in Section IlI-A, by using the original allocation list.

Obviously, one needs to choose permutations so that the total
numer of recognized fragments is maximized. This is done when
permutations that have no fragment in common are used. Let the un-
permuted basis be called original permutation. We have the following
lemma.

Lemma 5: A permutation » = (:",. A zl) recognizes
completely different fragments from the original permutation
(nmi.1) if and only if {ry.ra.---.xe} # {1.2,---k} for
all k = 1,2,---,n — 1.

Proof: In the case that {z,.z2,---,24} = {1,2,---k} for
some k, then the fragment 00..0** belongs trivially to both permu-
tations. Suppose now that for all k, {z, za,---, 2z} # {1.2,--- k}.
If there existed a fragment common to both permutations, then
under the original permutation it would have an address A =

n—1 - |

byby_y -+ bryr**. Under the permutation . the & “*’s would also
be in the rightmost positions, i.e. the corresponding address would
be B = b, bs,_, - br,,,**. and no ‘*' appears in positions
k4 1.k+2,---,n of B. Thus the & least signifficant digits of A
are mapped to the & least signifficant digits of B, contradicting the
assumption {xy,x2, -, rx} # {1.2.-- -k}

Selecting permutations with no common fragments is not enough,
though. Consider the case where a request cannot be allocated by the
original permutation, although there exists space in the allocation list.
This can only be the case when the existing holes are not buddies
(see Definition 5) and consequently cannot be combined to form the
required fragment. One needs to choose the permutation(s) so that it
maximizes the number of holes which cannot be combined to form
a larger fragment during the first-fit search, but can be combined
to a larger fragment as they are mapped through the subsequent
permutation(s). In what follows, we shall prove that in uniform
Hypercycles, clock-wise rotations can map m fragments of equal
size which are not buddies to a single fragment of size equal to
times the size of the individual fragments: this is true for fragments
having any size between m® and """,

Definition 10: Given a set of n integers 1.2.---n. we call a
permutation 7w a generalized shift if it maps the last A numbers onto
the last A + 1 positions for every \ = 1.2...-n — 1.

The following are examples of generalized shifts

_ n n-1 n——‘.f e 1
= n—-1 n-2 1 u

_ n n—-1 n—-2 n-3 --- 2 1
Z\n-1 n -3 wn-2 - 1 2

Lemma 6: In uniform n-dimensional hypercycles, only general-
ized shifts map fragments of size n/'”' into a fragment of ise
m* A =1.2,---n.

Proof: Assume a generalized shift = and a fragment .F. =
fufoucn ...wa\—l.

Because = is a generalized shift. then there will be a position
a.n >0 > Asuchthat A > =(a) > | and

A2r(jy2 1l Vj=N-1.A=2... 1.
Then the fragments
-7:1=fnfn—l"'fa-{-I[fn].fn—l"‘

and Fo map into fragment X' = r.r,_(---
f’r“(J)‘

Conversely, assume that any o fragments of the form F, =
i i i =0,1,2. -4 ~ 1. map into the fragment
X =ruany - 234 *). Then obviously the A — 1 last digits map
into the X last positions. Thus = is a generalized shift.

frrr-

A
£a* where o, =

.

Theorem 5: In uniform n-dimensional hypercycles, the only gen-
eralized shift that maps a collection of n: fragments of size mi' ™",
which are not buddies in the original permutation, into a frag-

ment of size m*, A = 1,2,---n is the clock-wise rotation = =
( n n—-1n-2--. l)
n—-1n-2 - 1 n/°

Proof: By construction.

Because of the previous lemma. only generalized shifts map
fragments of size m*~! into a fragment of size m* A =1.2.---n.

For A = 1, it means that the permutation must map 1 either to
itself or to 2. (i.e. (1) = 1 or w(1) = 2). If = (1) were to be
1, then given the fragment F = f, f._, --- f; and according 10 the
construction in the previous lemma, fragments F; = f, f._; - - (A
would map to fragment X = f, f._; --- fo*. But fragments F and
F; are buddies. Thus # must be such that n(1) = 2.
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Suppose that

1) =2,7(2)=3,---,x(A) = A+ 1. 4.2)
We will show that #{A + 1) = A + 2:4 < »n — 2. Because
of Lemma 6, and assumption (4.2) above, n(A + 1) = A + 2
or M{A+4+1) = 1. If #(A+ 1) = 1, then fragments F =
fafnor+ faxr* and Fi = fo fa_i -+ faga[fase)i*® would map
into X = fufaoi-- faz2***'. But F and F; are buddies. Thus,
m(A+1) = A+2; A < n—2, and since 7 is a permutation, m(n) = 1.
L]
The clock-wise rotation was proven to be the only permutation
that is able to combine holes that are not buddies so as to form
fragments of a higher dimension. For any other permutation, the
holes themselves are broken, and their constituents are mapped
to different subgraphs, making thus their combining into a larger
fragment impossible. The optimality of the clock-wise rotation is
finally ensured by the fact that it also belongs in the class of
permutations that recognize different fragments than the ones the
unpermuted basis does, as per Lemma 5. The enhanced performance
of the clockwise rotation was confirmed through our simulation
results, to be presented in Section V.

