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..\bstracl-Allocalin!( nodes in a concurrenl compuler ~yslem depends
on Ihe lopolo~v of Ihe system. In this work, we presenl a number of
processor allocation strategies for Hypercycle based concurrenl syslems.
Hypercycles is a class of multidimensional interconnection nelworks
\\'hich includes such widely used networks as the binary ll-cubes, /'--ary
ll-cubes, generalized hypercubes etc. The allocalion slralegies presented
include a statically optimal first-fit allocation, a suboptimal-first fit, and
strategies with extended search space through the inclusion of additional
search lists formed by permuting the base through which a hypercycle is
defined. For all these strategies, we examine their optimality and present
simulation results characterizing their performance relative to each other .

I, INTRODUcnON

Message passing concurrent computers such as Ihe Hypercube [ 17].
Cosmic Cube [20], MAX [18], [19], consisl of several processing
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nodes that interact via messages exchanged over communication

channels linking these nodes into one functional entity.

There are many ways of interconnecting the computational nodes,

the Hypercube and Cosmic Cube, have adopted a regular intercon-

nection pattern corresponding to a binary ll-dimensional cube, while

MAX adopts a less structured, yet unspecified topology. Binary /1.-

cubes have been extensively studied mainly because of the nice

properties of their structure. Recently, other more efficient topologies

have been proposed, an example being the k-ary II-CUbeS ([9]). The

networks we consider in this paper are a unification of most of these

topologies under a single class.

Hypercycles [11]-[14] can be considered as products of "basic"

graphs. The set of component "basic" graphs are circulants [5],

ranging in complexity from simple rings to fully connected graphs.

Hypercycles are generalizations of many popular interconnection

networks including binary n-cubes, k-ary "-cubes, generalized hy-

percubes 141, rings, toruses, etc.

Many properties and algorithms used for example in routing and

processor allocation can be extended to the entire class of hypercycles

making it possible to choose a topology that best suits the system

requirements of a specific class of applications.

In this work. we are examining the problem of processor allocation

for hypercycle-based multiprocessors. A number of different alloca-

tion strategies have been proposed for the hypercube multiprocessors

Chen and Shin [6) proposed a strategy that searches a list of allocation

bits corresponding to the nodes of the multiprocessor. Nodes whose

addresses have identical most significant bits, belong to the same

subcube and can be allocated to a request. The allocation strategy is

similar to the well known buddy-strategies. and has been proven to

he statically optimal. The use of gray codes to form the addresses

of n(Jdes 161 doubles the number of recogniled subcubes over the

buddy strategy. The authors also proposed the utilization of more

than one distinct gray codes to recognize more subcubes, 0( L..i2j )

heing Ihc number of gray codes necessary to recognize all the possible

suhcubes in an "-CUbe. This strategy of performing a linear search

ov.:r a li"t of :?" allocation bits has a complexity of ()( ./..2" ) if ~.

gray cod.:, ar.: employed. Another family of bit-mapped strategie~

is gi\'.:n ill I~I allowing a more complex search over the allocation

bit~. r.:,ultlnl:! in impro\'ed subcube recognition Th.: simplest of th.:

algorithm" r.:cognizes ( " -./.. + 1) as many ~.-subcubes as the buddy

strat.:gy d(Jes and has an estimated complexity of 0( 112" ) in the worst

case. The extended buddy tree strategy presented in ( I] genaralizes

some of the search strategies presented in I~I by controling how deep

in the buddy tre.: the search for a free subcube is allowed to proceed.

Mutliple lists, as a means for parallel allocation, are also suggested

in ( II and complete subcube recognition can be had by adjusting

the number of tree~ each processor is responsible for, and the search

depth parameter. A best-/it allocation is also considered in [ I ).

A strategy that does not utilize allocation bits was proposed in

[151. A list of all the free subcubes is used instead. decomposing

free ~ubcubes to smaller ones if there is not a matching subcube

during the allocation of a request, and coalescing freed nodes to

form higher dimension subcubes during relinquishment. The objective

of the actions taken is to keep a list with the largest number of

high-dimensioned subcubes, called maximal set of subcubes (MSS).

Finding an MSS is proved in [15] to be NP-hard so approximating

algorithms were proposed that reduce the complexity to 0( n2n ) in

the worst case. The free-Iist strategy proposed in [16] keeps separate

( n + 1) lists, list ./.' contains the free k-subcubes. Allocation is done the
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same way as in [ 15] but relinquishment is much faster due to a simpler 01

coalescing scheme. The free-Iist strategy is thus faster (but does not
keep an MSS as in [ 15]), statically optimal and has complexity of 02

0( 1/2" ). Finaly, the strategy presented in [8] achieves complete

subcube recognition by a means of tree-collapsing transforms. is
statically optimal and on the average is usually faster than the multiple 12

gray codes and the free-Iist strategies. @In this work we are proposing several allocation strategies appli-
cable to the general class of hypercycles. These strategies include 22

a generalization of the buddy allocation scheme for the case of the

hypercycles and the proof of its static optimality, the introduction

of a nonstatically optimal strategy that exhibits a better performance 32

for dynamic loads as well as the inclusion of additional search lists. J 1 1J1
based on permutations of the hypercycle base, for both the optimal Hypercycle 43 Binary 3-cube r; 222

and the nonstatically optimal strategies. We have also identified the (a} (b)

permutation producing the most efficient allocation. The results are .-:- -::-,

dircl:lly applicable to any of the subclasses of hypercycles, so in

csscnl:e the proposed strategies are actually allocation strategies for

Ihc h..ary II-CUbeS, the generalized hypercubes, etc.

Thus. Section II introduces the Mixed Radix System, and presents

a brief introduction to hypercycles and the routing policies used.

