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Abstract ious data permutations occurring e.g. in parallel FFT
..and basic linear algebra algorithms can be viewed as

Total exchange is an important collectIve communz- instances of the total exchange problem [2].

cation pro~lem in multip.roces~or i.ntercon~~tion net- In this work we present general theory for solving
works. It znvolves the dzssemznatlon of dzstlnct mes- the total exchange problem in multidimensional net-
sages from every node t.o every other no~e. We pres~~t works. A multitude of quantities or properties in such
a novel theory for solvzng the problem zn any multldz- networks can be decomposed to quantities and proper-
mensional ( cartesian product! netw?rk. .We con.s~ruct ties of the individual dimensions. We show here that
a general algorithm and provzde optlmahty ~n~ztlons. the total exchange problem can also be decomposed
It is seen that many of the popular topologzes, .zncl~d- to the simpler problem of performing total exchange
ing hyperc~~es, k-ary n-cubes and general ton satIsfy in single dimensions. This is a major simplification to
these condztlons. The results we present here apply to an inherently complex problem. We provide a general
the single-port model. algorithm applicable to any multidimensional network

given that we have total exchange algori~hms for ~ac.h
dimension. Optimality conditions are given and It IS

1 Introduction seen that they are met for many popular networks,

Multidimensional (or cartesian product) networks e.g. hypercubes, tori, generalized hypercubes et~.
have prevailed the interconnection network design for The results presented here ap~l~ .to pack~t-sWttch~d
distributed memory multiprocessors both in theory networks with single-port capa~Ihtles. T~I~ model IS
and in practice. Commercial machines like the Ncube, based on the following assumptIons/restrIctIons:
the Cray T3D, the Intel iPSC, Delta and Paragon, .communication links are bidirectional and fully
have a node interconnection structure based on mul- duplex
tidimensional networks such as hypercubes, tori and. a message requires one time unit ( or step) to be
meshes. These networks are based on simple basic di- transferred between two adjacent nodes
mensions: linear arrays in meshes [10], rings in k-ary .a node can send at most one message and receive
n-cubes [5] and general tori, complete graphs in gener- at most one message at each time unit.
alized hypercubes [3]. Structures with quite powerful Algorithms to solve the problem for certain networ~s
dimensions have also been proposed, e.g. products of and under a variety of assumptions have appeared m
trees or products of graphs based on gr~ups [11,8]: many recent works, mostly concentrating in hyper-

One important issue related to multIprOCessor m- cubes and two-dimensional tori (e.g. [12, 9, 13]). Un-
terconnection networks is that of information dissem- der the single-port model an optimal algorithm for
ination. Collective communication~ for dist~ibuted- hypercubes is given in [2, pp. 81-83]. .
memory multiprocessors have receIved ~onslderable The paper is organized as follows. We formally m-
attention, for example they are included m the Mes- ttoduce multidimensional networks in Section 2. Sec-
sage Passing Interface standard and they support var- tion 3 gives a lower bound on the time required for
ious constructs in High Performance ~ortran. .solVing the total exchange problem under our mode!.

Broadcasting, scattering, gathermg, multmode In the same section we derive a new formula for thIS
broadcasting and total exchange constitute a set of bound in the networks of interest. The result has its
representative collective communication problems. In own merit as it also provides almost closed-form for-
total exchange, also known as multiscattering or all- mulas for the average distance in networks for which
to-all personalized communication, each node in a net- no such formula was known up to now. In Section 4
work sends distinct messages to all other nodes. Var- we develop the total exchange algorithm and in Sec-

.tion 5 we give the optimality conditions. The results.This research was supported In part through grants from. d .S t. 6