B. Node Allocation Through an Optimal Permutation
for Nonuniform Hypercycles

In the case that the hypercycle in question is not uniform, then
a permutation of the factors of its basis, produces a topologically
identical network, but its nodes combine to produce a different
collection of fragment sizes as we noted earlier. Selecting the best
permutations becomes a difficult task, heavily dependent on the load
characteristics. It is advantageous, then, to choose the permutation
which produces fragments whose sizes match the closest to the sizes
requested in the request sequence. The following heuristic procedure
can be used in order to obtain the “best” permutation.

Let n; denote the jth permutation, out of the ! possible permu-
tations of the basis for the hypercycle G/"/n=' "L, . Under this
permutation, a k-dimensional fragment, has size Fl = m—igy X

M —tg gy X o0 X "l'—l(l):k = 1.2.---n — 1. Using the first-fit
slra;egy, a request asking for / nodes is then allocated a fragment
of size F'[i], where F’[i] will be equal to F/. for k such that
Fl_\<i < Fl = F'[i].

If we are given the load characteristics in the form pi = probability
of a request asking for / nodes, then the quantity 4’ = SN, pi-
Fi [i] gives the average number of allocated nodes per request for
permutation 7 ;. The permutation that minimizes the average number
A’ of allocated nodes per request is chosen. A similar expression can
be derived for the nonstatically optimal allocation strategy.

The minimization, of course, carries a considerable overhead as
n increases. Assuming, though, that the load characteristics change
slowly, the proposed scheme becomes viable in that the minimization
is carried out infrequently. The load characteristics may be known or
established dynamically as requests are delivered.

V. SIMULATION STUDIES

We have constructed a simulator capable of simulating the behavior
of the first-fit, the nonstatically optimal first-fit allocation strategies
and also able to search on sequences of nodes derived by permuting
the basis used to describe the hypercycle under simulation.

We have conducted three classes of experiments.

The first class of experiments assumes that the requests have
arbitrary sizes (up to and including the maximum number of nodes
in the hypercycle), and then the request is rounded up to the closest
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1
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Fig. 5. Average queueing delay versus the inverse of the average interarrival

time () for the hypercycle G33is.
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Fig. 6. Average queueing delay versus the inverse of the average interarrival
time (A) for the hypercycle G2211.

fragment or segment that contains it. The size of the requests is
uniformly distributed.

Job run times are uniformly distributed between 3 and 7 clock
ticks. Job arrival is Poison distributed. Our simulator uses a FIFO
queuing discipline in that jobs are queued as they arrive, while jobs
from the head of the queue are dispatched as soon as nodes became
free in the graph. The Average Delay, being the time spent by the
tasks waiting in the queue before they were allocated, averaged over
all the tasks allocated during the simulation was measured.

The purpose of these experiments was to establish the relative
performance of the first-fit and the nonstatically optimal first-fit, as
well as the effect of using permutations to increase the number of
fragments/segments which are recognizable by the allocation strategy.

The second class of experiments is governed by the same assump-
tions but the load is no longer uniformly distributed. The simulations
were run with an arbitrary ordering of the factors defining the
hypercycle, and then with the permutation which optimally matched
the traffic characteristics according to the discussion in Section [V-B.

The third class of experiments assumes that the requests arrive one
every clock tick. The experiments were run for uniform hypercycles
which included the 3-, 4-, and 5-cube as well as G111, The requests
were assumed to be of sizes which matched the fragment sizes of
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Fig. 7. Average queueing delay versus the inverse of the average interarrival
time (A) for the hypercycle G2Z11. The requests are poison distributed while
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of 7.5. Permutation (5, 4, 3, 2) is an arbitrary permutation while permutation
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Fig. 8. Average queueing delay versus the inverse of the average interarrival
time (A) for the hypercycle G221} . The requests are poison distributed while
their sizes arefollowing a gaussian distribution with mean of 60.5. and variance
of 7.5. Permutation (5,4,3,2) is an arbitrary permutation while permutation
(2,5,4,3) was chosen to best fit the characteristics of the traffic.

the simulated hypercycle and were uniformly distributed between
1 and the maximum fragment for the hypercycle in question. The
job duration was also uniformly distributed. The run was limited
in duration to 100 clock ticks and repeated 10 000 times with the
measured delay averaged over the number of times the experiment
was run. The purpose of this class of experiments was to establish
the relative performance of the use of gray codes as compared to the
use of permuted bases in naming the nodes of a uniform hypercycle.