Scl:tion III introduces the first-fit allocation strategy and proves that

Iit is statically optimal. In addition, a nonstatically optimal first-

lit all(JCation is also introduced in Section III. In Section IV we

prescnt a number of alternative startegies that use more than one

alhJCation lists and we derive the more efficient one for the case of
I I

uniform hypercyles. Section V discusses the simulation experiments Illiac IV r;s s I

performed to characterize the allocation strategies proposed, while also 8-ary 2-cube Ring (j7

Scl:tion VI concludes the work. (c) (d)

Fig. I. Examplc,; or hypcrcy.:lc,
II. INTRODUCTION TO HYPERCYCLES

.The edge set is dclincd as follows: given (I. I E .\-;;1 thcn ((1..1) E
1'. MI.(('d Radl.( Number SYstem .1' .f d I .f h . 1 < . < h th . t.tm I an on y I t crc exIsts -J -II suc a

.rht: mixcd radix reprcsentation (31, is a positional number rep- ., .- , ... I .. fh dd/b 1- ( l\:i:' ) III()(II" \\\tIt 1<,,<1' ,111(1(1,-,.I#J.
rcscnlatl(m. and It IS a genera Izatlon o t e stan ar 1- ase rep- 1 -1 "1 / -1 -1

rt:'.:nlati(m. in that it allows each position to follow ils own base Hypercycles, havc dcl!re.: " and diameter h. given by 1111

indcpt:ndt:ntly of the others.
Givcn a dccimal number .\1 factored into II f~ctors as .\1 = J= LI(II/,.!"I whcrc 1(11'!.1")

,11"x"",-lx..x"I,thcnanynumberO$-\ $.\1-1can ",I
ht: rcprcscnled as = { 21" ~f 21/, < II',

\- I III, -1 If 2p, = /II,
(. )"'""'"-1 "'I = .I.".1."-1...Xl m"m,,-1 .."'1

~ r lll',/2J lwhcrc () $ .I., $ (1", -1):; = 1.2 1'. The x,'s are chosen h.= L. -;;:- .

so that ,=1

" Hypercycles include the rings as one-dimensional cases. They

.\ = L.r,U!, also include the binary "-CUbeS (.\[ = 2 x 2 x ...x 2 = 2"

,=1 and p = 1.1.1. 1 ). The h.-ary I/-cubes are hypercylces with

where 11., = 11/,-1 11/,-:!...1111. and 11'1 = 1. 0\[ = 1.. x 1.. x ...x h. = h." and (1 = 1.1.1 1. Finally,

the generalized hypercubes have fully connected dimensions. i.e.

B. H.Yperc.ycles {1, = l/1l , /2 J for every i. Fig. I shows some example hypercycles.

An I/-dimensional hypercycle is the regular undirected graph C R ..
H 1/~1' - { .rp E P } h .outIng In ypercyc es

"'m -.;Vm' m ' were
Before presenting the routing equations of hypercycles, we would

m = m", m"-1 , m"-2, ..., mi. like to emphasize the importance of routing in the allocation proce-

.. d d... th b . f th h I dure. The processors allocated to a job should be able to communicate
IS a mlxe ra IX constitutIng e as IS o e ypercyc e, .

efficiently which means that they should be as close as possible

p = p" , P"-l , ..., p" -2; : Pi $ m 1/2, to each other and that other processors in the network should not
interfere with the former ones. These conditions are met when the

is the connectivity vector, determining the connectivity in each allocated portion of the network is (in the terminology of the next

dimension which ranges from a cycle (Pi = 1) to fully connected section) closed under the routing scheme.
(Pi = L mi /2 J ) , and Hypercycles, have routing properties that are similar to those of the :

.lV:n={O.I.2 M-l}is the set of nodes. n-cube.Given nodes (C¥)m"mn-l...m;...ml =C¥nC¥"-I...C¥i...C¥l i
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and (a*)nln"'n-l"'inll = (1n(1n-1 ...t: ...a:1, a walk, We consider a sequence of requests corresponding to a sequence of

from node a to node a*, can be constructed as follows: incoming jobs, each requesting a minimum number of nodes. We

ana:,,-I...ai...al,anan-I...t:I...OI.(1,,(1,,-I...f;:2...(1I, shall use a first-fit strategy, where the first unallocated fragment
...,a:nan-I'..t:...nl, such thatl that can accommodate the request is assigned to the incoming job.

) d Fragments generalize the notion of the subcube and as we shall see,
(f;j + Pi mo m, .. eed d b' .f -d -fragments can accommodate all communication n s generate y

I [I(f: f:, Ji}mO m, -1f:J;.f:IJ>p, (a) member nodes internally, localizing thus jobs and preventing them

(f;j + f:j,f; modpi)modmi ... h h ... h fth1 if '- modm- > from Interfenngwit ot erjobsrunnlnglnot er,partso .esyst~m.

[(f; df:J, i } I I -If:Ji ' f;IJ p, We shall prove that this strategy is statically optimal, and It requires

an f:j,f: modpi # O (b) I .. f .. I( ) d 1 minimal searchIng. Our strategy IS a genera Izatlon o a slml ar one
f:j +1 = f;j, ; Pi mo mi d reported in [6] for hypercube multiprocessors.

1 1 [, (f;ji -I f:}mo m i = If:ji ' t:IJ > pi (c) First, we shall define the notion of a fragment, introduce an

(f:J- f:j.,f:modpi}modm, ... th od f h h I d1 if '.. -mod m = , > i ordenng relation which arranges e n es o t e ypercyc .e, ~n

[(f:h If:} I I If:Jl t:IJ p establish that fragments can indeed accommodate all communication

and f:j , t: mod Pi # 0 (d) .
III;" , requests. ~nterna y. ,

if < (e) -I?efinltlo~ I: GIven two nodes b =:= bnbn-1 ...bl ~n,d b =
If:h, f:1 -p, b" bn -I. ..bl we say that b lies before b and denote b -< b Iff there

I: -~ I: -I: (2 I ) exists an index 1 < 1.. < n such that bk < bk and b, = b, : i =
..0 -"I "max -". .--

1/.11 -1.. ...1.. + 1.
Equation (2.1) defines all the minimum-Iength paths from a source The above defined ordering relation arranges the set of nodes in

to a destination in a single dimension. Parts (a) and (c) constitute a unique sequence.

a greedy strategy where the maximum step towards the destination Definition 2: A region R is defined as a set of consecutive nodes.

is taken, Parts (b) and (d) form alternate paths by allowing the step i.e., R(a,b} = [a,bI = {t'la -< v-< b} U {a,b}.

described in part (e) to be taken earlier. Definition 3: Given two regions R and R we say that R lies

Given an origin (a)mnmn-l.ml = QnQn-1 ...Ql and a des- before R and denote R -< R iff for every node It in R and every

tination (;3)mnmn-l "ml = !3n;Jnl...;31 then distinct walks of node b in R we have b -< h.

minimum length that connect them are constructed by sequentially In the subsequent, we shall use the symbol $ within a sequence

modifying the source address, each time substituting a source digit of factors, to indicate that the corresponding factor may attain any

by an intermediate walk digit determined according to (2.1), until the of the allowed m values (0.1. ...m -1}. Similarly, the notation *A

destination is formed. The following walk connects n to ;3 indicates a sequence of k *, i.e., a sequence of k factors each attaining

any of the allowed values. This notation is very useful in defining
(1-(1 ...(13a::2QI.Q ...(13t:1(11.(1 ...1.'11;"1(11. rill