NSERC and the University of Victoria. are summarIze m ec Ion .
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2 Multidimensional Networks Every time a message is communicated between
Let G = (V, E) be an undirected graphI [4] with node ~jacent nodes one link traver.sal occurs. Under the
set V and edge set E. This is the usual model of rep- sillgle-port model nodes transmit only one message per
resenting a multiprocessor interconnection network: step, so that the maximum number of link traversals
processors correspond to nodes and communication in a single step is at most n. Consequently, we can
links correspond to edges in the graph. The number at best subtract n units from Sa in each step; thus a
of nodes in G is n = IVI. lower bound on total exchange time is

A path in G from node v to node u, is denoted Sa
as v -t u. The distance, dist(v,u), between v and T ? -= AS(G). (1)
u is the length of a shortest path between v and u. n
The eccentricity of v, e(v), is the distance to a node In other words, total exchange requires time bo~nded
farthest from v, i.e. e(v) = maxuEV dist(v,u). The below by the average status, AS(G), of the vertices.
diameter of G is the maximum eccentricity in G.

Given k graphs Gi = (~, Ei), i = 1,2, ..., k, their 3.1 Status in multidimensional networks
product is the graph G = G I x. ..x G k = (V, E) whose In this section we present a formula for the status of
nodes are labeled by a k-tuple (VI, ..., Vk) and vertices in multidimensional graphs, as required by the

V i \I: .1 k } lower bound of (1). The results are based on the status= ( VI, ..., Vk) I Vi E i, ~ = , ..., of vertices in individual dimensions. For formal proofs
E = ((~I,.. .,Vk),(UI,. ..,Uk») I ..the reader is referred to [7].

3) : ( vJ" , u J" ) E E J" and Vi = Ui for all ~ i ) } . Th 1 L t G G G x x G 1'1 ( ) "eorem e = I x 2 ...k. J Si Vi ~s
We call such products of graphs multidimensional the status of Vi in Gi, i = 1,2, ..., k, then the status

graphs and Gi is the ith dimension of the product. ofv = (VI,V2,...,Vk) in G is
The ith component of the address tuple of a node will k
be called the ith address digit or the ith coordinate. s(v) = n L ~. 0

Multidimensional graphs have n = IVIIIV21. ..IVkl i=I lViI
nodes. Hypercubes are products of two-node linear
arrays (or rings), tori are products of rings. If all di- The quantity s(v)/(n -1) is known as the average
mensions of the torus consist of the same ring, we ob- distance of node v, giving the average number of links
tain k-ary n-cubes [5]. Meshes are products of linear that have to be traversed by a message departing from
arrays [10]. Generalized hypercubes are products of v. Hence, Theorem 1 can also be used to calculate the
complete graphs [3] .average distance of vertices in many graphs for which

The don't care symbol '*' is used as a shorthand no closed-form formula was known up to now. As an
notation for a set of addresses. It represents all legal example, in generalized hypercubes [3] each dimension
values of the element of an address tuple it replaces. is a complete graph with mi vertices, i = 1,2, ..., k. In

a complete graph all nodes are adjacent to each other ,
3 Lower Bound for Total Exchan e s~ that ~i(Vi) = ~i- 1. Consequ~ntly, the average

9 distance ill generalized hypercubes IS
In the total exchange problem, a node v has to send
n -1 distinct messages, one to each of the other nodes n ~ mi -1 n

~ ~ 1 ,in an n-node network. Given a node v in the net- ~ L..., ~ = ~ k -L..., ~ ) .
work, if there exist nd nodes in distance d from v; i=I 1 i=I 1
d = 1,2, ..., e( v ), then the messages sent by v must In [3] it was possible to derive a formula only for the
cross case where all mi are equal to each other .

~ In the context of the total exchange problem wes(v) = L..., dnd are interested in the average status of the nodes in
d=I the network. Let AS(Gi) be the average status of Gi,

links in total. F~r all messages to be exchanged, the defined in (1) as AS(Gi) = }:::;ViEai Si(Vi)/IViI. We
total number of lInk traversals must be have the following corollary.

