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Abstract

Asynchronous circuits have experienced a resurgence due
to potential advantages to low-power and high-speed
design. The timed signal transition graph model, an inter-
preted Petri net, is a formal specification that is capable to
characterize the temporal behavior of asynchronous cir-
cuits by utilizing interval delays. However asynchronous
circuits are prone to metastability, which may subside after
an arbitrarily long time. Thus an interval analysis yields a
very pessimistic description of the performance bounds. In
this paper we take a probabilistic approach based on a
Petri net model to study the effect of metastability in the
performance of asynchronous circuits. We illustrate our
approach by modeling the Seitz’ arbiter as a case study.

1. Introduction

Interval timing analysis has been used to determine the
worst-case performance of asynchronous circuits modeled
by timed signal transition graphs [1]. There are some situa-
tions in which a worst-case analysis is not very appropri-
ate. For instance if some of the involved delays are
unbounded.

In this paper we consider the problem of modeling the
performance of an arbiter. An ideal 2-way arbiter controls
the access to a shared resource that can only service one
client at a time. Such an arbiter can accept up to two
requests at any time, but it will produce at most one grant
even if the requests arrive simultaneously.

A typical circuit that implements an arbiter is the Seitz
arbiter shown in Figure 1. If only one of the requests is
generated, the corresponding grant is produced after some
delay. However if both requests arrive at (about) the same
time, the NAND latch may enter a metastable state, and the
resolution time τm, after which only one of the grants is
generated, can be arbitrarily long. The probability distribu-
tion function that describes the time τm when a circuit that

has entered a metastable behavior leaves such state is given
by (cf. [7]):

fτm(τm) = C e−Kτm [Eq. 1]

where C and K are constants that depend on properties of
the circuit elements. Notice that in the Seitz’ arbiter, the
differential detection circuit after the NAND latch always
exhibits a well defined binary output, not being affected by
the metastable behavior that may take place in the SR
latch. 

If one wants to determine the worst delay of a grant
from a request for the Seitz’ arbiter, the answer would be
“arbitrarily long”, which lacks a quantitative notion.
Instead of using a timed Petri net with intervals associated
with its places which has the limitation that can only char-
acterize a worst-case scenario, we propose to model the
metastable behavior using a probabilistic Petri net in which
random variables are associated with its places [3] because
it allows us to quantify a possibly unbounded delay by
obtaining its probability density function (pdf). 

Figure 2 shows a partial timed Petri net [8, 4] that repre-
sents the timed behavior of an ideal arbiter. In interval
timed Petri nets, a compact non-empty time interval is
associated with each place [1, 4]. A transition fires imme-
diately when all its input places have a visible token. When
a transition fires, it consumes the tokens on its input places,
and sends tokens to its output places. A place labeled with

Figure 1.  Seitz’ arbiter.

g1

g2r1

r2



interval ∆i that receives a token at time τ, will make the
token visible at time τ + τi, where τi ∈ ∆i. 

To understand the behavior of the net shown in Figure 2,
let us assume that the token shown in the common input
place to transitions g1 and g2 is already visible. Suppose
that a token is made visible at the input place of r1. Then
transition r1 fires and sends a token to place labeled τ1.
When the token matures (i.e., the token is made visible) in
place p1 labeled with interval ∆1, and if there is no visible
token at place p2 labeled with interval ∆2, then transition g1
fires. Thus the grant enabled by the the first visible token
(at place p1 or place p2) is the only one that fires. If tokens
at both places p1 and p2 mature exactly at the same time,
one of the grant transitions g1 or g2 is chosen to occur non-
deterministically.

Clearly this Petri net cannot model the richer behavior
of the Seitz’ arbiter, since it does not distinguish between
meta-stability and normal (digital) behavior. In the next
section we will propose a more accurate model that takes
meta-stability into account. In order to do so, we have to
consider probabilistic Petri nets [3]. In such nets, each
place is associated with a random variable which is charac-
terized by a probability density function. This variable rep-
resents the random maturing time of the token, relative to
the time when the token arrives in the place.

2. Model of the Seitz’ arbiter
In this section we introduce our probabilistic approach to
the timing analysis of asynchronous circuits by working
out a case example: the Seitz’ arbiter.

Throughout this paper we will make the following
assumptions: (i) the circuit responds with a fixed delay if
the separation between the requests is greater than Tw; (ii)
if the requests arrive within Tw of each other, the probabil-
ity that a grant is generated after delay τm is given by Eq. 1;

Figure 2.  Arbiter.
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(iii) strictly speaking K depends on the time of arrival of
the requests but in this paper we assume that K is invariant.

We propose to model the Seitz’ arbiter with the Petri net
shown in Figure 3. To understand the behavior of the Petri
net shown in Figure 3, consider first the case in which a
request arrives and the other request is not issued during
the window Tw. 

Due to symmetry, it suffices to consider only request r1.
When transition r1 fires after a token matures at its input
place, it puts tokens into places p1 and p2. Unlabeled places
such as p1 make tokens visible immediately (i.e., the pdf
fx(x) of the corresponding associated random variable x is
the impulse function δ(x)). Place p2 is labeled with random
variable τw with pdf shown in Figure 4. Thus transition
proceed will fire after Tw, and transition g1 will fire after
D1. The total delay from the occurrence of r1 to the issu-
ance of the respective grant is Tw + D1.

Figure 3.  Modeling metastability.
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However if request r2 fires within window Tw after r1
has fired, then transition meta will fire and either g1 or g2
(as selected by the free choice place p4) will be generated
after a delay τm. Random variable τm obeys an exponential
pdf as given by Eq. 1. 

