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Abstract

With the availability of fast microprocessors and small-scale multiprocessors, inter-
node communication has become an increasingly important factor that limits the perfor-
mance of parallel computers. Essentially, message-passing parallel computers require
extremely short communication latency such that message transmissions have minimal
impact on the overall computation time. This thesis concentrates on issues regarding hard-
ware communication latency in reconfigurable networks (optical or electronic), and soft-

ware communication latency regardless of the type of network.

The first contribution of this thesis is the design and evaluation of two different catego-
ries of prediction techniques for message-passing systems. This thesis utilizes the commu-
nications locality property of message-passing parallel applications to devise a number of
heuristics that can be used to predict the target of subsequent communication requests, and

to predict the next consumable message at the receiving ends of communications.

Specifically, | propose two sets of predictorg.dle-basegredictors, which are purely
dynamic predictors, antlag-basedoredictors, which are static/dynamic predictors. The
performance of the proposed predictors, specially Better-cycle2 and Tag-bettercycle2, are
very good on the application benchmarks studied in this thesis. The proposed predictors
could be easily implemented on the network interface due to their simple algorithms and

low memory requirements.

As the second contribution of this thesis, | show that the majority of reconfiguration
delays in reconfigurable networks can be hidden by using one of the proposed high hit
ratio predictors. The proposed predictors can be used in establishing a communication

pathway between a source and a destination before this pathway is to be used.

The third contribution of this thesis is the analysis of a broadcasting algorithm that uti-
lizes latency hiding and reconfiguration in a single-hop reconfigurable network to speed
the broadcasting operation. The analysis brings up closed formulations that yields the ter-

mination time.



ii
The fourth contribution of this thesis is a new total exchange algorithm in single-hop
reconfigurable networks. | conjecture that this algorithm ensures a better termination time

than what can be achieved by either the direct or standard exchange algorithms.

The fifth contribution of this thesis is the use and evaluation of the proposed predictors
to predict the next consumable message at the receiving ends of communications. This
thesis contributes by claiming that these message predictors can be efficiently used to
drain the network and cache the incoming messages even if the corresponding receive
calls have not been posted yet. This way, there is no need to copy the early arriving mes-
sages into a temporary buffer. The performance of the proposed predictors, Single-cycle,
Tag-cycle2 and Tag-bettercycle2, on the parallel applications are quite promising and sug-

gest that prediction has the potential to eliminate most of the remaining message copies.
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Chapter 1

Introduction

Research in the area of advanced computer architecture has been primarily focused on
how to improve the performance of computers in order to solve computationally intensive
problems [32, 62, 69]. Some of these problems are cagltadd challengesA grand chal-
lenge is a fundamental problem in science or engineering that has a broad economic
and/or scientific impact; coupled fields, geophysical, and astrophysical fluid dynamics
(GAFD) turbulence, modeling the global climate system, formation of the large scale uni-
verse, global optimization algorithms for macromolecular modeling, petroleum explora-

tion, aerodynamic simulations, ocean circulation, are just a few to mention.

The performance of processors is doubling each eighteen months [62]. However, there

is always a demand for more computing power. To solve grand challenge problems, com-
puter systems at theeraflop (1012 floating point operations per second) apetaflop
(1015 floating point operations per second) performance levels are needed.

Processors are becoming very complex and only a few companies are designing new
processors. Therefore, it is not cost-effective to build high performance computers just by
using custom-design high performance processors. The trend is to design parallel comput-
ers using commodity processors to achieve teraflop and petaflop performance. For
instance, two major projects to develop high performance supercomputers in the USA are:
the federal program i€omputing, Information and Communicatiof@ C) project at the
national coordination office [98], and the Department of Enetggelerated Strategic
Computing Initiative(ASCI) program including Intel/Sandia Option Red, IBM/Lawrence
Livermore National Laboratory Blue Pacific, and SGI/Los Alamos National Laboratory
Blue Mountain [39].
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This should not give us the wrong impression that such high performance computers,
often calledMassively Parallel ProcessqiMPP) systems, are only used for grand chal-
lenges and parallel scientific applications. Even for applications requiring lower comput-
ing power, parallel computing is a cost-effective solution. These days, many high
performance parallel computing systems are being used in network and commercial appli-

cations such as data warehousing, internet servers, and digital libraries.

Parallel processing is at the heart of such powerful computers. Although parallelism
appears at different levels for a single processor system, such as lookahead, pipelining,
superscalarity, speculative execution, vectorization, interleaving, overlapping, multiplicity,
time sharing, multitasking, multiprogramming, and multithreading, but it is the parallel
processing and parallel computing among different processors which brings us such levels

of performance.

Basically, a parallel computer is a “collection of processing elements that communi-
cate and cooperate to solve large problems fast” [9]. In other words, a parallel computer,
whethermessage-passingr distributed shared-memorfpSM), is a collection of com-
plete computers, including processor and memory, that communicate through a general-
purpose, high-performance, scalable interconnection network usiogmamunication

assist(CA) and/or anetwork interfac€NI) [32], as shown in Figure 1.1.

[ Memory |

Communication 5 P P: Processor
Assist/ ‘ $ $: Cache
Network Interface L — |

Interconnection Network

Figure 1.1: A generic parallel computer
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Message-passing multicomputeasjong all known parallel architectures, are the best
to achieve such computing performance level. Message-passing multicomputers are char-
acterized by the distribution of memory among a number of computing nodes that com-
municate with each other by exchanging messages through their interconnection
networks. Each node has its own processor, local memory, and communication assist/net-
work interface. All local memories are private and are accessible only by the local proces-
sors. The wide acceptance of message-passing multiprocessor systems has been proven by
the introduction oMessage Passing Interfa¢®lPI) standard [92, 93]. Currently, in addi-
tion to vendor implementations of MPI on commercial machines, there are many freely
available MPI implementations including MPICH [57] and LAM/MPI [78].