3 "
-" , n ." .sets of nodes. For example. with reference to hypercycle ':!,31. .$-

an ...~'II;":2al;(1n ...1.'1f;2(11: denotes the set of nodes {300.301.310.311.320,321}.

an. ..1/I:26a:2; ...: nn ...;]3f;2(\ I: Definition 4: A fraglnent is a :eg~on ~hose nodes h~ve identical

most significant digits. Nodes wIth IdentIcal most significant dIgitS
...: 13n ...133Ih.J1 = 3. belong to the same fragment. We denote a fragment as

In Fig. I (a), one can recognize the following distinct walks A
of equal length, that connect source 01 to destination 20: oF(It"/I"-I.../IA+I)=bnItn-I.../IA+\$ =

{01: 00: 10: 20}. {01: 11; 10: 20}. {01: 11: 21: 20 }. {01: 31: 21: 20 }. { /11/1 = h"hn -I. ..h, + I ,j, j\.

{()1:31:30:20}.{01:00:30:20}.
J E {0 1 ,.. - 1} .

, ..III J ,In interconnection networks, deadlocks must be prevented or J

avoided. Routing such as the e-cube, which is applicable to hy- j=k.1..-1 ,1}.

pecubes. prevents deadlocks by ordering the resources (i.e., com-

munication links) to be allocated and preserving the order during Definition 5: The fragments {bnlt"-I'..bk l'jA+I*kl,jk+1 E

allocation. Also, various forms of two-phase locking [22] can be { 0. 1. ...'II A+ I -1} } that comprise the fragment oF( Itn bn -I. ..bA+;! )

employed which avoid deadlocks dynamically by forcing a blocked are called buddies.

path to backoff [7]. Definition 6: A subgraph is closed under the hypercycle routing

We have developed a number of backing-off and backtracking as defined above, iff all the intermediate nodes required to complete

strategies applicable to the entire class of hypercycles. In addition, we a path between a source and a destination are nodes of the subgraph.

have generalized a form of the e-cube routing and made it applicable Allocating closed potions of a graph ensures locality of communi-

to a subset of the hypercycles which includes hypercubes, generalized cation, i.e., all the links needed to form a path between a source and

hypercubes, some k-ary n-cubes and some dense rings and toruses. a destination are inside the allocated subgraph. This way, tasks do

Details are reported in [12]-[14]. not interfere with each other as long as they are allocated different

subgraphs. For n-cubes it can be easily shown that subcubes are

Ill. PROCESSOR ALLOCA1lON closed under the e-cube routing. For the general class of hypercycles

we have the following equivallent result.In thIs section, we shall Investigate the problem of allocating F I sed d h h I .
...Lemma I: ragments are c o un er t e ypercyc e routing.

processors In a hypercycle-based concurrent computer to Incoming h ..
I b b bToseewhytlslstrue,eta= nn-I...k+lak...(11

jObs. The hypercycle In questiOn has .\1 nodes and IS charactenzed by J b b b !3 !3 be od .
th fand I = n n-l ...k+1 k ...I two n es In e ragment

themIxedradlxbase,mn,mn-I,...,mI.Forourpurposes,ajobIS 'd red II . f ks hi h t co ntl A oF(bnbn-I...bk+l}.AccordIngtotheroutlng(2.1),anyIntermedlate
cons1 e as a co ectlon o tas w c can execu e ncurre y. od th th fr t 13 .

11 be f h f I:

nexon epa omao'WI oteorm..-job therefore requIres a pOrtIon of the processors In order to execute.
b b b I: I: d b d fi II b I tn n-I ...k+I..k ., ...1 an , ye nltlOn, It WI e ong o

I We define la,bl = min{(a -b)modmi. (b -a)modmi} oF(bnbn-1 ...bk+l ).
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fragment bnbn-I...bk+l*k is a hole, then the fragment

bn bn -I. ..O*k of size h2 is occupied. But this is contrary

to the first-fit allocation strategy, since the fragment

l~nbn-I...bl..+"+IO...O*k of size h2 lying before

bn bn -1 ...O*k is available (as part of hole hi (j ) ).
2) Given the hole h = bnbn-I...bk+l*k of size Ihl = mk x

m k-l x. ..x m I. observe that it is located in the region

7{. = bnbn-l ...bk+2*k+l and by Lemma 2, the fragment

:F = bn bn -I. ..bk+20*k has been allocated. If there was a

hole of size Ihl before the region 7{., then the fragment :F

should not have been allocated since its allacation would have

contradicted the first-fit allocation strategy. Similarly, if there

is a hole of size Ihl in a region 7{.' = b~b~-I...b~+2*k+1

which lies after region 7{.. then, by Lemma 2, the fragment

:F' = b:. b~ -I. ..b~+20*k is allocated. But this is also contrary

to the first-fit strategy since the hole h is before the fragment

:F'. The conclusion is that there exist at most mk+l -1 other

holes of size 1II1. Thus if h,+I(j) = bnbn-I...bk+l*k is a

hole. there exist at most

( /II 1 -1 ) holes of size I

(/112- i) holes of size ml

A. First-Fit Processor Allocation in Hypercycles

Because of the ordering relation-< presented in Definition I above,

one can arrange the nodes of any hypercycle in a linear fashion and

number them from 0 to ,w -1. The first-fit allocation strategy utilizes

a list of allocation bits numbered from 0 to M- I and corresponding

to the nodes in the hypercycle. If a processor has been allocated to a

job, its corresponding allocation bit is set to 1, otherwise it is cleared

to 0.

The first-fit allocation strategy searches the list until it discovers

a region of unallocated processors corresponding to a fragment with

a size equal to that of the request. If such a region is found, the

corresponding allocation bits are set to I, and the strategy tries to

accommodate a subsequent request. The allocation bits are cleared as

soon as the job assigned to the corresponding nodes is terminated.

In detail, with reference to a hypercycle, the first-fit allocation

strategy can be described as follows.

I) First-Fit Allocation Strategy:

I) Let If) I be the size of the smallest fragment that will fit the

jth request I).
2) Find the least integer m such that all the allocation bits in

the region [mlfjl. (m + 1)lfjl -1] are zeroes. and set all the

allocation bits in this region to I.

