
Communications Latency Hiding Techniques for a

Reconfigurable Optical Interconnect: Benchmark Studiesl

Ahmad Afsahi Nikitas I. Dimopoulos
Department of Electrical and Computer Engineering, University of Victoria

P.O. Box 3055, Victoria, B.C., Canada, V8W 3P6
{ aafsahi, nikitas} @ece.uvic.ca

Abstract. Communication overhead adversely affects the performance of multi-
computers. In this work, we present evidence (through the analysis of several par-
allel benchmarks) that there exists communications locality, and that it is
"structured". We have used this in a number of heuristics that "predict" the target
of subsequent communications. This technique, can be applied directly to recon-
figurable interconnects (optical or conventional) to hide the communications
latency by reconfiguring the interconnect concurrently to the computation.

1.0 Introduction

Message-passing multicomputers are composed of a large number of processor/mem-

ory modules that communicate with each other by exchanging messages through their

interconnection networks. Optics is ideally suited for implementing interconnection

networks because of its superior characteristics over electronics [13, 15]; optical signals

do not interact with each other, and an optical network can be reconfigured on demand.

We have introduced [I] a recon.figurable optical network, OKN, consisting of N com-

puting nodes. A node is capable of connecting directly to any other node. Connections

are established dynamically by reconfiguring the interconnect, and remain established

until they are explicitly destroyed. A block diagram of the network is shown in Figure I.

Circuit-switching Beam routers
. hk .¥ -..

WIt -port or sm- ~ iif:l. ..y , ~ --. gle-port models -Potential links

with full-duplex ---, communication is Nodes 0 -I 2 .-: I Active links

assumed.
Th d FIGURE I. OKN, a massively parallel computer interconnected by a

e no e-to- complete free-space optical interconnection network

node communica-

tion delay is modeled as T = d + ts + lm't with d being the reconfiguration delay, ts the

setup time, lm the length of the message, 't the per unit transmission time. The setup

lime t.f [6] and reconfiguration delay d, are the major contributors of the communication

delay 1; both being of the order of several ~s .Several researchers are working to min-

imize this communication delay by using active [7] or fast messages [14] .In this work,
we are particularly interested in techniques that hide the reconfiguration delay, d.

It is obvious that if a link is already in place, then the configuration phase is not

needed with a commensurate savings in the message transmission time. This can be

I. This research was supported through grants from the Natural Sciences and Engineering
Research Council of Canada.

'" 2

accomplished, if the target of the communication operation can be "predicted" before ,

the message itself is available. If the communication operation is regular and known, it

is possible to determine the destinations and the instances that these are to be used [I].

However, if the algorithm is not known, the above approach cannot be used.

Many parallel algorithms are built from loops consisting of computation and

communication phases. Hence, communication patterns may be repetitive. This has

motivated researchers to find communications locality properties for parallel applica-

tions [9,10]. By communications locality, we mean that if a certain source-destination

pair has been used it will be reused with high probability by a portion of code that is

"near" the place that was used earlier, and that it will be reused in the near future. If

communications locality exists in parallel applications, then it is possible to cache the

configuration that a previous communication request has made and reuse it at a later

stage. Caching in the context of this discussion will mean that when a communication

channel is established it will remain established until it is explicitly destroyed.

The main focus of our work is to explore whether the target of a communication

request can be "predicted". For these studies, we used the MPI [II] implementation of

five parallel applications (BT, SP, LO, MG, CG) of the NAS parallel benchmark suite

(NPB) [3] on a network of SON, and HP workstations using MPICH [8]. The targetpre-

diction heuristics developed adapt based on the past history and can be used in circuit

switched interconnects including [5,16]. Section 2 analyzes the proposed heuristics,

while we conclude with Section 3.

2.0 Latency hiding heuristics

The heuristics proposed in this section predict the destination node of a subsequent

communication request based on a past history of communication patterns. Although

our heuristics are applicable to any-port model, we shall present most of our results

under the single port communications model. We use the hit ratio to establish and com-

pare the performance of these heuristics. As a hit ratio, we define the percentage of

times that the predicted destination node was correct out of all communication requests.

