The Simulation and Execution Architecture� for the NAVL DVR System

Martine Wedlake and Kin F. Li

{martine, kinli}@ece.uvic.ca

Department of Electrical and Computer Engineering

University of Victoria

Box 3055, Victoria, B.C., Canada, V8W 3P6

�
Abstract

The Newtonian Architecture for Virtual Landscapes Distributed Virtual Reality (NAVL DVR) system compensates for network lag by using a distributed execution model. This paper presents the design of the simulation and execution architecture for the NAVL DVR system. Highlights include: event driven behaviour execution routines, simulation infrastructure for evaluating paths through space-time at local display nodes, and the thread architecture for the simulation and execution architecture support.

Overview of NAVL DVR System and Architecture

Many DVR systems are weak in the design of the network architecture and object distribution and coherency model [3]. The network architecture describes how the hosts in the DVR system communicate to each other. The object distribution and coherency model defines how virtual objects are synchronized between remote hosts.

Many DVR systems use a peer-to-peer or client/server network architecture, which is not as efficient as distributed client/server architecture [3], which allows for a partitioning between groups of servers communicating in a peer-to-peer fashion.

Popular synchronization models for DVR systems include: Laissez-faire, dead reckoning, centralized database, ownership transferal, and locking [3]. Only the dead reckoning system is designed to minimize network traffic by assuming that a virtual object remains at rest unless instructed to move. Instead of sending a steady stream of update packets to synchronize the virtual object, packets are only sent when the virtual object moves. However, there is no network savings during the time when the object is moving.

The NAVL DVR system addresses these two problems by specifying a distributed client/server network architecture, and a master/slave object distribution model coupled with an object simulation and execution architecture.

NAVL Network Architecture

The NAVL network architecture separates the WAN region from the LAN region with special message manager nodes. The message managers are responsible for routing packets between the LAN and WAN (router), maintaining the locations of hosts and objects within the DVR network (name service), managing the available quality of service parameters for the WAN (QoS control), and filtering messages between the WAN and LAN to minimize unnecessary network traffic (filter).

The NAVL Object Distribution and Coherency Model

Virtual objects in the NAVL DVR system have state information for such things as the object’s shape, colour, mass, position, and velocity along with state the object maintains for it’s own bookkeeping.

The object distribution and coherency model defines how the object’s state is replicated and maintained on the DVR system, so that multiple participants can interact with the same set of objects.

The NAVL DVR system uses a master/slave paradigm where the master object maintains the definition of the state, and the slave objects maintain a shadow copy of the state. The master objects are distributed throughout the NAVL DVR system so as to minimize the load on any node within the network, while the slave objects are distributed to every NAVL node that wishes to interact with the virtual object. To ensure coherency between hosts, changes to an object’s position state is simulated identically on the local NAVL hosts.

Simulation and Execution Architecture (SEA) of NAVL DVR System

The SEA has two primary functions:

It provides a framework for master objects to enable autonomous execution of object behaviour. The master object contains a set of event driven behaviour routines. These behaviour routines permit the master object to alter its state, or send and receive messages to other objects. We call this process the execution of a virtual object.

In order to reduce network traffic, the updates to the virtual object’s state is made at a high level. Traditional approaches to DVR systems use a time series stream of data from the master object to the slave objects being updated, taking up valuable network resources. The SEA provides a mechanism whereby the complete path through space-time can be specified (called a ForceLet), which is then replicated to the slave objects. The SEA of the slave objects are responsible for ensuring that the ForceLets are simulated in step with the SEA of the master object, hence we call this the simulation of the virtual object.

� EMBED Word.Picture.6 ���

Figure 1: Block Diagram of Virtual Object.

Virtual Object Execution

Events mark the occurrence of specific actions within the NAVL DVR system. For example, an event is sent by the SEA to the master objects involved in a collision. Other events include user interactions (e.g., a user clicks on an object), proximity sensors (e.g., when a user walks within a specified distance of an object), message arrival, and clocks (e.g., an event can be sent to an object at regular time intervals).

In response to an event, the master object will invoke a special event behaviour routine. There will be a separate event behaviour routine for each class of event. Only master objects have event behaviour routines because only they control the overall state of the virtual object.

Figure 1 shows a data flow diagram for a virtual object. The thinner parts of the diagram represent those components needed for master objects. An event is passed into the virtual object through the events and data input pipe. This invokes the appropriate behaviour routine to alter the virtual object’s state or issue ForceLets and events. The ForceLets can be issued to itself or to other master objects.