3) Allocate nodes with addresses in the region to request I J .

2) Processor Relinquishment:

I) Reset the allocation bits of the released region to zero.

The first-fit strategy has worst-case complexity of 0( ,W) where ,\I

is the number of processors in the hypercycle. This is because every

allocation bit is checked only once and at most all the M allocation

bits have to be checked.

Oefillitioll 7: If requests are constrained to have sizes equal to

thosc of fragments. an allocation strategy is statically optimal if

it can accommodate any sequence of requests { I r }~= 1 such that

~:=III,1 ~ III" x "'"-1 X ...x ml = .Y.

In ".hat follows we adopt the terminology used in [6] and prove

that the above algorithm is statically optimal.

Oc/illiti,I11('1': A fragment F(bnb"-I...bk+l) = 11"11,,-1...
,,~ -I .~ is said to be a hole if and only if this region is available, but

at least one of the fragments2 b"b"-1 ...[bl;+II.*k is not.

I.cl { It , I J ) I :'= I denote the sequence of holes resulting from the

allocation of fragments to the sequence of requests { Ir }~= I. Fur-

therrnore, the sequence is arranged in lexicographical order so that

the ith and I..th holes. It.(j) and hl;(j), satisfy h,(j) -< h1:(j) ifi < I...

1.l""ma2: Iflt.(j)=b,.bn-I...bl;+I*l;forsomei.then1l1:+1 f

(),

Proof Suppose that bl;+1 = 0. Then the region b"bn-1 ...0*1:

is a hole. which means that at least one of the fragments
I". h" -I. ..[0], *1: is unavailable. But this contradicts the first-fit

search of the allocation strategy.

.

Lemlna 3: Given a sequence of holes { hi (j ) } i= I resulting from

the sequence of requests { I r }~= 1. we will have:

I) Ih,(j)1 ~ Ih,+I(j)I;i < U

2) If there exists i such that Ihi(j)I<lh;+I(j)1 then

~~=llhp(j)1 < Ihi+l(j)1

Proof
I) Suppose that there exists such that h1 =

Ihi(j)1 > Ih;+l(j)1 = h2. This means that hole
h;+l (j) = bnbn-l ...bk+l *I; is located after hole

---kh;(j) = bnbn-l...bk+~+l. +~(O" ?; 1). Since the

2[bl;+1)i denotes the ith element of the set [bk+l) = {0, 1, ..., mk+l -

1}-{bk+l}.

I m k -I I boles of size m k-1 X. ..X m 1

while the size of ",+1 Ij I is 1".+1 {jll = mk X mk-l X. ..X m I.

Thus

k p-I

L Ihp{jll ~ L{mp -1) n m).
p=1 ,.=1 ).=1

=11'kXII'k-IX...XII'I-1

<"'1 X "'k-1X...XIlII=I".+I{jll

.

T"('(lrelll I : The tirst.fit allocation strdtegy is statically optimal.

Pr(I(I(. Let { I, I ~ = I be a sequence of requests such that
~~=,II,I ~ ,'I..X'",.-lx...xr/'l = .\1. where.\1is the

numbcr of m>des in the hy~rcycle. We will prove the theorem by

induction on ).If "'e had only one request. it would trivially be

allocat.:u as Ilmg a, il requires at most .\I nodes. Assume now

that Ih.: sc4u.:nl:c of r.:qucsts {I. }~;;:: can be accommodated by the

first-fit strategy. and denote by { " .Ij -I I} ~= 1 the sequence of holes

resulted from this allocation. We shall prove that { I r }:= 1 can also be

accommodated. i.e.I"..lj-l )1 ~ Illi. provided that ~:.=111rl~ .'1.

I) Assumethatlh..lj-lll>I",,-llj-lll.Then.byLemma3.

,,-1

LI",.(j-lll<I",,(j-lI1 {3.1)
..=1

Also. the number of nodes allocated plus the number of nodes

still unallocated li.e.. in holes) equals the total number of nodes

in the network. that is.

J-I

Llh).(j-l)I+Lllrl=.\I=>
).=I r=1

u-1 j-1

I",,{j- 1)1 + L Ih).{j -1)1 + Lllrl = M =>

).=I r=1
u-1

Ihu(j-l)I+Llh).(j-l)1
).=1

j-1
= .\-f -LII..I ~ IIjl (3.2)

..=1 ..
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because of the assumption E~=IIIrl ~ M. Combining (3.1) 01

and (3.2), one obtains

2Ih...(j-I)I>IIjl 00

Since both hu U -I) and I j are fragments, and since there are

no fragments available such that 2lhu(j -1)1 > IIjl > Ihu(j -ent

1)1, then IIjl ~ Ihu(j -1)1.

2) Assume that IhuU -II = Ihu-l(j -1)1 and denote by a

the number of holes in the region where holes Ihu(j -II and

Ihu-l (j -1)1 are located. If hu(j -I) = bnbn-1 ...bn" *nu-l.

then from the definition of a hole and footnote 2. a < mn " .

Then, in the sequence of holes { hi (j -I) } i= I produced by the

first (j -I) requests, there are a holes of equal size followed

by zero or more smaller holes. Thus,

Ihu(j-I)I=lhu-l(j-I)=...=lh..-(n-I)(j-I)I>
f tragmen

>lh..- ( n-l ) -l( J.-I) I >...> lhl( J.-I) 1 F. 2 F d .
h 1--Ig. .ragments an segments In a ypercyc e.

Lemma 3, gives

u-(a-I)-1 Definition 9: A segment is a subset of a fragment and is defined as

E Ih),(j-I)I<lh..-(,,-,}(j-1)1. (3.3) S(bnbn-l...bk+I[lk,Tk])
),=1

= {blb=b b -1...bk+lqk;jA-I 11:Also, because the sum of all the holes and allocated fragments. n n

sums up to the number of nodes in the hypercycle. we have lk ~ qk ~ Tk,{3j E {0, 1.. ..1111- I}:

u j-l j=k-I,...,I},

Elh),(j-I)I+'"'IIrl=M~ h 1 dL.,., were k < rk an
),=1 r=1

u { mk . l l11AJ'"' Ih),(j- 1)1 rk -lk < 2' If Pk <. 2 .
L.,., mk +1. otherwise

),=u-(a-l)
u-(a-l )-1 j-1 A segment is a collection of contiguous fragments of the immedi-

+ E Ih), U -I )1 + L II, I ately lower dimension; it includes ( rk -1,,) fragments of dimension
),=1 r=1 I.. -I. Observe that if Pk = lmk/2J. then full connectivity exists

u-(,,-1 )-1 in dimension I.. and a segment may include any number of the
= "\{~alh..(j-I)I+ L Ih),(j-I)1 "'A (I.. -I)-dimensional fragments. In the case that dimension I..