Recently,Networks of Workstation@NOW) [11], Clusters of Workstation€COW),
andClusters of Multiprocessor6sCLUMP) [87], have been proposed to build inexpensive
parallel computers, however, often at a lower performance level compared to MPP sys-
tems. The development of high-performance switches specially for building cost-effective
interconnects known &ystem Area NetworKSAN) [23, 67, 113, 54] has motivated suit-
ability of the networks of workstation/multiprocessors as an inexpensive high-perfor-
mance computing platform. System area networks such as the Myricom Myrinet [23], the
IBM Vulcan switch in the IBM SP2 machine [113], the Tandem ServerNet [67], and the
Spider switch in SGI Origin 2000 machine [54], are a new generation of networks that

falls between memory buses and commercial local area networks (LANS).

Parallel processing, whether MPP, DSM, NOW, COW, or CLUMP, puts tremendous
pressure on the interconnection networks and the memory hierarchy subsystems. As the
communication overhead is one of the most important factors affecting the performance of
parallel computers [76, 69, 43], there has been a growing interest in the design of intercon-
nection networks. In this respect, various types of interconnection networks, such as com-
plete networks, hypercubes, meshes, rings, tori, irregular switch-based, stack-graphs, and
hypermesh have been proposed and some of them have been implemented [46, 124, 108].

Meanwhile, many routing algorithms [47, 56, 12] have been proposed for such networks.
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In parallel processing systems, the ability to efficiently communicate and share data

between processors is very critical to obtaining high performance. In essence, parallel

computers require extremely short communication latencies such that network transac-

tions have minimal impact on the overall computation time. Communication hardware

latency, communication software latency, and the user environment (multiprogramming,

multiuser) are the major factors affecting the performance of parallel computer systems.

This thesis concentrates on issues regarding hardware communication latency in elec-

tronic networks and reconfigurable optical networks, and software communication latency

(regardless of the type of network).

In this thesis, | propose a number of techniques to achieve efficient communications in

message-passing systems. This thesis makes five contributions:

The first contribution of this thesis (Chapter 3) is the design and evaluation of two
different categories of prediction techniques for message-passing systems. Specifi-
cally, | use these predictors to predict the target of communication messages in

parallel applications.

As the second contribution of this thesis (Chapter 4), | show that the majority of
reconfiguration delays in reconfigurable networks can be hidden by using one of

the high hit ratio proposed predictors in Chapter 3.

The third contribution of this thesis (Chapter 5) is the analysis of a latency hiding
broadcasting algorithm on single-hop reconfigurable networks under single-port
andk-port modeling which brings up closed formulations that yield the termina-

tion time.

As the fourth contribution of this thesis (Chapter 5), | propose a new total
exchange algorithm in single-hop reconfigurable networks under single-pdkt and

port modeling.

Finally, the fifth contribution (Chapter 6) is the use and evaluation of the proposed
predictors in Chapter 3 to predict the next consumable message at the receiving

ends of message-passing systems (regardless of the type of network). | argue that
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these message predictors can be efficiently used to drain the network and cache the
incoming messages even if the corresponding receive calls have not been posted

yet.

Chapter 2 introduces the parallel applications used in this thesis. Chapter 7 concludes
this dissertation and gives directions for future research. Appendix A describes how tim-
ing disturbances have been removed from the timing profiles of the parallel applications

used in this thesis.

The rest of this chapter is organized as follows. In Section 1.1, | explain the communi-
cation locality in message-passing parallel applications and discuss different latency hid-
ing techniques for parallel computer systems. In Section 1.2, | discuss the advantages of
using prediction techniques at the send side of communications in the reconfigurable opti-
cal interconnection networks, and in the circuit switched and wormhole routing electronic
interconnection networks. In Section 1.3, | describe the issues related to the messaging
layer and software communication overhead in message-passing systems, and how predic-
tion can help eliminate redundant message copying operations. | give an introduction to
the issues regarding collective communications in Section 1.4. Finally, | summarize the

contributions of this thesis in Section 1.5.

1.1 Communications Locality and Prediction Techniques

In this thesis, | am interested in the message-passing model of parallelism as message-
passing parallel computers scale much better than the shared-memory parallel computers.
Communication properties of message-passing parallel applications can be categorized by
the spatial temporal andvolumeattributes of the communications [30, 75, 68]. The tem-
poral attribute of communications in parallel applications characterizes the rate of mes-
sage generation, and the rate of computations in the applications. The volume of
communications is characterized by the number of messages, and the distribution of mes-

sage sizes in the applications.
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The Spatial attribute of communications in parallel applications is characterized by the
distribution of message destinations. Point-to-point communication patterns may be repet-
itive in message-passing applications as most parallel algorithms consist of a number of
computation and communication phases. Several researchers have worked to find or use

thecommunications localitproperties of parallel applications [30, 75, 68, 36, 37].

By message destination communication localitynean that if a certain source-desti-
nation pair has been used it will be re-used with high probability by a portion of code that
is “near” the place that was used earlier, and that it will be re-used in the near future. By
message reception communication localityean that if a certain message reception call
has been used it will be re-used with high probability by a portion of code that is “near”

the place that was used earlier, and that it will be re-used in the near future.

Traditionally, one approach to deal with communication latency isoterate the
latency; that is, hide the latency from the processor’s critical path by overlapping it with
other high latency events, or hide it with computations. The processor is then free to do

other useful tasks.

Three approaches can be used to tolerate latency in shared-memory and message-pass-
ing systems [32]. They arproceeding past communication in the same threaditi-
threading,and precommunicationThe first approach, proceeding past communication in
the same thread in message-passing systems, is to make communication messages asyn-
chronous and proceed past them either to other asynchronous communication messages,
or to the computation in the same thread. This approach is usually used by the parallel
algorithm designers. Some of the applications studied in this thesis use this type of latency

tolerance by using nonblocking asynchronous MPI calls.

In multithreading, a thread issuing a communication operation suspends itself and lets
another thread run. This approach is used for other threads too. It is hoped that when the
first thread is rescheduled, its communication operations have concluded. Multithreading
can be done in software or hardware. Software multithreading is very expensive. Some
hardware multithreading research architectures for message-passing systems such as the J-
Machine [35], and the M-Machine [52] have been reported.