2.1 The LRU, FIFO, and LFU heuristics

The Least Recently Used (LRO) [9], First- LRU

In-First-Out (FIFO) and Least Frequently
Used (LFO) heuristics, all maintain a set of 0.8

k (k is the window size) message destina- 00.6

tions. If the next message destination is ~
already in the set, then a hit is recorded. :fo.4
Otherwise, a miss is recorded and the new 0.2)

destination replaces one of the destinations

in the set according to which of the LRO, 00 2 3 4 6
..Window size

FIFO or LFO strategies IS adopted.
FIGURE 2. Effects of the LRU heuristic on

The window size, k, corresponds to the NAS benchmarks

the number of ports used. Figure 2, shows

the result of the LRO heuristic on the benchmarks. It can be seen that the hit-ratios in all

benchmarks approach I as the window size increases. The performance of the FIFO

3

algorithm is almost the same with LRU for all benchmarks. Additionally, the perfor-

mance of the LFU algorithm [2] is better than LRU and FIFO, the exception being the
LU benchmarks for k = 2.

2.2 The Single-cycle heuristic

The Single-cycle heuristic is based on the fact that if a group of destinations are

requested cyclically, then a single..port can accommodate these requests by ensuring

that the connection to the subsequent node in the cycle can be established as soon as the

current request ends. This heuristic implements a simple cycle discovery algorithm.
Starting with a cycle-head node (this is the first node that is requested at start-up, or the

node that causes a miss), we log the sequence of requests until the cycle-head node is

requested again. This stored sequence constitutes a cycle and is used to predict the sub-

sequent requests. If the predicted node coincides with the subsequent requested node,
then we record a hit. Otherwise, we record a miss and the cycle formation stage com-

mences with the cycle-head being the node that caused the miss.

-[he example Request 1 3 5 6 1 3 5 6 7 7 1 3 5 6" ~ ": --4 (to the right sequence ,;,;"' :(;: :{~: -;(/
; 1

illustrates the Predicted 3 5 6 1 7 -

heuristic used.
The top trace Cycle formation Cycleformation

represents the sequence of requested destination nodes, while the bottom trace repre-

sents the predicted nodes according to the Single-cycle heuristic. The arrows with the

cross represent misses, while the ones with the circle represent hits. The "dash" in place

of a predicted node indicates that a cycle is being formed; thus no prediction is offered.

Figure 3, shows the behavior of this algorithm. This algorithm behaves much bet-

ter than the LRU, FIFO and LFU heuristics for the LU, MG, and CG benchmarks. How-

ever its performance deteriorates for the BT and SP benchmarks. One of the reasons is

that in these benchmarks there exist cycles of length one (such as the one composed of

node 7 in the example above) always resulting into two misses. The Single-cycle2 heu-

ristic presented next improves the performance ..

I)ingle-cycle Single-cycle
1

0. 0.9
0. 0.8
0. 0.7

Qo. 00.6

e o ~
I .I 0.5

= -

"0. Io.4

° 0.3
m~.T 0. 0.2 0-0 SP

-w

0. 0.1 ~~

BT SP LU MG CG 00 40
Number 01 processors

(N=36) (No36) (N=32) (N=J2) (NoJ2)

FIGURE 3. Effects of the Single-cycle heuristic on the NAS benchmarks

2.3 The Single-cycIe2 heuristic

The Single-cycle2 heuristic is identical to the single-cycle heuristic with the addition

that during cycle formation, the previously requested node is offered as the predicted

4

I

0.9

0.8

0.7

20.6

!
.!.0.5

:;:0.4

0.3

0.2

0.1

°

node. This heuristic performs much better than the LRO, FIFO, and LFO algorithms for

the LO, MG, and CG benchmarks under single-port modeling and almost identically

for the BT, and SP benchmarks [2].

2.4 The Tagging heuristic

The Tagging heuristic assumes a static communications environment in the sense that a

particular communications request (send) in a section of code, will be to the same target

node with a large probability. Therefore, as the execution trace nears the section of code

in question, it can cause the communications environment to establish the connection to

the target node before the actual communications request is issued I.