.\= I is not fully connected, a segment may include up to only half this
1-1 number. This is a necessary limmitation in order to maintain closure

= .V -L IIrl ~ 1/11. (3.~) for segments under the hypercycle routing.

r= I Fig. 2 further illustrates the notions of a segmenl and a frag-

because of the assumption ~~=I Ilrl ~ .\1. Combining now menl. There.:.- the following sets of ~od~~ ~~~ cxample~ of fra~

(3.3) and (3.4), we obtain menls .1"0 -{OO.OI.02,IO.II.12.20.-I 3(1.31.3-}..1"1 -

{30.31.32}. while {10,11,12,20,21,22} is a segmenl of.1"o. and
(a + 1)lhu(j -1)1 > 1111 {30.31} is a segment of .1"1.

S.lnce both h (J.- I ) and I f t d . th Lemma 4: Segmenls are closed under the hypercycle routing." 1 are ragmen s. an sInce ere
is no fragment .1" available such that "'"..IH"(j 1)1 Proof Let {1 = bnbn-1...hA+I(.'k...(11 and
>1.1"1>lhu(j-I)I,thenIIjl<huU-I)I. .i = bnbn-I...bk+l13k...131 be two nodes In the segmenl

-S(bnbn-1 ...bk+I[lk, rk]). According to the routing (2.1), any
.inlermediate node I:. on the path from Q to .J will be of the form

~=bnbn-I...bk+l~k...I:.I.Inthecasewherep,,<l",A/2J.sinceB. Nonstatlcally OptImal FIrst-F,t AllocatIon lA. ~ {lk. ;jk ~ r" and rk -lk < mk/2, we must have lk ~ ~" ~ r".

The first-fit allocation as described in Section Ili-A above is In case of full connectivity, i.e. Pk = 1III k /21. then necessarily
statically optimal, but it allocates processors in fragments. These lk ~ ~k = ilk ~ rk. Thus I:. E S(bnbn-l. ..bk+I[IA. rkIJ always.
fragments (depending on the population of nodes in each dimension) .
offer a limited way to partition the hypercycle, and thus waste The nonstatically optimal first-fit allocation, searches a list of
resources by allOCating the next larger fragment to a given request. linearly arranged nodes of the hypercycle, in a similar fashion as the
The next larger fragment is normally larger than twice the size of the first-fit discussed in Section m-A above. It searches the allocation list
immediately smaller fragment. until it discovers a region of unallocated processors corresponding to

In order to alleviate this problem, we are proposing a nonstatically the smallest segment capable of accommodating the request. If such a

optimal first-fit allocation strategy which can allocate portions of a region is found, the corresponding allocation bits are set to I, and the
fragment (called segments). In this section, we shall describe the strategy tries to accommodate a subsequent request. The allocation
nonstatically optimal first-fit allocation strategy, and show that this bits are cleared as soon as the job assigned to the corresponding
strategy is not statically optimal. Yet, simulations as presented in nodes is terminated.
Section V, have determined that it outperfonns the optimal first-fit: In detail, the nonstatically optimal first-fit allocation strategy can
allocation under dynamic loading, while retaining similar complexity. be described as follows. Note that since all the allocation bits may~
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Allocation fragments (segments) of sufficienl size to be allocated to the current
List 01

il00 request. ~~ Of all the possible subgraphs. the first-fit slrategy utilizes only a

: 00 small portion. Consider for example the hyperc:cle ~ith -\I. factored

10 as .\1 = mn x mn -I X. ..X 111 I. The I..-dlmenslonal fragments
12

<{~:~ ? are limited to subgraphs described by addresses formed by placing I..

13 ~ « ) '*'s in the rightmost address digits- As an example, a subgraph of Ihe
14 form *bn-Ibn-2 ...bl is not recognized. The same subgraph would

R s 2 be recongizable (as a fragment), if the factors of ;\1 were permuted
equest equence 1 1 2 2 2

as M = mn-1 X 111n-2 X ...X ml x mn.
Fig.3. Counter example for the nonstatically optimal first-fit strategy. In general, k '*'s can occur in any of the n positions in a subgraph's

address. Suppose that the ith placement of these k '*'s occurs in the

be checked, the worst case complexity of the algorithm is, as in the positions described by the set p~ , that is, p~ is the set of positions
first-fit case, 0( -\1). where a ,*, has replaced an address digit. Then the total number of

Nonstatically Optimal First-Fit Allocation possible I..-dimensional fragments is given by

I) Let Is j I be the size of the smallest segment comprising r ( )fragments of size 111 that will fit the jth request I J .Denole by ( k ) "

11*1 the size of the immediately larger fragment thaI contains L II 1/1 ) ( ~ I )

the segment Sj. .=1 )=1

2) Find the least integers 1/1 and I.. such that 1..111 + I.' ,1 :$ 1/*1 )ep~

and all the allocation bits in the region [m 11*1 + 1..111.1/'1/*1 + -

k ill + II I
] d II h II .. b -..The first-fit strategy can only recognize placements of the form

s) -are zeroes, an sel a t e a ocallon Ils In 1 - { , '. I I } f h ( " ) .bl I f I.. ...
h .. 1 [1. -".. " out o t e k pOSSI e p acements O ,

tlsreglonto. -.'1111
3) All t od .th dd - h - I on an /1-dlglt address. For example, the hypercycle ~5121. has a tolal

oca e n es WI a resses In t e region to request --.
..J of 61 2-dimensional subgraphs while the first-fit allocation slrategles

Processor RelInquIshment: discussed previously, can only utilize 15 2-dimensional fragments of

I) Reset the allocation bits of the released region to zero. the form b4b3**.