7

In precommunication, communication operations are pulled up from the place that
communications naturally occur in the program so that it is partially or entirely completed
before data is needed. This can be done in software by insenirecammunication oper-
ation, or in hardware, byredictingthe subsequent communication operations and issue

them early.

Precommunication is common in receiver-initiated communications (that is, in shared-
memory systems) where communication commences when a data is needed such as a read
operation. Insoftware-controlled prefetchinghe programmer or the compiler decides
when and what to prefetch by analyzing the program and then insentgfigtchinstruc-
tions before the actual data request in the program [9%)ahdware-controlled prefetch-
ing, dedicated hardware is used to predict the future accesses of sharing patterns and
coherence activities by looking at their observed behavior [96, 77, 73, 133, 34, 107]. Thus,
there is no need to add instructions to the program. These techniques assume that memory
accesses and coherence activities in the near future will follow past patterns. Then, the

hardware prefetches the data based on its prediction.

In sender-initiated systems (that is, in message-passing systems), it is usually difficult
to do the communication operation earlier at the send sides and thus hide the latency. This
is because message communication is naturally initiated to transfer the data when the data
is produced. However, messages may arrive earlier at the receiver than it is needed which

leads to a precommunication for the receiver side of communication.

As far as the author is aware, no precommunication technique has been proposed for
message-passing systems. Predictions techniques can be used to predict the subsequent
message destinations, and message reception calls in message-passing systems. This the-
sis, for the first time, proposes and evaluates two categories of pattern-based predictors,
namely, Cycle-basedredictors, andlag-basedredictors for message-passing systems.
These predictors can be used dynamically (at the send side or receive side of communica-
tions) at the communication assist or network interface with or without the help of a pro-

grammer or the compiler.



1.2 Using the Proposed Predictors at the Send Side

In the following, | explain how message destination prediction can be helpful in hiding
the reconfiguration delay in single-hop and multi-hop reconfigurable optical interconnec-
tion networks, and in hiding path setup time in circuit switched electronic networks. | also
describe the benefit of message destination prediction techniques to reduce the latency of

communications in current commercial wormhole routed networks.

The interconnection network plays a key role in the performance of message-passing
parallel computers. A message is sent from a source to a destination through the intercon-
nection network. High communication bandwidth and low communication latency are
essential for efficient communication between a source and a destination. However, com-
munication latency is the most important factor affecting the performance of message-
passing parallel computers. In this thesis, | am interested in hiding and reducing the com-
munication latency. Two categories of interconnection networks exist: electronic intercon-
netcion networks, and optical interconnection networks. | have developed prediction

techniques that can be applied to both electronic and optical interconnection networks.

The proposed predictors can be used to set up the paths in advance in electronic net-
works using either circuit switching awave switchinglIn circuit-switching, the routing
header flit progresses through the message destination and reserves physical links. Wave
switching is a hybrid switching technique for high performance routers in electronic inter-
connection networks. Wave switching combines wormhole switching and circuit switch-
ing in the same router architecture to reduce the fixed overhead of communication latency
by exploiting communication locality. Hence, it is possible to hide the hardware communi-
cation latency using message destination predictions to pre-establish physical circuits in

circuit switching and wave switching networks.

The predictors can even be useful to reduce communication latency in current com-
mercial networks. For example, Myrinet networks [23] have a relatively long routing time
compared with link transmission time. Predictors would allow sending the message header

in advance for the predicted message destination. When data becomes available, they can



9

be directly transmitted through the network if the prediction was correct, thus reducing
latency significantly. In case of mis-prediction, a message tail is forwarded to tear the path

down. Obviously, null messages must be discarded at the destination.

Optics is ideally suited for implementing interconnection networks because of its
superior characteristics over electronic interconnects such as higher bandwidth, greater
number of fan-ins and fan-outs, higher interconnection densities, less signal crosstalk,
freedom from planar constraint as it can easily exploit the third spatial dimension which
dramatically increases the available communication bandwidth, lower signal and clock
skew, lower power dissipation, inherent parallelism, immunity from electromagnetic inter-
ference and ground loops, and suitability for reconfigurable interconnects [100, 51, 74, 19,
50, 129, 82, 19].

Future massively parallel computers might benefit from using reconfigurable optical
interconnection networks. Currently, there are some problems with the optical intercon-
nect technology. Signal attenuation, optical element aligning, low conversion time
between electronics to photonics and vice versa, and high reconfiguration delay are some
disadvantages of optics which are mostly due to its relatively immature technology. How-
ever, this technology is maturing fast. As an examplgent's WaveStar LambdaRouter
[86] relies on an array of hundreds of electrically configurable microscopic mirrors fabri-
cated on a single substrate so that an individual wavelength can be passed to any of 256

input and output fibers.

As stated above, the reconfiguration delay in reconfigurable optical interconnection
networks is currently very high. The proposed message destination predictors can be effi-
ciently used to hide the reconfiguration delay in the single-hop and multi-hop reconfig-

urable optical interconnection networks concurrently to the computations [127, 84].

1.3 Redundant Message Copying in Software Messaging Layers

The communication software overhead currently dominates the communication time
in cluster of workstations/multiprocessors. Crossing protection boundaries several times
between the user space and the kernel space, passing several protocol layers, and involving

a number of memory copying are three different sources of software communication cost.
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Several researchers are working to minimize the cost of crossing protection bound-
aries, and using simple protocol layers by utilizunger-level messagingchniques such
as Active Message$AM) [125], Fast Message$FM) [102], Virtual Memory-Mapped
CommunicationgVMMC-2) [48], U-Net[126], LAPI[110], Basic Interface for Parallel-
ism (BIP) [105], Virtual Interface ArchitecturéVIA) [49], andPM [121].

A significant portion of the software communication overhead belongs to a number of
message copying operations. Ideally, message protocols should copy the message directly
from the send buffer in its user space to the receive buffer in the destination without any
intermediate buffering. However, applications at the send side do not know the final
receive buffer addresses and, hence, the communication subsystems at the receiving end

still copy messages at a temporary buffer.