The behaviour code, written in the C language, uses the SEA Application Programming Interface (API) to change the object’s state, communicate with other master objects, and issue ForceLets. In broad terms, the API is divided up as follows:

execution environment: to specify the scheduling parameters such as execution priority, and to yield the processor to the next behaviour routine;

communication tasks: to create a communications port, to send and receive messages;

changing state: to issue ForceLets, and to change the visuals (e.g., colour, and shape);

utility functions: to locate virtual objects, to support errors (e.g., exception handlers), to access permanent storage, and to support debugging.

Since all behaviour routines for the virtual object execute on the same host, thereby allowing a shared execution environment between the behaviour routines (as will be seen later, all behaviour routines execute in the same thread). The behaviour routines can communicate to each other via a shared block of memory, or by sending events. This broadens the communication model, thus making the programming environment as flexible as possible.

Virtual Object Simulation

The path a virtual object follows in space-time is specified by the set of ForceLets applied to it [1]. The ForceLet is described by an expression of “force” applied over a time interval; the related changes in velocity and position are derived from the ForceLet according to Newtonian mechanics.

The advantage of using ForceLets can be seen when compared to traditional approaches. Many systems will have a single simulation node that determines the path of a virtual object, and transmits an update message to the view nodes at a predetermined update rate. This data stream uses a lot of networking bandwidth and is sensitive to network lag. The NAVL DVR system, however, compresses the entire path through space-time into a set of ForceLets that are simulated on the display nodes to reproduce the desired path. The ForceLets, themselves, represent a basis function for describing these paths. At present, the family of basis functions is described in Table 1. The time row indicates the average execution time for a loop of one million ForceLets on a SPARCstation 20.

The criteria for choosing a basis function falls into two categories: (1) a ForceLet that can be quickly simulated such that we can manage more virtual objects in the SEA, (2) a ForceLet that is sufficiently complex to provide a smooth path through space-time that combines well with other ForceLets to describe arbitrary paths.

Table 1: Examples of ForceLets.

�
Step�
½ Cosine�
Sine�
�
Force�
 mA t(T/2��mA t(T/2�
mAcos((t/T)�
mASin(2(t/T)�
�
Time�
2.2s�(454K/s)�
4.4s�(227K/s)�
5.4s�(185K/s)�
�

From the table, it is seen that the simple ForceLets like the step function can be quickly simulated but have sharp discontinuities; the sinusoidal ForcdLet has a very smooth shape at the expense of more computation effort. Therefore, some hardware support will be necessary to support large virtual environments as would be encountered in general purpose DVR systems.

SEA Support Infrastructure

The SEA support infrastructure establishes the execution environment for the virtual object behaviour routines. Tasks of the SEA support infrastructure include: (1) the runtime execution environment, (2) a set of background housekeeping tasks, and (3) the user interface management tasks.

Runtime Execution Environment

Behaviour routines run in the same thread, using the same stack. The stack is used as scratch space, and is therefore not saved when the behaviour routine yields the processor. The behaviour routines, however, do have access to a shared data state and a private data state.

Two runtime supported pointers, shared and private, are preset by the SEA support infrastructure prior to running a thread. The shared pointer is used to manage information that is shared between behaviour routines, and the private pointer manages information private to the behaviour routine. The data structures for both shared and private data state are compiled as part of the NAVL DVR system, hence they are static. In addition to the static storage available through these pointers, the runtime environment supports heap access, however no garbage collection is available at this time; the application developer is responsible for eliminating memory leaks.

One of the most visible elements of the SEA support infrastructure is the SEA API. Table 2 shows the draft version of the SEA API; notice that communication is managed through named ports to allow a simple mechanism for virtual objects to create their own APIs. A future version will enable registration (or publishing) of the named ports for dynamic discovery of these APIs.

Table 2: Some fundamental calls of the SEA API.

Name�
Description�
�
setparms�
Set behaviour routine specific parameters. For example, changing the scheduling parameters.�
�
yield�
Exits the behaviour routine, but unlike the UNIX(exit() system call, the private state is saved for the next invocation of this behaviour routine.�
�
issue�
Issues a ForceLet or event to a virtual object. The NAVL SEA support mechanism will ensure that the ForceLet is replicated to the slave objects as well as the master object.�
�
mkport�
Create a named communication port and register its use to the current behaviour routine. Virtual objects can have several named ports, as defined by the application developer.�
�
send �
Send a data block to a named port of a virtual object. �
�
recv�
Read a data block from a named port.�
�
poll�
Poll a named port to determine how many unread messages are queued up.�
�
colour�
Change the colour of the virtual object.�
�
shape�
Change the shape of the virtual object. This is loosely defined because we have not worked out the details of the geometric modeling of the virtual object.�
�
Background Tasks

Along with the runtime environment, the SEA support infrastructure must also perform housekeeping tasks. For example, collision detection and networking.