Theorem 2: If requests are limmited to a segment, the nonslati- By permuting the factors of .\1 (called the basis of the hypercycle)

cally optimal /irst-fit allocation strategy is not statically optimal. more fragments are recognizeable, and thus allocated. The search

Proof Through a counter example. As depicted in Fig- 3. space of both the first-/it and the nonstatically optimal strategies is

given the hypercycle 9JJ and the sequence of segment requests expanded by including lists of nodes that correspond to the cho!'en

{ 1.2. 1.2.2.2}. this sequence cannot be accommodated in the said permutations of the basis. The search proceeds sequentially ov~r the

hypercycle eventhough the total number of requested n<1des exactly chosen lists of node names according to the algorithm!' pr.:,ent~d

matches the total number of nodes in the graph. in Sections IlI-A and -B. until a region of unallocated n<1d.:s l'

.found that corresponds to a fragment or a segmenl accom(1datlnl;

One should note that static optimality by no means guarante.:s a the request. If such a region cannot be found. the search c(\ntlnue'

good dynamic performance. The nonstatically optimal fir!'t-fit stral.:gy with the subsequent list unlil an unallocated region is found \\r th.:

is expected to perform much better than the statically optimal first-fit a\'ailable lists are exhausted- All the lists are mapped 10 Ih.: 'am~

stategy simply because it partitions the hypercycle in small.:r ptlnions. sequence of allocation bits-

and is less redudant for the case where requests do n<11 m;llch th.: In using several lists. holes which appear separate in (\ne 11'1.

size of frgaments. This is indeed the case as it will be dem(lnstrat.:d may combine to produce a larger hole in another lisl. anJ Ihu,

through simulations in Section V; the nonstatically optimal strategy accommodate a larger request. One such example of the use of Ih.:

achieves superior results as compared to the first-fit allocation in terms permuted basis is given in Fig. 4. As it can be seen. a r.:qu.:,t for

of delay. Note, also, that the nonstalically optimal first-fit startegy Ihree nodes cannot be allocated since the unallocated n<1des 1111 1(1

reduces exactly to the first-fit startegy when the sizes of the requesls 2!1 do not constitute a hole under the original (unpermuted) has IS

match those of fragments. (Fig. 4(b». On the other hand. if the search is extended to include

the list associated with the clock-wise rotation, the above three n<1des

IV. PERMUTING THE HYPERCYCLE B,\SIS are combined into a hole (Fig. 4(c) which can now be allll1:at.:d

F h - h rf f h II b If J> permutations are used then the compexity of the allll1:alion
urt er ImprOvement to t e pe ormance O t e a ()Cation can e ..

h d .f h - I d . h h f d strategy becomes 0( J> .\/). that IS. there exists a tradeoff ht:t".:c:n
a I t ere was a way to InC u e In t e searc more ragments an -.

h h - f h f be fi h performance and runmng time. As (4-1) suggests. an c:~l.e,SI\~
segments or to c oose t e size o t e ragments SO as to st t t e ..

- f h number of permutations IS needed for complete fragment recognlllol1
size o t e requests. .

..-as was also observed for the case of hypercubes In [6). Nevertheless.
The use of multIple gray codes was proposed In [6) to Improve the . I . d . h ed h I .

I II be f...our slmu atlon stu les s ow t at a re atlve y sma num r o
efficiency of the first-/it allocation In the case of hypercubes. The use . h . h -" .

d blf od .

h .. f bc be d permutatIons are enoug to Improve t e pe,lormance consl era y.

o more gray c es permIts t e recogmtlon O more su u s an
thus increases the efficiency of the allocation.

In the general case of hypercycles, the use of gray codes is not A. Multiple list First-Fit for Uniform Hypercycles

possible. Instead, we have chosen to permute the basis used to name Notice that in general the factors of the hypercycle are different
the hypercycle in use, and perform the first-fit (or the nonstatically and, thus, permuting them results in different fragment sizes, so that
optimal /irst-/it) on the list of nodes that correspond to the chosen the selection of the best set of permutations becomes intractable. The
permutation(s). Such permutations result in isomorphic hypercycles case is different, though, when all the factors of ivl are equal to each
[II], but with a different collection of fragments (segments) increas- other. Such hypercycIes are called uniform; the binary hypercubes
ing thus the possibility that unallocated nodes would coalesce to form and the k-ary n-cubes are two important topologies in this class. A
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22 b"b,.-I...bk+l*k. Under the permutation 11. the h. '*'s would also
22 be in the rightmost positions, i.e. the corresponding address would

be B = b b ...br *k. and no ,*. appears in positions
20 21 rn "n-1 k+l

O '2 h. + 1. k + 2. ..., » of B. Thus the h least signifficant digits of A

are mapped to the k least signifficant digits of B. contradicting the

assumption {.l"I.X2,...'.rk} f {I.1..'h.}.
Selecting peffilutations with no common fragments is not enough,

10 1 though. Consider the case where a request cannot be allocated by the

01 1, t original peffilutation, although there exists space in the allocation list.

This can only be the case when the existing holes are not buddies

(see Definition 5) and consequently cannot be combined to form the

required fragment. One needs to choose the permutation(s) so that it

00 01 maximizes the number of holes which cannot be combined to form
00 10 a larger fragment during the first-fit search, but can be combined

(a) to a larger fragment as they are mapped through the subsequent

peffilutation(s). In what follows. we shall prove that in uniform

Hypercycles, clock-wise rotations can map III fragments of equal

size which are not buddies to a single fragment of size equal 10 III

times the size of the individual fragments: this is true for fragml:nt'
having any size between m o and 11," -I .

(b) Definition 10: Given a set of 1I integers 1.2 ». we (all a

permutation 1!" a generalized shift if il maps the last" numb.:rs IlntO
the last" + I positions for every .\ = I. 2. ' ..11 -I.

The following are examples of generalized shifts

( » »-1,,-1 1)00 °~ 1 II 12 20 21 22 1!"1 =
1 2I I n -n -II

( n n-l »-211-3 2 I
)1!"2 = ..

( 00 01 02 to tf '220 2' 22 n- 1 n » -3 II -2 I 2.

Lemma 6: In unifoffil »-dimensional hypercycles, only genl:ral
ized shifts map fragments of ~ize 111 \ -I into a fragment of 'III:

dod(wise rolebon 1
III. " = 1.2. ...II.

(c) Proof Assume a generalized shift ,7 and a fragment ..,' =
I I I *~-I" " -I. ..~ .

Because 1!" is a generalized shift. then there will be a P\I'III"1l

IT .II > IT > " such that" ~ ;;( IT I ?: I and

"~7r(j)~I.'v'j=.\-I..\-2 I.
Fig. 4. Allocation utilizing t,\'O li,l, c"rrc,r""J,n~ to namin~ pcrmu(alion'
of Ihc 'amc hypcrcyclc. Then the fragments

F. = !,,!,,-I...!..+I!!..I,!..-I...!~*.I-Iuniform hypercycle has .V = »I " = 11I X 111 x. ..X »I nodes. In this

section we derive the set of two permutati\ms that result in optimal and Fa map into fragment .\" = .r.. .r.. -I. ...J.I *.1 where .r I =

performance when used with the multiple-permutation strategie~. !r-l(J).

