Sailing the High Seas with the �NAVL Virtual Reality System(

Martine Wedlake and Kin F. Li

{martine, kinli}@ece.uvic.ca

Department of Electrical and Computer Engineering, University of Victoria

Box 3055, Victoria, B.C., Canada V8W 3P6

�Abstract

NAVL (Newtonian Architecture for Virtual Landscapes) is a distributed virtual reality system designed with the goal of achieving a high degree of network efficiency; in particular, by:

using a hierarchical network architecture that is more efficient than traditional peer-to-peer or client/server architectures, and

simulating the virtual world on the local hosts using a Newtonian based model, thereby functioning as a high order dead reckoning protocol.

This paper presents the general overview of the NAVL VR system along with details of the proposed implementation.

Introduction

At the heart of a distributed virtual reality (VR) system is the network architecture and the object distribution (coherency) model.

The network architecture describes how the hosts are connected, for example:

Client/Server: The server machine (and networking interface) become a severe bottleneck. The Rubber Rocks[6], BrickNet[7] and Alpha World[8] systems employ a client/server network architecture.

Peer-to-Peer: The number of packets in the network scales by the square of the number of participants when many-to-many communication is required. The DIVE[3], SIMNET[2], and MR Toolkit Peers Package[4] systems use a fully distributed peer-to-peer network architecture.

The object distribution/coherency model describes how the objects are synchronized between remote hosts. There are many traditional approaches:

Laissez-faire hands off the job of synchronizing to the objects themselves. Typically there is a special “synchronize now” Application Programming Interface (API) call available to the application programmer. BrickNet[7] uses this approach.

Dead Reckoning only synchronizes the objects when they change state. The SIMNET[2] system uses a simple form where objects are assumed to remain in place until an update message arrives.

A Centralized Database maintains the object’s state information in a single server, thereby allowing the server to easily synchronize the state. This is used by the client/server systems (e.g. Rubber Rocks[6], BrickNet[7], Alpha World[8]).

Object Ownership Transferal systems replicate the database to all hosts, but only one host has ownership over an object at any point in time. The MR Toolkit uses object ownership transferal[4].

Locking the virtual world database enforces consistency by restricting access to the database itself. The DIVE[3] VR system locks the database with mutual exclusions.

The NAVL VR system addresses these issues by using a high order dead reckoning model and an improved network model.

The high order dead reckoning model relies on faster CPUs to perform more complex simulations of the virtual environment than the standard dead reckoning model as found in SIMNET. The complex simulation environment reduces network traffic by performing identical object transformations in the local hosts, thus eliminating the need for virtual world locking. Furthermore, a predictive simulation environment allows the local hosts to account for network delays.

However, eliminating locking implies that object transformations can not be temporally consistent. This means that the NAVL VR system is not appropriate for time critical applications such as remote surgery.

The NAVL VR system employs a hierarchical network architecture via message managers, similar to those in WAVES[1], that help to manage the network resource. An analysis, presented later, shows a reduction in network traffic as compared with traditional distribution approaches.

The NAVL VR System

The NAVL system has three architectural components. In brief, these components are:

The network architecture describes the physical interconnection model between NAVL hosts.

The distribution model describes how objects are altered and synchronized in the NAVL VR system.

The object simulation environment describes how the NAVL objects are simulated on each NAVL host.

Network Architecture

NAVL divides the network into two components (see Figure 1 for a block diagram):

Local area network (LAN) using ethernet. Ethernet is chosen because it is a multiple access medium (broadcast) and because it is a common deployment in existing networks. For hosts that participate in similar virtual activities, the broadcast mechanism allows for a simpler network paradigm.

Wide Area Network (WAN) using ATM. ATM networking represents a good choice for the WAN because of its quality of service (QOS) characteristics. The QOS characteristics allow us to determine network delays a priori, thereby ensuring a deterministic virtual environment. In addition, ATM has gained significant viability lately as a good choice for WAN general purpose interconnection.

� EMBED Visio.Drawing.4 ���

Figure � SEQ Figure * ARABIC �
1
�: Network Architecture

Between the two regimes are special network servers called message managers, much like the message managers found in the WAVES architecture[1]. Note that networking deployments generally divide the network into many LANs with individuals working on similar tasks often grouped within the same LAN.

The hierarchical aspect of the NAVL Network Architecture tries to take advantage of this natural partitioning by providing an isolated networking environment for those participants likely to be working in the same part of the virtual world.