For our experiments, we attach a different tag to each of the communication

requests found in the benchmarks. To this tag, we assign the requested target node. A hit

is recorded if in subsequent encounters of the tag, the requested communications node

is the same as the target already associated with the tag. Otherwise, a miss is recorded

and the tag is assigned the newly requested target node. This tagging technique is sim-

ilar to the technique used in the branch cache of the MC68060 [4].

As it can be seen in Figure 5 the tagging heuristic results in an excellent perfor-

mance (hit ratios in the upper 90%) for all the benchmarks except CG. The reason is

that the CG benchmark includes send operations with a target address calculated based

on a loop variable. Thus, the same section of code cycles through a number of different

target addresses. As we have seen before, the Single-cycle and the Single-cycle2 heu-

ristics are excellent in discovering such cyclic occurrences. In the following, we pro-

pose combined tag and cycle heuristics which are able to alleviate this problem.

Tagging

~ Avo,...

Mox

Tagging
1

0

0.

0

,g06
I!
,05

:f:0.4
~ BT ~ SP 0 -lU

MG

0.2 -CG

0.1

0 5 10 15 20 25 30 35 40

Number of processors

~ .BT SP LU MG CG 0 5 10 15 20 25

Number of process(
(N-16) (N=16) (N=12) (N=12) (N-32)

FIGURE 4. Effects of the Tagging heuristic on the NAS benchmarks

2.5 The Tag-cycle and Tag-cycle2 heuristics

In the Tag-cycle heuristic, we attach a different tag to each of the communication

requests found in the benchmarks and do a Single-cycle discovery algorithm on each

tag. To each tag, we assign the sequence of requested target nodes. We use these

sequences in the same manner as in the Single-cycle and Single-cyle2 heuristics (c.f.

-
I. This can be implemented with the help of the compiler through a pre-connect(tag) operation

which will force the communications system to establish the communications connection
before the actual communications request is issued. This technique is similar to the prefetch
operation advocated by T. Mowry and A. Gupta[12].

BT SP LU MG CG

(N=36) (N=36) (N=32) (N=32) (N=32)

FIGURE 6. Comparison of the perfonnance of the heuristics discussed in this work
for the five NAS benchmarks under single-port modelling

3. D. H. Bailey, et al., "NAS Parallel Benchmark Result 3-94," Proceedings of Scalable High-
Perfonnance Computing Conference, 1994, pp. 111- 120

4. J. Circello, et al., "The Superscalar Architecture of the MC68060," IEEE Micro, Volume 15,
Number 2, Apri11995, pp. 10-21

5. B. V. Dao, S. Yalamanchili, and J. Duato, "Architectural Support for Reducing
Communication Overhead in Multiprocessor Interconnection Networks" Proceedings, Third
International Symposium on High Performance Computer Architecture, 1997, pp. 343-352

6. J. J. Dongarra and T. Dunigan, "Message-Passing Perfonnance of Various Computers,"
Concurrency, Vol. 9, No.10, Dec. 1997, pp. 915-926

7. T. V. Eicken, et al., "Active Messages: A Mechanism for Integrated Communication and
Computation," Proceedings of the 19th Annual International Symposium on Computer
Architecture, May 1992, pp. 256-265

8. W. Gropp and E. Lusk, "User's Guide for MPICH, a Portable Implementation of MPI,"
Argonne National Laboratory, Mathematics and Computer Science Division, ANUMCS-
TM-ANL-96/6

9. J. Kim and D. J. Lilja, "Characterization of Communication Patterns in Message-Passing
Parallel Scientific Application Programs, "Workshop on Communication, Architecture, and
Applications for Network-based Parallel Computing, International Symposium on High
Perfonnance Computer Architecture, February 1998, pp. 202-216

10. D. G. de Lahaut and C. Gennain, "Static Communications in Parallel Scientific Programs"
Proceedings of PARLE'94, Parallel Architecture and Languages, Athen, Greece, July 1994

II. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard. Version 1.1
(June 1995)

12. T. Mowry and A. Gupta, "Tolerating Latency Through Software-Controlled Prefetching in
Shared-Memory Multiprocessors," Journal of Parallel and Distributed Computing, 12(2),
1991, pp. 87-106

13. R .A. Nordin, et al., "A System Perspective on Digital Interconnection Technology," IEEE
Journal of Lightwave Technology, Vol. 10, June 1992, pp. 801-827

14. S. Pakin, M. Lauria, and A. Chien, " High Performance Messaging on Workstation: Illinois

Fast Messages (FM) for Myrinet," Proceedings of Supercomputing'95, Nov ., 1995

15.G. I. Yayla, P.J. Marchand and S.C. Esener "Speed and Energy Analysis of Digital
Interconnections: Comparison of On-chip, Off-chip and Free-Space Technologies" Applied
Optics, Vol. 37, No.2, Jan. 1988, pp. 205-227.