Moreover, the incorporation of the additionalli~t(s). does not alter Conversely, assume that any (1 fragments of the form F, =

the static optimality of the strategy since any sequence of requests I:. 1:.-1 ...!l *~-l, i = 0,1,2. II -I. map into the fragment

with a total size being less than or equal to the size of the hypercycle .l. = .r" .I." -I. ...l"~+1 *~. Then obviously the" -I la~t digit, map

can be accommodated according to the first-fit strategy as discussed into the" last positions. Thus 1!" is a generalized shift.

in Section IlI-A, by using the original allocation list. .

Obviously. one needs to choose permutations so that the total Theorem 5: In unifoffil »-dimensional hypercycles. the onl~ ~en-

numer of recognized fragments is maximized. This is done when eralized shift that maps a collection of 1I1 fragments of size 11I \ -; -

permutations that have no fragment in common are used. Let the un- which are not buddies in the original permutation, into a frag-

peffiluted basis be called original pennutation. We have the following ment of size m ~, " = 1,2, ...II is the clock-wise rotation;; =

lemma. ( n n-1 n-2 .I ) .
I n-1 n-2 ...I n

Lemma 5: A
peffilutation 1!" = ( " n -I. ..

) recognizes Proo':. By construction.rnrn-I...zl :/.
completely different fragments from the original peffilutation Because of the previous lemma. only generalized shifts map I1I
(~~:::::::.:) if and only if {.rI,.1.2,...,.l"k} f {1.2,...k} for fragmentsofsizem~-1 intoafragmentofsizem~."=1.2 ".
all k = 1,2, ..., » -1. For" = 1, it means that the peffilutation must map I either 10

Proof In the case that {XI,X2,...,.rk} = {1,2,...k} for itself or to 2. (i.e. 1[(1) = I or 1!"(1) = 2). If 1!" (1) were to be
some k, then the fragment OO..O*k belongs trivially to both peffilU- I, then given the fragment F = I"In-I...Il and according to the
tations. Suppose now that for all k, {XI, X2, ..., Xk} f {1,2, ...k }. construction in the previous lemma, fragments Fi = !n!n-1 ...!!1].
If there existed a fragment common to both peffilutations, then would map to fragment X = !n!n-1 ...h*. But fragments F and
under the original permutation it would have an address A = Fi are buddies. Thus 1!" must be such that 1!"( 1) = 2.~
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Suppose that

S(XX)

7r(1)=2,7r(2)=3"..,7r(.>..)=.>..+1. (4.2)

We will show that I;(>. + 1) = .>.. + 2; .>.. ~ n -2. Because 1001

of Lemma 6, and assumption (4.2) above, I;(.>.. + 1) = >. + 2

or 7r(>. + 1) = 1. If 7r(.>.. + 1) = 1, then fragments :F =

!n!n-l ...!A+l *A and :F; = !n!n-l ., .!A+l [!A+2]i*A would map !

into X = !n!n-l ...!A+2*A+l. But:F and :Fi are buddies. Thus, f 1

7I"(>.+I) = .>..+2; .>.. ~ 11 -2, and since 71" is a permutation, 7r(n) = 1. ~

.~

The clock-wise rotation was proven to be the only permutation ~ 1

that is able to combine holes that are not buddies so as to form

fragments of a higher dimension. For any other permutation, the -"- Su~. I p.mI.

holes themselves are broken, and their constituents are mapped -A- FinlFol.2peno. -"- Su~.2p.m1.

to different subgraphs. making thus their combining into a larger -A- F...Fol..ponD -A- Su~.ponD

fragment impossible, The optimality of the clock-wise rotation is ~ FinoFo1.8., ~ Su~,8., Q5

finally ensured by the fact that it also belongs in the class of 0.16 0.18 0.2 0.22 0.14 0.26 028 OJ 0.32

permutations that recognize different fragments than the ones the ItA

unpermuted basis does. as per Lemma 5. The enhanced performance Fig. 5. Average queueing delar versus the inverse of the average interarrival

of the clockwise rotation was confirmed through our simulation time (>.) for the hypercycle 93jJJ.

results, to be presented in Section V.

S(XX)

B. Node Allocation Through an Optimal Pennutation

for Nonunifonn Hypercycles

1001

In the case that the hypercycle in question is not uniform. then

a permutation of the factors of its basis, produces a topologically

identical network, but its nodes combine to produce a different !

collection of fragment sizes as we noted earlier. Selecting the best ~ 100

permutations becomes a difficult task, heavily dependent on the load !

characteristics. It is advantageous, then, to choose the permutation t

which produces fragments whose sizes match the closest to the sizes ~ 10 -0- Su~ I ponD

requested in the request sequence. The following heurislic procedure -A- F;nIFO.2ponD -"'- Su~2peno.

can be used in order 10 oblain the "best" permutation. -A- F;nIFu..- s~..., Let 7r j denote the j th permutation. out of the II! possible permu- ~ F;nI Fu. 8 ponD ~ s~ 8 ., tations of the basis for the hypercycle ~;~::::;: ~ ~;1'!.., 1. Under this Q5

permutation. a J.,-dimensional fragment, has size Ft = IIlrj-l(k) X 01S 025 ItA OJS 0.

m -I X'..XIII -1 ;J.'=1.2 I1-l.Usingthefirst-fit r j (k-l) r J tl) Fig.6. Average queueIng delay versus the Inverse 01 the average Interamval

strategy, a request asking for i nodes is then allocated a fragment time ( >. ) for the hypercycle 9~~jj .

of size FJ[il, where FJ[il will be equal to Ft, for J.. such that

Fk-l<i~Ft=FJ[i]. If we are given the load characteristics in the form p. = probability fra,gment or. segment that contaIns It, The size of the requests IS

of a request asking for i nodes, then the quantity .-lJ = ~~~I po. unIformly d~stnbuted. ...