Several research groups have tried to avoid memory copying [79, 14, 106, 119, 118].
They have been able to remove the extra memory copying operations between the applica-
tion user buffer space and the network interface at the send side. However, they haven'’t
been able to remove the memory copying at the receiver sides. They may achieve a zero-
copy messaging at the receiver sides only when the receive call is already posted, a ren-
dez-vous type communication is used for large messages, or the destination buffer address
is already known by an extra communication (pre-communication). However, the predic-
tors proposed in this dissertation can be efficiently used to predict the next message recep-
tion calls and thus move the corresponding incoming messages to a place near the CPU

such as a staging cache.

1.4 Collective Communications

Communication operations may be eitipeint-to-point which involve a single source
and a single destination, opllective in which more than two processes patrticipate. Col-
lective communications are common basic patterns of interprocessor communication that
are frequently used as building blocks in a variety of parallel algorithms. Proper imple-

mentation of these basic communication operations is a key to the performance of the par-
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allel computers. Therefore, there has been a great deal of interest in their design and the
study of their performance. Excellent surveys on collective communication algorithms can
be found in [90, 53, 61].

Collective communication operations can be used for data movement, process control,
or global operations. Data movement operations inclbdegdcasting, muticasting, scat-
tering, gathering, multinode broadcastirgpdtotal exchangeBarrier synchronizationis
a type of process control. Global operations inclueéuction andscan The growing
interest in collective communications is evident by their inclusion in the Message Passing
Interface (MPI) [93, 92].

1.5 Thesis Contributions
In Chapter 2, | describe the applications used in this thesis along with the point-to-
point communication primitives that they use. | explain the experimental methodology

used to collect the communication traces of the applications.

In Chapter 3, | introduce a complete interconnection network using free-space recon-
figurable optical interconnects for message-passing parallel machines. A computing node
in this parallel machine configures its communication link(s) to reach to its destination

node(s). Then it sends its message(s) over the established link(s).

| characterize some communication properties of the parallel applications by present-
ing their communication frequency and message destination distributions. | define the
concept of communication locality in message-passing parallel applications, and caching
in reconfigurable networks. | present evidence, using classical memory hierarchy heuris-
tics, LRU, LFU, andFIFO, that there exists message destination communication locality

in the message-passing parallel applications.

The first contribution of this thesis (Chapter 3) is the design and evaluation (in terms of
hit-ratio) of two different categories of hardware/software communication latency hiding
predictors for such reconfigurable message-passing environments. | have utilized the mes-
sage destination locality property of message-passing parallel applications to devise a

number of heuristics that can be usedotedictthe target of subsequent communication
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calls. This technique, can be applied directly to reconfigurable interconnects to hide the
communications latency by reconfiguring the communications network concurrently to

the computation.

Specifically, | propose two sets of message destination predictpcte-Basegredic-
tors, which are purely dynamic predictors, anag-basedpredictors, which are static/
dynamic predictors. In cycle-based predictd8@gle-cycle, Single-cycle2, Better-cycle,
andBetter-cycle2 predictions are done dynamically at the network interface without any
help from the programmer or compiler. In Tag-based predici@gging, Tag-cycle, Tag-
cycle2, Tag-bettercyclendTag-bettercyclepredictions are done dynamically at the net-
work interface as well, but they require an interface to pass some information from the
program to the network interface. This can be done with the help of a programmer or the
compiler through inserting instructions in the program suchpesconnect (tag)or
pre-receive (tagkas in Chapter 6). The performance of the proposed predictors, Better-
cycle2 and Tag-bettercycle2, is very high and prove that they have the potential to hide the
hardware communication latency in reconfigurable networks. The memory requirements
of the predictors is very low. That makes them very attractive for the implementation on

the communication assist or network interface.

In order to efficiently use the proposed predictors in Chapter 3 to hide the hardware
latency of the reconfigurable interconnects, enough lead time should exist such that the
reconfiguration of the interconnect be completed before the communication request
arrives. In Chapter 4, | present the pure execution times of the computation phases of the
parallel applications on the IBM Deep Blue machine at the IBM T. J. Watson Research

Center using its high-performance switch and under the user space mode.

As the second contribution of this thesis, Chapter 4 states that by comparing the inter-
send computation times of these parallel benchmarks with some specific reconfiguration
times, most of the time, we are able to fully utilize these computation times for the concur-
rent reconfiguration of the interconnect when we know, in advance, the next target using
one of the proposed high hit ratio target prediction algorithms introduced in Chapter 3. |

present the performance enhancements of the proposed predictors on the application
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benchmarks for the total reconfiguration time. Finally, | show that by applying the predic-
tors at the send sides, applications at the receiver sides would also benefit as messages

arrive earlier than before.

As the third contribution of this thesis (Chapter 5), | present and analyze a broadcast-
ing algorithm that utilizes latency hiding and reconfiguration in the network to speed the
broadcasting operation under single-port dadort modeling. In this algorithm, the
reconfiguration phase of some of the nodes is overlapped with the message transmission
phase of the other nodes which ultimately reduces the broadcasting time. The analysis

brings up closed formulation that yields the termination time of the algorithm.

The fourth contribution of this thesis (Chapter 5) is@mbined total exchange algo-
rithm based on a combination of thiirect [109, 120], andstandard exchanggrl, 24]
algorithms. This ensures a better termination time than that which can be achieved by
either of the two algorithms. Also, known algorithms [20, 40] for scattering and all-to-all

broadcasting have been adapted to the network.

In Chapter 6, | present the frequency and distributions of receive communication calls
in the applications. | present evidence that there exists message reception communications
locality in the message-passing parallel applications. As | stated earlier, the communica-
tion subsystems at the receiving end still copy early arriving messages unnecessarily at a
temporary buffer. As far as the author is aware, no prediction techniques have been pro-

posed to remove this unnecessary message copying.

| use the proposed predictors introduced in Chapter 3 to predict the next consumable
message, and to thus establish the existence of message reception communications local-
ity. As the fifth contribution of this thesis, Chapter 6 argues that these message predictors
can be efficiently used to drain the network and cache the incoming messages even if the
corresponding receive calls have not been posted yet. This way, there is no need to unnec-

essarily copy the early arriving messages into a temporary buffer.

