Performance analysis of an arbiter using probabilistic timed Petri nets
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Abstract has entered a metastable behavior leaves such state is given
by (cf. [7]):
Asynchronous circuits have experienced a resurgence due kT
to potential advantages to low-power and high-speed fim(tm) =Ce [Eq. 1]

design. The timed signal transition graph model, an inter- whereC andK are constants that depend on properties of
preted Petri net, is a formal specification that is capable to the circuit elements. Notice that in the Seitz’ arbiter, the
characterize the temporal behavior of asynchronous cir- differential detection circuit after the NAND latch always
cuits by utilizing interval delays. However asynchronous exhibits a well defined binary output, not being affected by
circuits are prone to metastability, which may subside after the metastable behavior that may take place in the SR
an arbitrarily long time. Thus an interval analysis yields a |atch.

very pessimistic description of the performance bounds. In
this paper we take a probabilistic approach based on a
Petri net model to study the effect of metastability in the
performance of asynchronous circuits. We illustrate our
approach by modeling the Seitz’ arbiter as a case study.

1. Introduction

Interval timing analysis has been used to determine the
worst-case performance of asynchronous circuits modeled
by timed signal transition graphs [1]. There are some situa-
tions in which a worst-case analysis is not very appropri-
ate. For instance if some of the involved delays are
unbounded.

Figure 1. Seitz’ arbiter.

If one wants to determine the worst delay of a grant
from a request for the Seitz’ arbiter, the answer would be
“arbitrarily long”, which lacks a quantitative notion.

In this paper we consider the problem of modeling the |nstead of using a timed Petri net with intervals associated
performance of an arbiter. An ideal 2-way arbiter controls yith jts places which has the limitation that can only char-
the access to a shared resource that can only service ongterize a worst-case scenario, we propose to model the
client at a time. Such an arbiter can accept up t0 tWOmetastable behavior using a probabilistic Petri net in which
requests at any time, but it will produce at most one grantrandom variables are associated with its places [3] because
even if the requests arrive simultaneously. it allows us to quantify a possibly unbounded delay by

A typical circuit that implements an arbiter is the Seitz obtaining its probability density function (pdf).
arbiter shown in Figure 1. If only one of the requests is  Figure 2 shows a partial timed Petri net [8, 4] that repre-
generated, the corresponding grant is produced after someents thetimed behavior of an ideal arbiter. In interval
delay. However if both requests arrive at (about) the samdimed Petri nets, a compact non-empty time interval is
time, the NAND latch may enter a metastable state, and theassociated with each place [1, 4]. A transition fires imme-
resolution timet,, after which only one of the grants is diately when all its input places haveiaible token. When
generated, can be arbitrarily long. The probability distribu- a transition fires, it consumes the tokens on its input places,
tion function that describes the timg when a circuit that  and sends tokens to its output places. A place labeled with



interval A, that receives a token at time will make the (iii) strictly speakingK depends on the time of arrival of
token visible at time + 1;, wheret; O A,. the requests but in this paper we assumeKhatnvariant.

We propose to model the Seitz’ arbiter with the Petri net
shown in Figure 3. To understand the behavior of the Petri
net shown in Figure 3, consider first the case in which a
‘ request arrives and the other request is not issued during
the windowT,,
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Figure 2. Arbiter.

To understand the behavior of the net shown in Figure 2,
let us assume that the token shown in the common input
place to transitiong; andg, is already visible. Suppose
that a token is made visible at the input place offThen
transitionr, fires and sends a token to place labealgd
When the tokematures(i.e., the token is made visible) in
placep, labeled with interval\;, and if there is no visible
token at plac@, labeled with interval\,, then transitiory;
fires. Thus the grant enabled by the the first visible token
(at placep; or placep,) is the only one that fires. If tokens
at both placep; andp, mature exactly at the same time,
one of the grant transitiorgg or g, is chosen to occur non-
deterministically.

Clearly this Petri net cannot model the richer behavior
of the Seitz’ arbiter, since it does not distinguish between
meta-stability and normal (digital) behavior. In the next
section we will propose a more accurate model that takes
meta-stability into account. In order to do so, we have to
consider probabilistic Petri nets[3]. In such nets, each
place is associated with a random variable which is charac-
terized by a probability density function. This variable rep-
resents the random maturing time of the token, relative to Figure 3. Modeling metastability.
the time when the token arrives in the place.

2 Model of the Seitz’ arbiter VVhDue to syr_nmetry, it suffices to consider only regutgst
en transitiorr, fires after a token matures at its input
In this section we introduce our probabilistic approach to place, it puts tokens into placgsandp,. Unlabeled places
the timing analysis of asynchronous circuits by working such agy, make tokens visible immediately (i.e., the pdf
out a case example: the Seitz’ arbiter. f(x) of the corresponding associated random variabse
Throughout this paper we will make the following the impulse functio®(x)). Placep, is labeled with random
assumptions: (i) the circuit responds with a fixed delay if variable t,, with pdf shown in Figure 4. Thus transition
the separation between the requests is greaterTihi) proceedwill fire after T,, and transitiorg, will fire after
if the requests arrive withim,, of each other, the probabil- D;. The total delay from the occurrencergfto the issu-
ity that a grant is generated after detgyis given by Eg. 1;  ance of the respective granfTis+ D.