S ~ Corollary 1 Let G = GI x G2 x. ..x Gk. IfAS(Gi)a = L...,s(v). is the average status ofGi, i = 1,2,...,k, then the
vEV 1G " .

baverage status o IS g&ven y
The quantity s(v) is known as the total distance or the k
status [4] of node v. AS(G) = n ~ ~. 0

L..., lViI
IThe terms 'graph' and 'network' are considered synonymous i=I 1

here. We also follow the usual graph definitions and notation
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.~ 81 ~ repeated for messages originating at A2, A3 and A4.
, .' , ' , ' ; .We are now ready to formalize our arguments.
',- B2 ~ We are going to adopt the following notation:
, B ~ ' ' , ' , ., .m(v"u

) (vk,ul)willdenotethemessageofnode (vi,u J.)'- ) , .., .
, ." , , destmed for node (Vk, Ul). We will furthermore in-

, I. I' I.
A '- ,-1 troduce the '*' symbol to denote a corresponding set

I A2 A) A. fo messages. For example, m(v"Uj)(*,UI) denotes all
(a) (b) messages of node (Vi,Uj) destined for the nodes of AI,

and m(Vi,*)(Vk, Ul) denotes all messages of Ei destined
Figure I. A 4 x 3 torus as (a) four copies of a three- for node (Vk, Ul). Similarly, m(Vi,Uj)(*, *) denotes all
node ring or (b) three copies of a four-node ring messages of (Vi, Uj). Notice that this last set normally

includes m(Vi,Uj)(Vi,Uj) since (*,*) covers all nodes.
Since no node sends messages to itself, it is always im-

4 Total Exchange Algorithm plied that from any set of messages, we have removed
Let G = AxE. A k-dimensional network Gl x. ..XGk message whose source and destination are the same.
can still be expressed as the product of two graphs by Consider the set of messages m(*,*)(*, *). This set
taking A = Gl x. ..x Gk-l and E = Gk, so we may represents our total exchange problem: every node has
consider two dimensions without loss of generality. Let one message for every other node. Next consider the
A = (VA,EA), E = (VB,EB), G = (V, E), nl = IVAI, set m(*,Uj)(*,Uj). This is the set of messages of nodes
n2 = IVBI and n = nln2. Finally, let in Aj destined for the other nodes in Aj: they can

be distributed by a total exchange operation within
VA = {Vi I i = 1,2,...,nl} Aj. Finally, consider the set m(vi,Uj)(*,Uk) of node
VB = {uili=I,2,...,n2}. (vi,uj)meantforthenodesofAk. This set will be

transferred to node ( Vi, Uk). Thus, after such trans-
Graph Gconsistsofn2 (interconnected) copiesofVA. fers, node (Vl,~k) will ha,:,e received m(Vl,U )(*,Uk),
Let Aj be the jth copy of A with node set (*,Uj), node (V2!Uk) wlll have recelv~dm(V2'~j)(*'Uk), an~so
where * takes all values in V A. Similarly, G can be on. Notlce that every node m .Ak wlll have recelved
viewed as nl copies of E, and we let Ei be the ith messages meant!or.every node m Ak: these messages
copy of E with node set ( Vi, * ) .An example is shown c~early can be dlstnbuted to the appropriate destina-
in Fig. 1. tlons through a total exchange operation within Ak.