The performance of the proposed predictors, Single-cycle, Tag-cycle2 and Tag-
bettercycle2, in terms of hit ratio, on the parallel applications are quite promising and sug-

gest that prediction has the potential to eliminate most of the remaining message copies.
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Moreover, the memory requirements of these predictors is very low making them easy to
implement. Finally, | discuss ways in which these predictions could be used to drastically

reduce the latency due to message copying.

In Chapter 7, | conclude this thesis and give some directions for future research.



15

Chapter 2

Application Benchmarks and Experimental
Methodology

In Section 2.1, | describe the applications used in this thesis. | explain the various
point-to-point message-passing primitives of the applications in Section 2.2. | discuss the

experimental methodology in Section 2.3.

2.1 Parallel Benchmarks

This thesis (except Chapter 5) studies the computation and communication character-
istics of actual parallel applications. For these studies, | have used some well-known paral-
lel benchmarks form thBIAS parallel benchmarkdNPB) suite [13], théParallel Spectral
Transform Shallow Water ModéPSTSWM) parallel application [125], and the pure
Quantum Chromo Dynamics Monte Carlo Simulation Caite MPI (QCDMPI) parallel
application [65]. Although the results presented in this thesis are for the above parallel
applications, these applications have been widely used as benchmarks representing the

computations in scientific and engineering parallel applications.

| used the MPI [92] implementation of the NAS benchmarks, version 2.3, the
PSTSWM, version 6.2, and the QCDMPI, version 1.4, and run them on several IBM SP2
machines. | chose the IBM SP2 as it is a message-passing parallel machine so that the cho-
sen parallel applications are mapped directly on it. | used different system sizes and prob-
lem sizes of the applications in this study. NPB 2.3 comes with five problem sizes for each
benchmark: small class “S”, workstation class “W”, large class “A” and larger classes “B”
and “C”. Due to access limitations in the use of the IBM Deep Blue machine at the IBM T.
J. Watson Research Center, and space limitations in using the University of Victoria IBM
SP2, | was able to experiment with only the “W” and “A” classes and the results included

in this thesis represent theses classes.
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2.1.1 NPB: NAS Parallel Benchmarks Suite
The NAS Parallel Benchmarks (NPB) [13] have been developed at the NASA Ames

Research Center to study the performance of massively parallel processor systems and
networks of workstations. The NAS Parallel Benchmarks are a set of eight benchmark
problems, each of which focuses on some important aspect of highly parallel supercom-
puting for aerophysics applications. The NPB are a set of implementations of the NAS
Parallel Benchmarks based on Fortran 77 and the MPI message-passing interface stan-

dard, and are not tied to any specific system.

The NPB consists of five “kernels”, and three “simulated computational fluid dynamic
(CFD) applications”. The three simulated CFD application benchmdokger-upper
diagonal (LU), scalar pentadiagona(SP), andblock tridiagonal (BT) are intended to
accurately represent the principal computational and data movement requirements of mod-
ern CFD applications. The kernetxnjugate gradien(CG), multigrid (MG), embarrass-
ingly parallel (EP), 3-D fast-Fourier transform(FT), andinteger sort(IS) are relatively
compact problems, each of which emphasizes a particular type of numerical computation.
| am interested in the point-to-point patterns of the LU, BT, and SP applications, and CG
and MG kernels. EP, FT, and IS kernels are not suitable for this study. EP and FT use only
collective communication operations while each node in the IS kernel always communi-

cates with a specific node.

2111 CG

The conjugate gradienkernel, CG, tests the performance of the system for unstruc-
tured grid computations which by their nature require irregular long distance communica-
tions which is a challenge for all kinds of parallel computers. Essentially, it requires
computing a sparse matrix-vector product. The inverse power method is used to find an
estimate of the largest eigenvalue of a symmetric positive-definite sparse matrix with a

random pattern of non-zeros. This code requires a power-of-two number of processors.
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2112 MG

The second kernel benchmark is a simplifradltigrid kerne] MG, which solves a

3-D poisson PDE. Four iterations of the V-cycle multigrid algorithm are used to obtain an

approximate solutiom to the discrete Poisson probleﬁhzu = Vv orka6x 256x 256
grid with periodic boundary conditions. This code is a good test of both short and long dis-
tance highly structured communication. This code requires a power-of-two number of pro-
cessors. The partitioning of the grid onto processors occurs such that the grid is
successively halved, starting with tkedlimension, then thg dimension and then the

dimension, and repeating until all power-of-two processors are assigned.

2.1.1.3 LU

The lower-upper diagonabenchmark, LU, employs a symmetric successive over-
relaxation (SSOR) numerical scheme to solve a regular-sparse black lower and
upper triangular system. A 2-D partitioning of the grid onto processors occurs by halving
the grid repeatedly in the first two dimensions, alternaxedyd thery, until all power-of-
two processors are assigned, resulting in vertical pencil-like grid partitions on the individ-
ual processors. The ordering of point based operations constituting the SSOR procedure
proceeds on diagonals which progressively sweep from one corner on azgieme to
the opposite corner of the samplane, thereupon proceeding to the reegtane. Commu-
nication of partition boundary data occurs after completion of computation on all diago-
nals that contact an adjacent partition. LU is very sensitive to the small-message
communication performance of an MPI implementation. It is the only benchmark in the

NPB 2.3 suite that sends large numbers of very small (40 byte) messages.

2.1.1.4 BT and SP

The BT and SP algorithms have a similar structure: each solves three sets of uncoupled
systems of equations, first in tlkethen in they, and finally in thez direction. In theblock
tridiagonal benchmark, BT, multiple independent systems of non-diagonally dominant,
block tridiagonal equations with @x 5  block size are solved. Instedar pentadiago-

nal benchmark, SP, multiple independent systems of non-diagonally dominant, scalar pen-
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tadiagonal equations withax 5  block size are solved. Both BT and SP codes require a
square number of processors. These codes have been written so that if a given parallel
platform only permits a power-of-two number of processors to be assigned to a job, then
unneeded processors are deemed inactive and are ignored during computation, but are

counted when determining Mflop/s rates.