The results of these experiments are presented in Figs. 59 and
Tables I-IV.
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Fig. 9. Average queueing delay versus the inverse of the average interarrival
time () for the hypercycle GZZ11. The requests are poison distributed while
their sizes are uniformly distributed in the interval [1, 120]. Permutation (5,
4, 3, 2) is an arbitrary permutation while permutation (2, 3. 4. 5) was chosen

to best fit the characteristics of the traffic.

TABLE [
DELAY FOR SEQUENCES OF FRAGMENTS IN THE 3-CUBE
(Task DuraTioN UNiFORMLY DISTRIBUTED IN (2. 6])

POLICY DELAY

Gray Code 12.572
First-Fit 12.791
First-Fit with 321,123 12.750
one additional 321,312 12.744
permutation 321,132 12.710
321,231 12.375

321,213+ 12.362

* (clock-wise rotation)

TABLE 11
DELAY FOR SEQUENCES OF FRAGMENTS IN THE 4-CUBE
(Task DuRATION UNIFORMLY DISTRIBUTED IN {2, 6])

POLICY Delay

Gray Code 6.798
First-Fit 7.048
First-Fit with 4321,1234 7.038
one additional 4321.1243 7.036
permutation 43211324 7.035
4321,1423 1.029

4321,1342 7.028

4321,1432 7.022

4321,2143 6.995

43212134 6.995

43212314 6.952

4321,2413 6.883

43213124 6.543

43213142 6.534

43213214+ 6.520

* (clock-wise rotation)

From the figures corresponding to the first class of experiments
(Figs. 5 and 6), one can surmise that the nonstatically optimal first-fit
allocation has a better performance as compared to the first-fit. This is
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TABLE Il
DELAY FOR SEQUENCES OF FRAGMENTS IN THE 5-CUBE
(TAsK DURATION UNIFORMLY DISTRIBUTED IN {3, 7])

POLICY DELAY
Gray Code 8.814
First-Fit 9.092
First-Fit with 54321,12345 9.091
one additional 54321,13245 9.091
permutation 54321,15432 9.088
5432121543 9.080
54321,43215* 8.497

* (clock-wise rotation)

TABLE 1V
DELAY FOR SEQUENCES OF FRAGMENTS IN THE HYPERCYCLE

G1111 (Task DURATION UNIFORMLY DISTRIBUTED IN (5, 8])
POLICY DELAY
First-Fit 6.229
First-Fit with 43212134 6.247
one additional 43212143 6.246
permutation 43212314 6.231
4321,1342 6.229
4321,1423 6.229
4321,1243 6.229
4321,1324 6.229
4321,1234 6.229
4321.1432 6.228
4321,2413 6.223
4321,3142 6.187
43213124 6.187
4321,3214* 6.186

* (clock-wise rotaton)

due to the nonstatically optimal’s ability to better utilize the available
nodes by allocating segments. Also both the first-fit and nonstatically
optimal first-fit benefit from the use of multiple permutations in that
the search is extended to more fragments and/or segments in the
graph.

A similar picture emerges from the second class of experiments. As
it can be seen in Figs. 7-9, the permutation chosen to optimally match
the request characteristics has a better performance than any randomly
chosen ordering of the factors of the basis of the hypercycle; this is
true for all the considered loads. For clarity we have only included
the graphs corresponding to the original permutation and the “best™
perrnutation as derived in Section IV-B.

Finally, as it can be seen in Tables I-IV the first-fit aliocation
benefits from the use of clock-wise rotations (denoted by an asterisk).
As a matter of fact, the first-fit allocation with a clock-wise rotation
outperformed the use of gray codes [6] in all the three hypercubes
considered. The complexity of either strategy is similar and this was
verified experimentally® by our simulations. In addition, the optimal-
ity of clock-wise rotations was maintained for uniform hypercycles
(as it can be seen in Table IV).

3For example, for the case of the 3-cube and for simulatiops lasting for
100 ticks and repeated 100 times, the innermost loop of our simulator (the
loop that checks whether a region is free) was executed 76026 times for the
first-fit with an additional clock-wise rotation and 85881 times for the first-fit
utilizing a Gray Code.
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VI. CONCLUSIONS

In this work, we presented a number of allocation strategies for
hypercycle-based multiprocessor systems. These strategies are of the
first-fit type, and include a statically optimal first-fit and a syuboptimal
first-fit wchich is more efficient for dynamic loads.

Additionally, we investigated the effects of searching through lists
of nodes which have been permuted. We proved the existence of
permutations which coalesce existing holes into larger regions so that
larger requests can be accomodated. We have simulated the proposed
strategies and confirmed our theoretical predictions. A more detailed
treatment of the results presented in this paper can be found in {10].

The work reported here is part of a larger project to study
and develope hypercycle-based multiprocessors. Some preliminary
results on routing, performance and implementation are reported in
[11]-[14], [21].
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