For example, consider that the network diagram of Figure 1 is partitioned such that the design engineers are working in the top right LAN and the marketers are working in the lower left LAN. Many of the tasks performed by the marketers would likely not be useful to the design engineers.

The message manager’s primary job is to act as a gateway between the LAN and WAN, transferring messages as needed. This is very similar to a router or gateway’s job.

In addition, the message manager maintains a directory of NAVL hosts and objects, allowing hosts and NAVL objects to move throughout the system and be tracked easily. This is similar to the name service dæmon as found in the current Internet.

The final job of the message manager is to control the message flow by filtering messages traversing the gateway and by specifying QOS parameters for the WAN. The filtering criteria for the message managers, following the WAVES[1] model, can specify: traffic type, locality constraints, or per object filtering.

Analysis of Network Architectures

The benefit of the NAVL network architecture becomes apparent after a simple analysis comparing it to traditional methods. Look to Table 1 for the notation used in the analysis.

To evaluate the different networking architectures, this analysis considers a situation where there are m hosts that wish to transmit a packet to all n hosts in the system. The analysis examines both the number of packets “in flight” in the network (P), and the maximum number of packets that will pass through a server or the same host in the peer-to-peer model (p). The networking architectures under review are:

Peer-to-Peer (PtP) model is when every host communicates to every other host. Every host transmitting a packet (m) must send the packet to all other hosts (n-1). Traffic capacity is:

P�=�m(n–1)��p�=�m��Table � SEQ Table * ARABIC �
1
�: Definition of Symbols for Network Analysis

Symbol�Description��m�The number of hosts in the network with a packet to transmit.��n�The number of hosts in the network.��(�For NAVL architectures: the number of message manager servers in a D C/S network.��M�For NAVL architectures: the maximum number of hosts with a message to transmit within the same LAN.��P�The number of messages in the network.��p�The maximum number of messages handled per server (or host in peer-to-peer).��Client/Server (C/S) model is when a central server manages the task of replicating the packet to the hosts.

Unbuffered

If the server responds to each message independently, then the server will receive m messages and for each message transmit a copy to all n hosts.

P = p = mn + m = m(n+1)

Buffered

It is also possible to buffer up all messages that are sent to the server and then transmit a single message to each host; thus m messages are received but only n buffered messages are sent.

P = p = m + n

Distributed Client/Server (D C/S) introduces a hierarchy to the networking model. A collection of special message manager servers handle the task of replicating packets to the LANs, which are then updated via a broadcast mechanism.

As with the (non-distributed) client/server architecture, the server can buffer up messages to reduce network traffic.

Note that in the following expressions for network traffic, it is assumed that the hosts transmitting messages are uniformly distributed throughout the network such that every message manager receives at least one message from a local host.

Unbuffered

For each message sent in the system, a message manager must receive it, transmit it to the remote message managers ((–1), and then each message manager transmits the packet to its LAN (().

The number of packets handled by each message manager is the sum of the number of messages received from the local LAN (M), the number of messages to send to the other message managers (M((�1)), and the number of messages received from the other message managers (m–M).

P	=	m(1 + ((–1) + ()	=	2m(

p	=	M + M((–1) + (m–M)	=	m + M((–1)

Buffered

The number of messages in the network is the sum of the number of messages sent (m), the number of buffered messages sent to other message managers (((�1)(), and the buffered messages to the LANs (().

The number of messages handled by each message manager is the sum of the number of messages sent (m), the buffered messages from other message managers ((–1), and the buffered message sent to the LAN (1).

P	=	m + ((–1)(+ (=	m + (2

p	=	m + ((–1) + 1	=	m + (

These results are summarized in Table 2. The rank columns order the results from best (1) to worst (5). Note that the Distributed Client/Server Buffered approach show good results for both the number of messages in the network, and number of messages per node criteria. The NAVL Networking Architecture follows the Distributed Client/Server (Buffered) approach.

Table � SEQ Table * ARABIC �
2
�: Summary of Traffic Capacity of Network Architectures�

Name�Msgs�Rank�Msgs/Node�Rank��PtP�m(n–1)�4�m�1��C/S�m(n+1)�5�m(n+1)�5��C/S B�m+n�2�m+n�4��D C/S�2m(�3�m+M((-1)�3��D C/S B�m+(2�1�m+(�2��Object Distribution Model

The host that creates the NAVL object is responsible for the object’s state (this object is termed the “master” object), the other hosts are given replicated copies of the object (the “slave” objects). The NAVL objects have three characteristics: (1) viewable features such as shape, color, and texture maps; (2) behavior components specified in an event driven programming language, and (3) object state information such as position and velocity.