2.1.2 PSTSWM
The Parallel Spectral Transform Shallow Water ModBISTSWM) application [125],

was developed by Worley at Oak Ridge National Laboratory and Foster at Argonne
National Laboratory. PSTSWM is a message-passing benchmark code and parallel algo-
rithm testbed that solves the nonlinear shallow water equations on a rotating sphere using
the spectral transform method. PSTSWM was developed to evaluate parallel algorithms
for the spectral transform method as it is used in global atmospheric circulation models.
Multiple parallel algorithms are embedded in the code and can be selected at run-time, as
can the problem size, number of processors, and data decomposition. PSTSWM is written
in Fortran 77 with VMS extensions and a small number of C preprocessor directives. |
used the MPI implementation of the PSTSWM with the default input sizes.

2.1.3 QCDMPI

Pure Quantum Chromo Dynamics Monte Carlo Simulation Code with MPI
(QCDMPI) [65], written by Hioki at Tezukayama University, is a pure Quantum Chromo
Dynamics simulation code with MPI calls. It is a powerful tool to analyze the non-pertur-
bative aspects of QCD. This program can be applied to any dimensional QCD such as the
3-dimensional QCD in which the color and/or quark confinement mechanism are
obtained. QCDMPI runs on any number of processors and also any dimensional partition-

ing of the system can be applied.
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2.2 Applications’ Communication Primitives

As stated earlier, | am only interested in the patterns of the point-to-point communica-
tions between pair-wise nodes in the above applications as discussed in Chapter 3, Chapter
4, and Chapter 6 of this thesis. Efficient algorithms for collective communications are pre-
sented in Chapter 5. These applications use synchronous and asynchronous MPI send and

receive primitives [92]. | briefly explain these communication primitives here.

An MPI program consists of autonomous processes, executing their own code, in an
multiple instructions multiple datéMIMD) style. Note that all parallel applications stud-
ied in this thesis use asingle program multiple datéSPMD) style. Processes are identi-
fied according to their relative rank in a group, that is, consecutive integers in the range 0
to groupsize 1. If the group consists of all processes then the processes are ranked from 0

to N - 1 whereN is the total number of processes in the application.

The processes communicate via calls to MPlI communication primitives. The basic
point-to-point communication operations asendand receive There are two general
point-to-point communication operations in MRitocking and nonblocking Blocking
send or receive calls will not return until the parameters of the calls can be safely modi-
fied. That is, in the case of a send call, thessage enveldpas been created and the mes-
sage has been sent out or has been buffered into a system buffer. For the case of a receive
call, it means that the message has been received into the receive buffer. Note that the mes-
sage envelop consists of a fixed number of fiektsifce, dest, tag, comrand it is used to
distinguish messages and selectively receive them. Nonblocking communication opera-
tions just post or start the operation. Thus the application programmer must explicitly
complete the communication call later at some point in the program using one of the vari-
ous function calls in MPI such &P1_Wait or MP1_Waitall.

There are four communication modes in MBtandard buffered synchronousand
ready These correspond to four different types of send operations. In the synchronous
mode send call, the call will not finish until a matching receive call has been issued and
has begun reception of the message. In the buffered mode send call, the send call is local

(in contrary to other communication modes where the send calls are nonlocal) and is not
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waiting for the receive call to be posted. Actually, it buffers data when the receive call is
not posted. In the ready mode send call, the receive call must have been posted earlier. In
the standard mode, it is up to the system to buffer the data or send it as in synchronous

mode. Note that the standard mode is the only mode for the receive calls.

2.2.1 MPI_Send
MPI1_Send (buf, count, datatype, dest, tag, corf#f) is a standard blocking send call

which is a combination of buffered and synchronous mode and is dependent on the imple-
mentation. When the call finishes, the send buffer can be used. In the buffered mode, data
is written from the send buffer to the system buffer and the call returns. In the synchronous
mode, the call waits for the receiver to be posted and then returns. The LU, MG, CG, and

PSTSWM applications use this type of send call.

2.2.2 MPI _Isend

MPI_Isend (buf, count, datatype, dest, tag, comm, reqUé2f) is a standard non-
blocking send call. It returns immediately. Therefore, the send buffer cannot be reused. It
can be implemented in the buffered or synchronous mode. It needs anothbtRlaNVait
or MP1_Waitall, to complete the call. These completion calls are explained later in Section

2.2.6 and Section 2.2.7, respectively. BT and SP use this type of send call.

2.2.3 MPI_Sendrecv_replace
MPI_Sendrecv_replace (buf, count, datatype, dest, sendtag, source, recvtag, comm,
status)[92] combines in one call the sending of a message and receiving another message

in the same buffer. QCDMPI uses this type of communication call.

2.2.4 MPI_Recv
MPI1_Recv (buf, count, datatype, source, tag, comm, stg®d2$)s a standard blocking
receive call. When it returns, the data is available at the destination buffer. LU and

PSTSWM use this type of receive call.
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2.2.5 MPI _lIrecv

MPI_Irecv (buf, count, datatype, source, tag, comm, reqyég) is a standard non-
blocking receive call. It immediately posts the call and returns. Hence, data is not available
at the time of return. It needs another completion call sudiRaks Waitor MPI_Waitall to

complete this call. All applications except QCDMPI use this type of receive call.

2.2.6 MPI_Wait

A call to MPI_Wait (request, statug)92] returns when the operation identified by
requests complete. FOMPI_Isendoperation, whePI_Waitreturns the send buffer can
be reused. FOMPI_Recvoperation, the completion of thlPI_Wait call notifies the
availability of the data at the receive buffer. BT, LU, MG, CG, PSTSWM applications all

use this type of completion call.

2.2.7 MPI_Waitall
MPI_Waitall (count, array_of requests, array_of statug&) waits for the comple-
tion of all nonblocking calls associated with the active handles in the list. BT and SP use

this type of completion call.