3. Analysis
In this section we discuss how to analyze the Petri net
shown in Figure 3. We assume that the pdf’s of the time of
occurrence for requests r1 and r2, τr1 and τr2, are known
and given by fτr1(τr1) and fτr2(τr2) (see Figure 5). (In [3] we
show how to find the pdf of a given transition for a sub-
class of probabilistic timed Petri nets.) Our goal is to deter-
mine the probabilistic profile (i.e., pdf) of the grant transi-
tions g1 and g2. 

From the previous analysis it is clear that the firing of
transitions meta and proceed are mutually exclusive (there
is a single token in place p5).

Let us find the time of occurrence of transition g1. First
we introduce some basic concepts from [6]. Let x be a ran-
dom variable with probability density function (pdf) fx(x).
The probability that variable x takes a value in range [x1,x2)
is given by:

Prob{x1 ≤ x < x2} = Fx(x2) − Fx(x1) [Eq. 2]

where Fx(x) is the accumulative distribution function of
random variable x, related to fx(x) by the following equa-
tion:

[Eq. 3]

Using Eqs. 2 and 3, it can be shown that:

Prob{x0 ≤ x < x0 + dx} = fx(x) dx [Eq. 4]

The random variable τm associated with place p4 repre-
sents a metastable state and thus it is described by the

Figure 4.  Probability distributions of the random 
variables associated with labeled places of the Petri net 

shown in Figure 3.

fτw fτ1

τw

Tw

τ1

D1

Fx x( ) fx t( ) td
∞–

x

∫=

exponential pdf fτm(τm) given by Eq. 1. The probability
density functions fτri(τri) describe the firing of transitions ri
at time τri , for i = 1, 2. 

From the discussion in Section 2, the probability that
transition meta will fire at time α (blocking the firing of
proceed) is:

Prob{α ≤ τmeta < α+dα} = 
Prob{α ≤ τr1 < α+dα} ⋅ Prob{α−Tw ≤ τr2 < α} + 
Prob{α−Tw ≤ τr1 < α} ⋅ Prob{α ≤ τr2 < α+dα} + 
Prob{α ≤ τr1 < α+dα} ⋅ Prob{α ≤ τr2 < α+dα}

[Eq. 5]

Similarly the probability that transition proceed fires at
time α given that transition r1 has occurred is given by:

Prob{α ≤ τproceedr1 < α+dα} = 

Prob{α−Tw ≤ τr1 < α−Tw+dα} ⋅ 
[1 - Prob{τr2 ≤ α} [Eq. 6]

Thus the pdf’s of the occurrence time for transitions
meta and proceed are given by:

fmeta(α) = 
[Fτr2(α) − Fτr2(α−Tw)] ⋅ fτr1(α) + 
[Fτr1(α) − Fτr1(α−Tw)] ⋅ fτr2(α) [Eq. 7]

fproceedr1(α) = 

[1 − Fτr2(α)] ⋅ fτr1(α−Tw) [Eq. 8]

Let us assume for the sake of illustration that both fτr1
and fτr2 are uniform in the interval [0,D] and that
D = 20Tw. Substituting the parameters of the pdf’s into
Eqs. 7 and 8, one can obtain the following expressions:

Figure 5.  Probability of the time occurrence of requests 
r1 and r2.
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If proceed has occurred due to r1, the grant g1 will be
issued at time τproceed+ τ1, where τ1 is the random variable
associated with place p3. To compute the firing time of g1
we shall use the fact that the pdf of random variable
x = y + z is fx = fy ∗ fz if y and z are independent random
variables, where the ∗ operator denotes convolution [6].

If, meta has occurred, place p4 selects either g1 or g2,
with a 50% chance. (Note: in a first approximation, a non-
deterministic choice event can be considered a randomly
selected event; an extension of the model could assign a
probability to each of the choices of a free choice place).
The pdf of random variable τm associated with p4 is
fτm = C e-Kτm, for τm≥0, and g1, if selected, will fire at time
τmeta+ τm.

Thus the probability that g1 will be issued at time α is
given by:

fg1(α) = fproceedr1(α) ∗ fτ1(α)

+ 0.5 fmeta(α) ∗ fτm(α) [Eq. 9]

The first term corresponds to the generation of g1 via
proceed (which is fproceedr1(α−D1), a transport delay) and
the second term corresponds to the generation of g1 via
meta. Figure 6 shows the pdf of the occurrence of grant g1
for the uniform case. One can observe a “triangular” shape
that corresponds to g1 generated via proceed, and a tail that
corresponds to g1 generated via meta. The area under the
curve is 0.5 which represents the 50% probability of occur-
rence of g1 (g1 and g2 being equally likely to occur). The
probability that g1 is generated after a delay> 15 dimin-
ishes exponentially. For example the probability that g1
will be generated after 15time units is approximately 1.9%.
Moreover, the probability that g1 will be generated after 40
time units is under 0.15%. 

4. Summary
We have introduced a probabilistic model capable of repre-
senting with more accuracy the complex behavior of the
Seitz’ arbiter, including metastability. The advantage of our
approach is twofold: first our analysis procedure relies
upon a formal model circuit specification (probabilistic
timed Petri nets), and secondly our model is an extension
of signal transition graphs (STG’s) [2, 5] which are widely
used to describe the behavior of asynchronous circuits.
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We believe that a probabilistic analysis is essential in
the qualitative study of the impact of metastable behavior
in the timing performance of asynchronous circuits which
can exhibit this phenomenon.
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Figure 6.  Probability density function of the occurrence 
time of g1 for D=10, D1=5, and K=0.1.
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