16. x. Yuan, R. Melhem, and R. Gupta, "Compiled Communication for All-Optical TOM
Networks," Proceeding's of Supercomputing'96, 1996

1

0.9

0.8

0.7

00.6

""@:
..!..0.5

£0.4

0.3

0.2

0.1

°

LRU
FIFO
LFU
Slngle-cycle
Slngle-cycle2
History
Tagging
Tag-cycle
Tag-cycle2

BT SP LU MG CG

(N=36) (N=36) (N=32) <N=32) (N=32)

o a;: SP LUMG CG

(N=36) (N=36) (N=32) (N=32) (N=32)

FIGURE 6. Comparison of the perfonnance of the heuristics discussed in this work
for the five NAS benchmarks under single-port modelling

3. D. H. Bailey, et al., "NAS Parallel Benchmark Result 3-94," Proceedings of Scalable High-
Perfonnance Computing Conference, 1994, pp. 111- 120

4. J. Circello, et al., "The Superscalar Architecture of the MC68060," IEEE Micro, Volume 15,
Number 2, Apri11995, pp. 10-21

5. B. V. Dao, S. Yalamanchili, and J. Duato, "Architectural Support for Reducing
Communication Overhead in Multiprocessor Interconnection Networks" Proceedings, Third
International Symposium on High Performance Computer Architecture, 1997, pp. 343-352

6. J. J. Dongarra and T. Dunigan, "Message-Passing Perfonnance of Various Computers,"
Concurrency, Vol. 9, No.10, Dec. 1997, pp. 915-926

7. T. V. Eicken, et al., "Active Messages: A Mechanism for Integrated Communication and
Computation," Proceedings of the 19th Annual International Symposium on Computer
Architecture, May 1992, pp. 256-265

8. W. Gropp and E. Lusk, "User's Guide for MPICH, a Portable Implementation of MPI,"
Argonne National Laboratory, Mathematics and Computer Science Division, ANUMCS-
TM-ANL-96/6

9. J. Kim and D. J. Lilja, "Characterization of Communication Patterns in Message-Passing
Parallel Scientific Application Programs, "Workshop on Communication, Architecture, and
Applications for Network-based Parallel Computing, International Symposium on High
Perfonnance Computer Architecture, February 1998, pp. 202-216

10. D. G. de Lahaut and C. Gennain, "Static Communications in Parallel Scientific Programs"
Proceedings of PARLE'94, Parallel Architecture and Languages, Athen, Greece, July 1994

II. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard. Version 1.1
(June 1995)

12. T. Mowry and A. Gupta, "Tolerating Latency Through Software-Controlled Prefetching in
Shared-Memory Multiprocessors," Journal of Parallel and Distributed Computing, 12(2),
1991, pp. 87-106

13. R .A. Nordin, et al., " A System Perspective on Digital Interconnection Technology ," IEEE

Journal of Lightwave Technology, Vol. 10, June 1992, pp. 801-827
14. S. Pakin, M. Lauria, and A. Chien, " High Performance Messaging on Workstation: Illinois

Fast Messages (FM) for Myrinet," Proceedings of Supercomputing'95, Nov., 1995

15.G. I. Yayla, P.J. Marchand and S.C. Esener "Speed and Energy Analysis of Digital
Interconnections: Comparison of On-chip, Off-chip and Free-Space Technologies" Applied
Optics, Vol. 37, No.2, Jan. 1988, pp. 205-227.

16. x. Yuan, R. Melhem, and R. Gupta, "Compiled Communication for AII-Optical TOM
Networks," Proceeding's of Supercomputing'96, 1996