We will develop the basic idea behind our algo- The first problem we have with this approach is
rithm through the example in Fig. 1. Consider the that there may exist path collisions when node (Vi, Uj)
top node of Al. This node belongs to Al as well as transfers messages to (Vi,Uk) and node (Vi',Uj) trans-
El. All nodes in Al have, among other messages, mes- fers messages to (Vi' , Uk), i rf if. We can avoid these
sages destined for the rest of the nodes in Al. These collisions if we only allow use of links in the second di-
messages can be distributed by performing a total ex- mension (E). That is, the allowable paths (Vi,Uj) -!-
change within Al. In addition, nodes in Al have mes- (V;,Uk) involve only nodes (Vi, *) of Ei. Then if Vi' rf
sages for all nodes in A2, A3 and A4 which must be Vi, paths (Vi,Uj) -1- (Vi,Uk) and (Vi',Uj) -1- (Vi',Uk)
delivered to their appropriate destinations. What we have no node in common. Let us consider again the
will do is the following: all messages of the top node example in Fig. 1. At some point all nodes in Al want
of Al meant for the nodes in A2 will be transferred to to transfer their messages, say, for nodes in A4. The
the top node of A2. All messages of the middle node top node of Al transfers its messages to the top node
of Al destined for the nodes in A2 will be transferred in A4, the middle node of Al transfers its own mes-
to the middle node of A2. Similar will be the case sages to the middle node of A4 and so on, without any
for the bottom node of Al. Once all these messages interference between them if the paths used belong to
arrive in A2, the only thing remaining is to perform a the second dimension. That is, all the transfers of the
total exchange within A2 and all these messages will top node of Al use links in El, all transfers from the
be distributed to the correct destinations. bottom node of Al use links in E3, etc.

Next, nodes of Al have to transfer their messages Algorithm Al shown in Fig. 2 solves the total ex-
~eant for A3 to nodes of A3. The procedure is iden- change problem in G = A x E. First we perform all
tlCal to the procedure followed for messages meant for the transfers we described above and then we perform
A2. The remaining messages in Al are destined for A4 the total exchanges within each A ..The transfers cor-
and one more repetition of the above procedure com- respond to lines 1-4 in AlgorithU: Al. After they are
pletes the task. Notice that the procedure outlined completed, every node (Vi, Uj), for every i, j, will have
above for messages originating at nodes of Al must be received all messages meant for the jth copy of A orig-
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Table I. Messages to be transferTedfrom node (Vi,Uj).

I II For Al I... I For Ak I... I For An2 I

Rl m(VioV;)(V1IU1) ...m(VioV")(Vl,Uk) ...m(VioV )(Vl,Un2)
R2 m(VioV;)(V2,Ul) ...m(VioV;)(V2,Uk) ...m(VioV)(V2,Un2)

R,.l m(VioV )(Vnl'Ul) ...m(Viov;)(Vnl'Uk) ...m(Vi.V;)(Vnl'Un2)

I Do in parallel for all Vi E V A (i = 1, 2, ..., nl) I For r = 1,2, ..., nl
2 For every j = 1,2, ..., n2 2 Do in parallel for all Bi, i = 1,2, ..., nl
3 For every k = 1, 2, ..., n2, k;f i 3 In Bi perform total exchange with node (Vi, Uj )
4 Transfer messages m(Vi.Uj)(.' Uk) to node sending messages m(v;ouj)(Vr, .), j = 1, 2, ..., n2j

(vi,uk)usinglinksinBij 4 Foreveryk=I,2,...,n2
5 Foreveryk=I,2,...,n2 5 DoinparallelforalIAj,j=I,2,...,n2
6 Do in parallel for all Aj, j = 1, 2, ..., n2 6 In Aj perform total exchange with node ( Vi, Uj )
7 In Aj perform total exchange with node (Vi, Uj) sending messages m(VioUk)(.' Uj ), i = 1, 2, ..., nlj

sending messages m(VioUk)(.'Uj);
Figure 3. Algorithm A2

Figure 2. Algorithm Al

In general, when every node (Vi, Ul), (Vi, U2), ...,
inating at nodes (Vi,Uk), k = 1,2, ...,n2, i.e. all mes- (Vi,Un2) in Ei transfers its own batch Rr of Table 1,
sages m(VioUk)(.'Uj). Lines 5-7 of the algorithm dis- a total exchange within Ei can distribute the mes-
tribute these messages to the correct vertices of Aj in sages appropriately. Consequently, all rows of Table 1
n2 rounds. In the kth round a total exchange is per- of every node will be transferred where they should
formed and the exchanged messages have originated by performing nl total exchanges in Ei: at the rth
from Ak. exchange all nodes (Vi, .) transfer their rth batch of