Objects are autonomous, meaning that the master object controls its own destiny. Using autonomous objects de-couples the virtual objects from the virtual reality system, thereby allowing the NAVL VR system to be altered without modifying the objects. This increases the flexibility when designing the NAVL VR system. In addition, the autonomous objects are self-contained, therefore much easier to migrate from host to host if desired.

The master object issues NAVL messages (called ForceLets) according to the object’s internal behavior routine. For example, while collisions are detected by the NAVL simulation environment, the outcome is decided by the objects’ internal collision behavior code. Interaction between objects is mediated via message passing through master objects (slave objects only shadow the master object’s state).

Object Simulation Environment

To compensate for network latencies, the simulation model is continuous through time, thereby providing a predictive simulation environment. For NAVL, a 2nd order continuous model is chosen: Newton’s laws of physics. Newton’s laws can be slightly altered to fit the NAVL mechanism:

An object remains at rest or uniform velocity unless acted upon by a ForceLet.

The acceleration of an object is directly proportional to the ForceLet and inversely proportional to the mass of the object.

When one object exerts a ForceLet on a second object, the second object exerts an equal but opposite ForceLet on the first object.

General Purpose (GP) ForceLets are used to move objects along complex paths in space. To fit the Newtonian model, we introduce the ether object – an infinite mass, all encompassing, invisible object that can apply ForceLets (or have ForceLets applied to it). GP ForceLets apply a force function to the object over a specified duration, thus the object will accelerate smoothly over time to follow the desired spatial-temporal path.

Impulse ForceLets are used when an object wishes to push another object, such as in a collision. Impulse ForceLets differ from GP ForceLets in that they apply the full brunt of the force to within an instant in time; this has the effect of instantaneously changing the object’s velocity.

For general purpose (GP) ForceLets, the mass of the object can be ignored because the force scales up to whatever is necessary to provide the desired acceleration. Impulse ForceLets, however, do require knowledge of the mass of the objects involved because the objects will react according to the modified Newton’s 2nd and 3rd laws.

ForceLets can overlap in time to represent multiple forces interacting with an object at the same time. Since the NAVL simulation model is linear, we can add the effects of multiple ForceLets by combining the computed result of each ForceLet.

Definition of ForceLets

GP ForceLets are messages that describe the application of a force through time. The full description contains:

an expression of force, f(t);

the network time of ForceLet activation; and,

the object identifier of sender and receiver.

The typical purpose of a GP ForceLet is to move an object from one place to another place. This requires that the object must accelerate to a point and then decelerate back to zero velocity. There are a number of ForceLets that can accomplish this task, Table 3 compares three possibilities where T is the duration of the ForceLet, t is the temporal locality, m is the mass of the object, and A is the amplitude.

The times listed represent the execution time on a SparcStation 20 to execute a loop of one million ForceLets (the parenthetical converts the time value into ForceLets executed per second).

Figure 2 shows a plot of position and velocity for an object subjected to two ForceLets (both with m = 1, A = 1) with one ForceLet delayed by 0.3. As can be seen in the figure, the step function has the harshest transitions from acceleration to deceleration, and the sine wave has the smoothest.

Table � SEQ Table * ARABIC �
3
�: Comparison of GP ForceLets.

�Step�½ Cosine�Sine��Force� mA t(T/2��mA t(T/2�mAcos((t/T)�mASin(2(t/T)��Time�2.2s�(454K/s)�4.4s�(227K/s)�5.4s�(185K/s)��The result of Table 3 and Figure 2 is that the sine wave represents the smoothest, but slowest of the ForceLet definitions. The speed of the Sine ForceLet can be addressed with special purpose hardware.

Impulse ForceLets are much simpler; all that is required is:

The expression for force; f(t) = mA((t-T);�

the network time of ForceLet activation (T directly above); and

the object identifier of sender and receiver.