2.3 Experimental Methodology

| executed the applications on the 12-node IBM SP2 machine at the University of Vic-
toria for gathering their communication traces, and on the 30-node IBM Deep Blue at the
IBM T. J. Watson Research Center for collecting their timing profiles. | wrote my own
profiling codes using the wrapper facility of the MPI to gather the communication traces,
and the timing profiles of these applications. | did this by inserting monitor operations in
the profiling MPI library for the communication related activities. These operations
include arithmetic operations for the calculation of the desired characteristics. It is worth
mentioning that gathering communication traces does not affect the communication pat-
terns of these applications. However, it affects the temporal properties of these applica-
tions. In Appendix A, | explain the approach used to remove the timing disturbances from

the timing profiles of the applications.
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Chapter 3

Design and Evaluation of Latency Hiding/Reduction
Message Destination Predictors

Interconnection networks and their services such as message delivery and flow control
are a major source of communication hardware latency in parallel computer systems. In
Section 3.1, | briefly describe message-passing computers and message switching layers.
Then, as a specific circuit switched interconnection network, | introdueeanfigurable
optical network RON(k, N), for message-passing parallel computers. The advantages of
such reconfigurable optical interconnects are their high bandwidth and their ability to pro-

vide versatile application-dependent network reconfigurations.

| characterize some communication properties of the parallel application benchmarks
by presenting their communication frequency and message destination distributions in
Section 3.2. | define the concept cdmmunication localityn message-passing parallel
applications, anaachingin reconfigurable networks in Section 3.3. | present evidence
that there exists message destination communication locality in the message-passing par-
allel applications in Section 3.3.1. Using classical replacement heuriskt$, LFU, and

FIFO, | show that message destinations display a form of locality.

| have utilized the message destination locality property of message-passing parallel
applications to devise a number of heuristics that can be ugeedictthe target of sub-
sequent communication requests. Thus, in Section 3.4, | contribute by proposing and eval-
uating (in terms of hit ratio) two different categories of hardware/softwaremunication
latency hiding predictoréor message-passing environments. By utilizing such predictors,
the hardware communication latency in reconfigurable interconnects can be effectively

hidden by reconfiguring the communication network concurrent to the computation. |
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compare the performance and storage requirements of the proposed predictors in Section
3.5. In Section 3.6, | elaborate on how these predictors can be used and integrated into the

network interfaces. Finally, | summarize this chapter in Section 3.7.

3.1 Introduction

Message-passing multicomputers are composed of a number of computing modules
that communicate with each other by exchanging messages through their interconnection
networks. Each computing module has its own processors, local memory, and communi-
cation assist/network interface. All local memories are private and are accessible only by
the local processors. Communication hardware latency, communication software latency,
and the user environment (multiprogramming, multiuser) are the major factors affecting

the performance of message-passing parallel computer systems.

Interconnection networks, and their services such as message delivery and flow control
are a major source of communication hardware latency. Essentially, an interconnection
network is characterized by itepology switching strategyflow control mechanispand
routing algorithm The topology is the physical structure of the network. The interconnec-
tion network [46] might be a shared-medium network (such as Ethernet, Token Ring), a
direct network (such as mesh, torus), an indirect network (multistage interconnection net-
work such as IBM SP [112], or irregular such as Myrinet [23]), or a hybrid network (such
as hypermesh) [117].

The routing algorithm determines which routes messages should follow through the
network to reach their destinations. There are many different routing algorithms with dif-
ferent guarantees and performance such as Duato’s adaptive routing [47], Glass and NI's

turn-model routing [56], and up*-down* routing [12].

The flow control mechanism determines when the message, or packet, or portion of a
message should move along its route. Packets or flits may be blocked, buffered, discarded

or detoured to an alternate route based on the flow control mechanism.
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3.1.1 Message Switching Layers

The switching strategy determines how a message moves along its routes. There are
many switching strategie€ircuit switching, packet switching, virtual cut-througand
wormhole switchingre the basic switching strategies [46]. In packet switching, messages
are divided into fixed-size packets. Each packet is routed individually from source to des-
tination and has to be buffered in each intermediate node. It is also chtletand-for-
ward switching In virtual cut-through switching, the entire packet does not need to be
buffered in the nodes. The packet header can be examined and after the routing decision is
made and the output channel is free the header and the following data can be immediately
transmitted. In wormhole switching, the packet is broken up into flits. Wormhole switch-
ing pipelines the flits through the network just like the virtual cut-through switching strat-

egy but it has reduced buffer requirements.

In circuit switching, a physical path is reserved from a source to a destination before
the actual message transmission takes place. The routing header is injected into the net-
work. It reserves physical links as it is transmitted through intermediate nodes. A com-
plete path is set up when the routing header reaches the destination. Then an
acknowledgment is transmitted back to the source. Then, the message contents can be sent
along the reserved channels. The disadvantage is that during message transmission other
messages may be blocked. The advantage is the minimum message transfer latency as the

physical path is already established.

In Chapter 3 through Chapter 5 of this thesis, | am interested in the circuit switching
strategy. As | explain later in Section 3.3, message destinations in message-passing paral-
lel applications display a form of locality. Thus, it is possible to use this communication
locality to pre-establish the physical links and thus hide the path setup time. This applies
both to the electronic circuit switched interconnection networks, and to the reconfigurable
optical interconnection networks. However, as | describe in Section 3.4, the prediction
techniques that | propose in this chapter would also reduce the communication time in
wormhole routed networks. In the next section, | consider a circuit switched reconfig-

urable optical interconnection network as an specific case.
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3.1.2 Reconfigurable Optical Networks

Several topological properties, suchdegreg average distanceanddiametey can be
used to evaluate and compare different interconnection networks. Most of these properties
can be derived from the underlying graph of an interconnection network, where processors
and communication links are mapped onto the vertices (nodes) and edges (links) of the

graph, respectively.