Fj[i] gives the average number of allocated nodes per request for. Job run ti~es ~e u~lform~y ~Istnbuted be.tween 3 and 7 clock

permutation 71" j .The permutation that minimizes the average number ticks.. Job. ~v~1 I~ POISO~ dlstnbuted. Our slmulato.r uses ~ ~FO

Aj of allocated nodes per request is chosen. A similar expression can queuIng dISCIpline In that Jobs ar~ queued as they arnve. whIle Jobs

be derived for the nonstatically optimal allocation strategy. from.the head of the queue are dlspatched.as soon .as nodes became

The minimization. of course, carries a considerable overhead as free In the graph. The Average Delay, betng the tIme spent by the

n increases. Assuming, though, that the load characteristics change tasks waiting in the queue before they were allocated, averaged over

slowly, the proposed scheme becomes viable in that the minimization all the tasks allocated during the simulation was measured.

is carried out infrequently. The load characteristics may be known or The purpose of these experiments was to establish the relative

established dynamically as requests are delivered. performance of the first-fit and the nonstatically optimal first-fit, as

well as the effect of using permutations to increase the number of

fragments/segments which are recognizable by the allocation strategy.

V. SIMULAl1ON STUDIES The second class of experiments is governed by the same assump-

We have consU1lcted a simulator capable of simulating the behavior tions but the load is no longer uniformly distributed. The simulations

of the first-fit, the nonstatically optimal first-fit allocation strategies were run with an arbitrary ordering of the factors defining the

and also able to search on sequences of nodes derived by permuting hypercycle, and then with the permutation which optimally matched

the basis used to describe the hypercycle under simulation. the traffic characteristics according to the discussion in Section IV-B.

We have conducted three classes of experiments. The third class of experiments assumes that the requests arrive one

The first class of experiments assumes that the requests have every clock tick. The experiments were run for uniform hypercycles

arbitrary sizes (up to and including the maximum number of nodes which included the 3-, 4-, and 5-cube as well as 91111. The requests

in the hypercycle), and then the request is rounded up to the closest were assumed to be of sizes which matched the fragment sizes of
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5(XXJ ~ pelIDUtal100 (5.4.32) 5000 -4- Ponuu'..;'.' (5..J21

I(XXJ --pelIDutatioo (32.4.5) -"- P..'.u <2J...S)

q><imaI ..,.;mai
I(XX)

100 ~

~
~

~ u 100
-"
~ 10 ~

CY
.~ ~
~ c

~ ~
" 10
~
~
<

0.1

I
015

0.01 IP..

Fig. 9. Average queueing delay versus the inverse of the average interarrival
time ( >. ) for the hypercyele 9~1.:J .The requests are poison distributed while

O.00t their sizes are uniformly distributed in the interval [ I. 1201. Permutation (5.
0.15 ...055 0.6 0.65 4, 3.2) is an arbitrary permutation while permutation (2. 3.4. 5) was chosen

If).. to best fit the characteristics of the traffic.

Fig. 7. Average queueing delay versus the inverse of the average interarrival
time (>.) for the hypercycle 9~ljJ .The requests are poison distributed while TABLE I
their sizes are following a gaussian distribution with mean of 20 and variance DELAY FOR SEQuE"CES OF FRAGMENTS IN THE 3-CUBE
of 7.5. Permutation (5.4. 3. 2) is an arbitrary permutation while permutation (TASK DURATIO" UI;IFORMLY DISTRIBUTED IN [2. 61)
(3. 2. 4. 5) was chosen to best fit the characteristics of the traffic.

POliCY DELAY

I Gray O:xk 12.572
5(XX) ~ pelIDUtatioo (5.4.32) First-Fit 12.791

--pelIDutalioo (2.5.4.3) First-Fit with 321 123 12.750
optimal ~additiooal 321.312 12.744

1(XXJ ~utatioo 321.132 12.710

321.23! 12.375

"' 321.213. 12.362~

~ .(clock-wise ro(atioo)
'"'c-loo""
~ TABLE II

~ DELAY FOR SEQuE.~CES OF FRAGMENTS IN THE ~-CL:IIE
:! (TASK DuRAno~ UNIFORMLY DISTRIBUTED I" 12.611
"
>

< POliCY ~y

1
~ O:xk 6.798

First-Fit 7.048

Fust-Fit with 4321 1234 7.038

~additiooal 4321.1243 7.036
I ~utatioo 4321.1324 7.035
0.15 .021 0.23 025 0.27 0.29 0.31 033

If).. 4321.1423 7.029

~ig. 8. Average queueing delaI versus the inverse of the average interarrival 4321.1342 7.028
tIme (>.) for the hypercycle 9~4jJ .The requests are poison distributed while 4321.1432 7.022
their sizes arefollowing a gaussian distribution with mean of 60.5. and variance .21
of 7.5. Permutation (5.4.3.2) is an arbitrary permutation while permutation 4321 143 6.995
(2.5.4.3) was chosen to best fit the characteristics of the traffic. 4321.2134 6.995

4321.2314 6.952

the simulated hypercycle and were uniformly distributed between 4321.2413 6.883

I and the maximum fragment for the hypercycle in question. The 4321.3124 6.543

job duration was also uniformly distributed. The run was limited 4321.3142 6.534

in duration to 100 clock ticks and repeated 10 000 times with the 43213214. 6.520

measured delay averaged over the number of times the experiment
.(cl k- ..)was run. The purpose of this class of experiments was to establish <x: ~ rotatIoo

the relative performance of the use of gray codes as compared to the

use of permuted bases in naming the nodes of a uniform hypercycle. From the figures corresponding to the first class of experiments

The results of these experiments are presented in Figs. 5-9 and (Figs. 5 and 6). one can surmise that the nonstatically optimal first-fit

Tables I-IV. allocation has a better performance as compared to the first -fit. This is
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TABLE III VI. CONCLUSIONS
DELAY FOR SEQUENCES OF FRAGMENTS IN THE 5-CUBE In this work, we presented a number of allocation strategies for

(TASK DURATION UNIFORMLY DISTRIBUTED IN [3, 7) .
f hhypercycle-based multiprocessor systems. These strategies are o t e

PoUCY DElAY first-fit type, and include a statically optimal first-fit and a syuhoptimal

Gray C.xje 8.814 first-fit wchich is more efficient for dynamic loads.

First-fit 9 (1)2 Additionally, we investigated the effects of searching through lists

...of nodes which have been permuted. We proved the existence offlrSt-Fit WIth 54321 12345 9.(1)1 ..
permutations which coalesce existing holes Into larger regIons so that~additiooal 54321,13245 9.(1)1 .

d.larger requests can be accomodated. We have simulated the propose
permutal1oo 54321,15432 9.088 strategies and confirmed our theoretical predictions. A more detailed

54321.21543 9.080 treatment of the results presented in this paper can be found in [ 10].
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[11]-[14], [21].
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