Collision detection is handled at the system level to leverage the new algorithms in collision detection (e.g., [1]), and to better manage the CPU load.

The collision detection thread runs whenever there is enough idle time to warrant the thread switch, and will return prior to when the CPU is needed by another thread. Under these circumstances, it is not likely that the collision detection thread will have enough time to examine all virtual object pairs. Therefore the thread maintains a “last virtual object seen” index to continue the process when next executed. This will affect the ability of the NAVL DVR system to promptly detect collisions as it may take a number of invocations of the collision detection thread before the collision is detected. This is not a problem as long as the virtual objects are not moving so fast as to have been missed entirely.�

Another background thread maintains the communication between hosts. Message manager support for filtering, routing, QoS support, and name service [1] is also managed as a general background activity; though not prototyped as of yet.

User Interface Management

The most critical component of a distributed DVR system is the display subsystem. The scenes must be rendered smoothly and quickly to support 10 to 20 frames per second for an effective VR environment with minimal chance for simulator sickness.

The rendering thread has the highest priority in the SEA. The OpenGL(specification provides a standardized library for managing three dimensional rendering. In particular, the publicly available MesaGL package that meets many of the OpenGL(specifications is used for NAVL. The Java 3D API offers much promise for a future implementation.

Basic input devices such as the mouse, keyboard, and three dimensional devices (e.g., trackers, space ball, and data gloves) also require a thread that regularly polls the I/O channels.

SEA Support Implementation

The NAVL DVR system, and the SEA in particular, runs on top of an existing operating system, such as UNIX(or Windows-NT(, to leverage the available threading infrastructure. However, given the activities the SEA performs, it is intended that eventually the SEA will replace the operating system entirely – to become a distributed virtual reality operating system.

The threading architecture employs six threads: the behaviour exeuction thread, the ForceLet simulation thread, the collision detection thread, the rendering thread, the background thread, and the networking thread. These threads are scheduled as shown in Figure 2. The overall time quantum is set at 100ms (e.g., 10 fps), giving the vast majority of the time to the rendering process (e.g., 56ms of time is available to the rendering engine without stealing time from the other threads).

Because threads are expected to complete prior to reaching the limits specified in the schedule, the thread limits are advisory and the thread is not preempted. However, some protection may be necessary to prevent behaviour routines from monopolizing the CPU resources, therefore preemption of the behaviour execution thread will be considered for the future. If the rendering process extends a particular quantum, then the quantum itself will be adjusted with the result of lowering the frame rate.

quantum = 100 ms

Schedule (quantum) {

 Schedule(UNLIMITED) {render()}

 Schedule(quantum/8){sim()}

 Schedule(quantum/8){behaviour()}

 Schedule(quantum/16{coll()}

 Schedule(quantum/16{net()}

 Schedule(quantum/16{background()}

}

Figure 2: Psuedocode for Scheduling a Single Time Quantum.

Summary and Future Work

This paper outlines the design and implementation specification for the SEA component of the NAVL DVR system. Of particular interest is the simulation environment, execution environment and the threading implementation.

Current implementation is limited to the ForceLet simulator. Work is progressing on the full implementation of the SEA and consideration is planned for hardware support of three dimensional graphics, and possibly special-built CORDIC [2] processor for ForceLet simulation acceleration.

In addition, the full plan of the SEA is to allow dynamic execution of behaviour routines without recompiling the SEA itself. The Java(virtual machine is an approach we will study as a viable execution environment.

References

[1] M. C. Lin, Efficient Collision Detection for Animation and Robotics, Ph.D. thesis, University of California at Berkeley, 1993.

[2]	D. Timmermann, B. Rix, H. Hahn, and B. Hosticka, “A CMOS Floating-Point Vector-Arithmetic Unit,” IEEE Journal of Solid-State Circuits, Vol 29, May 1994, pp. 634-639.

[3]	M. Wedlake and K. F. Li, “Sailing the High Seas with the NAVL Virtual Reality System”, Proc. of Wescanex, June 1997, pp. 108-114.

[4]	B. Paul, the MesaGL world wide web site is located at <http://www.ssec.wisc.edu/~brianp/Mesa.html>

� Considerable time savings can be had by recognizing that only pairs involving master objects need be considered because only master objects respond to collisions.