Proposed NAVL Implementation Architecture

Figure 3 shows a top level block diagram of the proposed implementation, where the simulation engine forms the backbone of the NAVL system. The inputs to the NAVL system are from the traditional VR input devices: head locators, 3D mouse/wands, and data gloves. The display can be chosen from a wide selection (e.g. head mounted display, wall projector, or a simple monitor). The NAVL VR system is separated into the following components:

� EMBED Excel.Chart.5 \s ���

Figure � SEQ Figure * ARABIC �
2
�: Comparison of GP ForceLets.

The simulation engine is responsible for executing the NAVL simulation model. ForceLets are queued for execution at the time of arrival, and executed using a multithreaded soft real-time operating system. The multiple threads allow for quick switching from one task to another, while the soft real-time features specify the timing of the execution of the threads. Threads are non-preemptive, meaning that they must release the CPU when they complete their task. This is done for three reasons: (1) to reduce the overhead of a preemptive scheduler, (2) to reduce the system dynamics – thus creating a system easier to understand and tune, and (3) to reduce the implementation effort by not requiring the designer to develop a preemptive scheduler. At some point, it may be desirable to introduce a simple preemptive scheduler so that the idle periods can be used for low priority tasks that will be preempted by scheduled tasks.

The added complexity of the Sine ForceLet can be accommodated by using a deeply pipelined CORDIC processor. CORDIC processors are well known for their ability to compute trigonometric functions[5].

The environment database maintains the simulation engine’s copy of the virtual world. The implementation of the environment database is currently restricted to a data structure contained within the simulation engine; plans are in the works to extend the environment database to include secondary storage in order to provide permanent storage access mechanisms to objects.

� EMBED Visio.Drawing.4
�
�
�

Figure � SEQ Figure * ARABIC �
3
�: Block Diagram of a NAVL Host

The rendering engine takes data from the environment database describing the location of the objects within the NAVL world, and the viewer’s position from the simulation engine to draw a picture of what the user will see. The refresh rate must be fast enough for the average person to perceive animation – about 20-30 frames per second. To achieve the fairly fast refresh rate, special purpose hardware will likely be necessary. There are many graphics accelerators and geometry processor boards on the market to choose from.

The network layer has two primary responsibilities: (1) basic network tasks such as transmitting, receiving and queuing of messages, and (2) communication with the local message manager to request features such as filtering messages and specifying QOS parameters.

Individual hosts may also act as the Message Manager for the LAN, as such the Message Manager functionality is available in the network layer.

Conclusion

This paper describes the NAVL virtual reality system. The salient features of the NAVL system are: Message Managers partition the network for enhanced network efficiency, objects are replicated with a master/slave paradigm, objects are updated using a Newtonian framework, and the simulation environment embodies a relatively complex description in the ForceLet thus allowing complicated object paths to be described using less network resources.

Current implementation is limited to the Simulation Engine (without CORDIC hardware support for ForceLet execution). The immediate future work for this project is to evaluate a completed prototype of the NAVL VR system; after which specialized hardware support can be constructed.

References

[1]	R. Kazman, “Making WAVES: On the Design of Architectures for Low-end Distributed Environments,” IEEE VRAIS, 1993, pp. 443-449.

[2]	J. Calvin, A. Dickens, B. Gaines, P. Metzger, D. Miller, and D. Owen, “The SIMNET Virtual World Architecture,” IEEE VRAIS, 1993, pp. 450-455.

[3]	C. Carlsson and O. Hagsand, “DIVE – A Multi-User Virtual Reality System,”, IEEE VRAIS, 1993, pp. 394-400.

[4]	C. Shaw and M.Green, “The MR Toolkit Peers Package and Experiment,” IEEE VRAIS, 1993, pp. 463-469.

[5]	D. Timmermann, B. Rix, H. Hahn, and B. Hosticka, “A CMOS Floating-Point Vector-Arithmetic Unit,” IEEE Journal of Solid-State Circuits, Vol 29, May 1994, pp. 634-639.

[6]	Q. Wang, Networked Virtual Reality, M.Sc. Dissertation, 1994, University of Alberta.

[7]	G. Singh, L. Serra, W. Png, A. Wong, and H. Ng, “BrickNet: Sharing Object Behaviors on the Net,” IEEE VRAIS, 1995, pp. 19-25.

[8]	http://www.alphaworld.com.

(M. Wedlake, K. Li, “Sailing the High Seas with the NAVL Virtual Reality System”, Proc. Wescanex Conf, June 1997, pp. 108-114.

� Simplifying assumptions are (2 (n, ((½n, m ((.

� Where ((t-T) is the Dirac impulse function.