Algorithm Al solves the total exchange problem messages (rth row of the corresponding tables).
but lines 1-4 do not show how the transfer of messages BB8ed on the above discussion, and recalling that
is exactly implemented. Within Ei we need to transfer transfers within Ei do not interfere with transfers
messages m(VioUj)(*,Uk) from every vertex Uj to every within Ei" it f i, we may express our total exchange
other vertex Uk. In Table 1 we list the messages to algorithm in its final form, Algorithm A2, appear-
be transferred by some vertex (Vi,Uj) of Aj. Notice ing in Fig. 3. Algorithm A2 is a general solution
that we do not have to transfer messages meant for Aj to the total exchange problem for any multidimen-
anywhere, so the jth column of the table is actually sional network. If the network hB8 k > 2 dimensions,
unused (it will only be used for a total exchange within G = Gl x. ..x Gk, Algorithm A2 can be used recur-
Aj). Column k contains all messages of (Vi,Uj) meant sively, by taking A = Gl x. ..x Gk-l and E = Gk.
for Ak, to be transferred first to node (Vi, Uk). The total exchanges in Aj (lines 4-6) can be performed

Instead of transferring the messages column by col- by invoking the algorithm with A = Gl x. ..x Gk-2
umn (i.e. transfer all messages in column 1 to All and E = Gk-l and so forth.

then all messages in column 2 to A2, etc.) we trans- The algorithm is in a highly desirable form: it only
fer them horizontally (row by row). The batch Rr of utilizes total exchange algorithms for each of the di-
messages in row r contains all messages m(Vi.Uj)(Vr, *). mension~. The problem of total ~xchange in a complex
We will transfer all of them, except of course for network lS now reduced to the slmpler problem of de-
m(Vi.Uj)(Vr,Uj) in column j which is meant for a node vising total exchan?e algorithm~ for single dimen~ions.
of Aj. Let us consider again the network in Fig. 1 and For example, algorithms for torl can be systematlcally
B8sume that the bottom nodes of All A2, A3 and A4 constructed beB8ed on algorithms for rings.

want to transfer their first batch, Rl. The batch of the
bottom node of Al contains one message for each of 5 Optimality Conditions
the bottom nodes of A2, A3 and A4. Similarly, batch
Rl for the bottom node of A2 contains one message It is not very hard to calculate the time required for
for the other three nodes in question. It should be Algorithm A2. Lines 1-3 perform nl total exchanges
immediately clear that these messages constitute an within Ei (for all i = 1, 2, ...I nl in parallel), each
instance of the total exchange problem in El. requiring TB steps. Similarly, lines 4-6 perform n2
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total exchanges within Aj (for all j = I, 2, ..., n2 in Many popular networks, including hypercubes, tori,
parallel), each requiring T A steps. generalized hypercubes and, in general, products of
Theorem 2 If single-port total exchange algorithms symmetric graphs in the Cayley class, consist of di-
for graphs A and B take TA and TB steps cofTespond- mensions for which algorithms achieving the bound in
ingly then Algorithm A2 for G = A x B requires (I) exist. Algorithm A2 is thus an optimal solution to

the total exchange problem for the above networks.
T = niTB + n2TA A detailed exposition of this material, which also

includes some extensions to the multiport model is
time units. O available in [7] and can be obtained through the World

Using a simple induction the following is proven: Wide Web at http : ! !www-lapis .uvic .ca.
Corollary 2 If G = Gi x G2 x. ..x Gk and a single-
port total exchange algorithm for Gi takes Ti time R ti.ts . I 2 k 1 h . G d th e erences
urn, t = , ,..., , tota exc ange In un er e

single-port model can be performed in [1] S. B. Akers and B. Krishnamurthy, "A group-
theoretic model for symmetric interconnection net-

k ~. works," IEEE Trans. Comput., Voi. 38, No.4, pp.
T = n 2: -!- 555-566, Apr. 1989.

i=i l¥il [2] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and
Distributed Computation: Numerical Methods. Engle-

steps, where n = IViIIV21. ..IVkl. 0 woods Cliffs, N.J.: Prentice- Hall, 1989.