However if request, fires within windowT,, afterr; exponential pdff,,(t,) given by Eg.1. The probability
has fired, then transitiometawill fire and eitherg; or g, density functiond,;(t,;) describe the firing of transitiorrs
(as selected by the free choice plagewill be generated  at timet,, fori =1, 2.
after a delayt,,, Random variable, obeys an exponential
pdf as given by Eq. 1.

. f
3. Analysis frra 2
In this section we discuss how to analyze the Petri net
shown in Figure 3. We assume that the pdf’s of the time of N 1 SARFaNED
occurrence for requests andr,, T,; andt,,, are known /\ G /\/\ TLZ
and given byf,1(T,1) andf,(T,,) (see Figure 5). (In [3] we ! d D, T4, D,

show how to find the pdf of a given transition for a sub-

class of probabilistic timed Petri nets.) Our goal is to deter-

mine the probabilistic profile (i.e., pdf) of the grant transi-

tionsg; andgs. Figure 5. Probability of the time occurrence of requests
r, andr,.

From the discussion in Section 2, the probability that
transitionmetawill fire at time a (blocking the firing of
proceed is:

T Tw T 1 Prob{o < Tpeta< 0+da} =
> Prob{oa < 1,4 <a+da} (Prob{fa-T,<T1,,<0} +
Tw Dy Prob{o-T,, < 1,; <a} [Prob{a < 1,, <a+da} +
Prob{a < 1,4 <a+da} [Prob{a < 1,, < a+da}
[Eq. 5]

Figure 4. Probability distributions of the random Similarly the probability that transitioproceedfires at

variables associated with labeled places of the Petri net time a given that transition; has occurred is given by:
shown in Figure 3.

Prob{ar < Tjoceeqys < atda} =
Prob{o-T,, < 1,y <a-T,+da} O

From the previous analysis it is clear that the firing of [1 - Probft., < o} (Eq. 6]
transitionsmetaandproceedare mutually exclusive (there rz= . el
is a single token in plaqm). Thus the pdf’s of the occurrence time for transitions

Let us find the time of occurrence of transitign First ~ Meta and proceed are given by:
we introduce some basic concepts from [6].X ek a ran- foed0) =
dom variable with probability density function (pdifjx). [Foa(Q) = Frrp(@=T,)] Chopy(a) +
Th ility th iabhe tak lue i
: ;Vperr(])tk))?l?l ity that variabletakes a value in rangg, [x,) [Fe1(a) = Fra(@=T,)] Dypo(a) [Eq. 7]

f ar1(0) =
Prob{x; < X <X} = Fy (X)) — Fy(X) [Eq. 2] proceedr

1 . ' [1 = Frra(@)] Hrra(a-To) [Eq. 8]

where F,(x) is the accumulative distribution function of

random variable x, related fg(x) by the following equa- Let us assume for the sake of illustration that Hgth

and f,, are uniform in the interval [D] and that

tion: D =20T,, Substituting the parameters of the pdf's into
X Eqgs. 7 and 8, one can obtain the following expressions:
Fe) = [ f(dt [Eq. 3]
_ _ UD-a
Using Egs. 2 and 3, it can be shown that: [1 D2z - if Tysa<D
f a)=
Probfx, < X < Xo + dx} = f,(x) dx [Eq. 4] proceedr1(?) = 7
: : : l
The random variable,, associated with plaog, repre- Mo, otherwise

sents a metastable state and thus it is described by the



[]2a

fmed®) = [ ] 2T, _
D F , if Ty<as<D
D 0, otherwise

If proceedhas occurred due tq, the grantg; will be
issued at tim&pyceeqt T1, Wherety is the random variable
associated with plage;. To compute the firing time df;
we shall use the fact that the pdf of random variable
x=y+zisf,= f,0f, if y andz are independent random
variables, where th@operator denotes convolution [6].

If, meta has occurred, plagg selects eitheg,; or g,,
with a 50% chance. (Note: in a first approximation, a non-
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Figure 6. Probability density function of the occurrence
time ofg, for D=10,D,=5, andK=0.1.

deterministic choice event can be considered a randomly e believe that a probabilistic analysis is essential in
selected event; an extension of the model could assign #e qualitative study of the impact of metastable behavior
probability to each of the choices of a free choice place).in the timing performance of asynchronous circuits which

The pdf of random variable,, associated withp, is
f.m = C €K™ for 1,20, andg;, if selected, will fire at time
Tmetat T

Thus the probability thag, will be issued at timer is
given by:

can exhibit this phenomenon.
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fgl(a) = fproceed]rl(a) Ofa(a)
+ 0.5 neid ) Ofp(X) [Ed. 9]

The first term corresponds to the generatiorgpfia
proceed(which isfyceedr1(@—D1), @ transport delay) and
the second term corresponds to the generatiog, afia
meta Figure 6 shows the pdf of the occurrence of gegnt
for the uniform case. One can observe a “triangular” shape
that corresponds tg, generated vigroceed and a tail that
corresponds t@; generated vianeta The area under the
curve is 0.5 which represents the 50% probability of occur-
rence ofg; (g; andg, being equally likely to occur). The
probability thatg, is generated after a delayl5 dimin-
ishes exponentially. For example the probability that
will be generated after 15time units is approximately 1.9%.
Moreover, the probability thay; will be generated after 40
time units is under 0.15%.

4, Summary

We have introduced a probabilistic model capable of repre-
senting with more accuracy the complex behavior of the
Seitz’ arbiter, including metastability. The advantage of our
approach is twofold: first our analysis procedure relies
upon a formal model circuit specification (probabilistic

comments.
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