Combining Corollary I with Corollary 2, we can [3] L. N. Bhuyan and D. P. Agrawal, "Generalized hy-
prove the following: percube and hyperbus structures for a computer net-
Theorem 3 If single-port total exchange for every di- work," IEEE Trans. Comput., Voi. C-33, No.4, pp.

.. I 2 k 1G G G G 323-333, Apr. 1984.
menslont = , ,..., o = i x 2 x ...x k can. .
be performed in time equal to the lower bound of (1) [41 ~. Buckley and ~. Harary, DtStance In Graphs. Read-
th th . t I G 0 Ing, Mass.: Addison -Wesley, 1990.

en e same IS rue Jor .
Th 1 t th .d th . t . al . t [5] W. J. Dally and C. L. Seitz, "Deadlock-free message

e as eorem proVl es e main op im i y con- ...routIng In multiprocessor Interconnection networks,"

dition for AlgorIthm A2. If we have total exchange IEEE Trans. Comput., Voi. C-36, No.5, pp. 547-553,
algorithms for every dimension and these algorithms May 1987.
ach~eve th~ bound of (I) then A~gorithm A2 also [6] V. V. Dimakopoulos and N. J. Dimopoulos, "Optimal
achie,:,es th~s b~und. For example, m hy~e~cubes. ev- total exchange in Cayley graphs," Technical Report
ery dImensiOn IS a two-node graph. TrIVIally, m a ECE-96-1, University of Victoria, Jan. 1996.
two-node graph the time for total exchange is jus~ one [7] V. V. Dimakopoulos and N. J. Dimopoulos, "A the-
step, equal to the average status. Thus the optimal- ory for total exchange in multidimensional intercon-
ity condition is met and the presented algorithm is an nection networks," Technical Report ECE-96-2, Uni-
optimal algorithm for single-port hypercubes. versity of Victoria, Jan. 1996.

More generally, we have shown elsewhere [6] that [81 K. Efe and A. Fernandez, "Products of networks with
there exist algorithms that need time equal to (I) for logarithmic diameter and fixed degree," IEEE Trans.
any Cayley [I] network. Consequently, the optimal- Parall. Distrib. Syst., Voi. 6, No.9, pp. 963-975, 1995.
ity condition is met for arbitrary products of Cayley [9] S. L. Johnsson and C. -T. Ho, "Optimum broadcast-
networks. Rings and complete graphs are examples ing and personalized communication in hypercubes,"
of Cayley networks and thus Algorithm A2 solves op- IEEE 1rans. Comput., Voi. 38, No.9, pp. 1249-1268,
timally the total exchange problem in k-ary n-cubes, 1989.
general tori and generalized hypercubes. [10] F. T. Leighton, Introduction to Parallel Algorithms

and Architectures: Arrays, fues, Hypercubes. San
Diego, CA: Morgan Kaufmann, 1992.

6 Summary [11] A. L. Rosenberg, "Product-shufHe networks: towards

In this paper we studied the total exchange problem in reconciling shufHes and butterflies," Discrete Appl.
the context of multidimensional networks, under the Math., Voi. 37/38, pp. 465-488, July 1992.
single-port model. We showed that the problem can [121 Y. Saad and M. H. Schultz, "Data communications in
be decomposed into the simpler problems of devising hypercubes," J. Parallel Distrib. Comput., Voi. 6, pp.
total exchange algorithms in individual dimensions. 115-135, 1989.
Given that we have such algorithms that achieve the [131 E. A. Varvarigos and D. P. Bertsekas, "Communica-
lower bound of (I) for each of the dimensions, we tion algorithms for ~otropic tasks in hypercubes and
can synthesize optimal algorithms for the multidimen- wraparound meshes, Parallel Comput., Voi. 18, pp.
sional network. 1233-1257, 1992.
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