A Graphconsists of a set of vertice¥, interconnected by a set of edgés,symbol-
ized asG = (V,E) [122]. The number of vertices and edges in a grapK is |V JBhd
respectively. An edged E connects vertieeandy, written ase = uy, and is said to be
incidentwith u andv. A vertexv hasdegree ¢ if it is incident with exactlyd, edges. In a

regular graphG, all vertices have the same degree, equaldoA pathfrom v, to vy is a

sequence of distinct vertices, v», ..., Vi such that for everyi <i <k , the edggevi,; is
in E. Thedistancebetweeru andy, dist(u,v), is the minimum length of a path betwean
and v. The eccentricity of u is eu) = dist(u,v), where v is a vertex such that

dist(u,v) = MAX,, 5y distluw). The maximum eccentricity among all vertices is the

diameterof the graph.

| am interested in having a complete interconnection network, where any computing
node can communicate with any other node in a single-hop. Complete interconnection net-

works can be modeled by a complete gralgh, A complete graph is a regular graph

where allN vertices are linked together and the diameter is one. Each vertex has dggree

equal toN - 1, and the number of edgel§| NN -1)/2 far too high to be of practical
interest whemN is large. These limitations prevent implementing complete networks using

metal-based interconnections as there is a fixed physical link between any two nodes.

Optics is ideally suited for implementing interconnection networks because of its
superior characteristics over electronics [100, 51, 74], such as higher interconnection den-
sity, higher bandwidth, suitability for reconfigurable interconnects, greater fan-in and fan-
out, lower error rate, freedom from planar constraints (light beams can easily cross each

other), immunity from electromagnetic field and ground loops, lower signal crosstalk.
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Several research groups in academia and industry are working on different aspects of uti-
lizing optical interconnects in massively parallel processing systems including works on
the feasibility study and technology related problems of optical interconnects, architec-
tures for optically interconnected computer systems, and communications and algorithmic

issues for such parallel systems [82, 19].

One of the main features of an optical interconnect is its capabiliigdonfigure This
is very suitable for the construction of 3-D VLSI computers [89].iBferconnect recon-
figuration, |1 simply mean the ability to change the interconnect dynamically upon
demand. In essence, the advantages of reconfigurable optical interconnects are due to their
ability to provide versatile application-dependent network configuratineg-space opti-
cal interconnectsire a class of optical interconnects that can support network reconfigura-

tion.

Free-space optical interconnects use free-space (vacuum, air or glass) for optical sig-
nal propagation. In free-space optical interconnects, optical signals can propagate very
close to each other and pass each other without interaction. It can easily exploit the third
spatial dimension which dramatically increases the available communication bandwidth.
Free-space reconfigurable optical interconnects result in much denser interconnection net-
works than metal-based and guided-wave interconnections [28, 83], and have the potential
to solve the problems associated with implementing complete networks due to their ability

to reconfigure.

| introduce an abstract model [1] for a complete interconnection network using free-
space reconfigurable optical interconnects for massively parallel computers, and discuss

its characteristics.

Definition A reconfigurable optical networlRON (k, N), consists olN computing
nodes with their own local memory. A node is capable of connecting directly to any other
node. A node can establigtsimultaneous connections. These connections are established
dynamically by reconfiguring the optical interconnect. The links remain established until

they are explicitly destroyed.
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Messages are sent usiogcuit switching.That is, a connection must be established
between the source and destination pair before the message is sent. Each node has the abil-
ity to simultaneously send and receikanessages on itk links (the k-port model), or
exactly one message on one of its links (#megle-portmodel). Full-duplex communica-
tion where a node can send and receive messages at the same time is supported. A simpli-
fied block diagram of the network is shown in Figure 3.1 where each node uses only one

of its links.

Beam routers

- >
Potential links

—
@ Effective links

Figure 3.1: RON (k, N)a massively parallel computer interconnected by a
complete free-space optical interconnection network

Various implementation technologies exist to embody the above abstract model. Such
technologies includeertical-cavity surface-emitting lase(¥ CSELS) for photon genera-
tion, self-electro-optic effect devicSEEDSs) for modulation, frequency hoping for cod-
ing, wavelength tuning for transmitters and receivasmputer generated holograms
(CGH), anddeformable mirrors(DM) for switching and optical beam routing. The
switching in the case of CGH can be achieved by recording the desired source-destination
communication patterns. As stated in Chapter 1, deformable mirrors, sulchcast’s
WaveStar LambdaRoutf86], are also reaching maturity. Optical beam routing in a free-
space optical interconnection network often employs other external optical elements such

as mirrors, prisms, lenses.
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Each node has a fixed number of tunable transmitters for sending optical beams toward
its beam router, such as a computer generated hologram or a deformable mirror, to be redi-
rected to the receivers of the other nodes. Also, each node has a large number of fixed
receivers at its input ports. Some of these input ports may be used only for collective com-

munications operations while others may be used for pair-wise communications.

Path setup phase can be done by sending an encoded light beam to the beam router to
reprogram the computer generated hologram, or to deform the mirror such that the actual
message can be delivered to the destination(s) directly. It can be done in two different
ways. First, the router (CGH or DM) upon receiving the message (which includes the pay-
load) stores the message in a buffer and then configures its output links so that it can for-
ward the message to the destination node(s). This approach needs a buffer for the entire
message at each beam router which is of high cost. It also involves an extra copy. The bet-
ter approach is to send an optical beam having only the destination address to the beam
router for the path setup phase. Then, after some time, to be catledfiguration delay
the second beam containing the actual message can be sent through the configured router

to its destination.

Collision can happen at the receiving nodes considering the fact that several beams
may arrive at a destination node at the same time. Hence, a destination node may not be
able to complete the path setup phase, or accept the message. However, | assume that due
to the availability of a large number of fixed receivers at the destinations, connections are

established immediately after some time (reconfiguration delay).

| assume an unbounded number of available wavelengths for the system. However, in
case of a limited number of available wavelengths, one can utilize spread-spectrum tech-
niques where each transmitter sends its information changing the wavelength in a pseudo-
random fashion. The receiver can reconstruct the transmitted message if it is aware of the
pseudo-random code used for encoding the sequence of wavelengths used during the

transmission.
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| am not interested in the technology itself, and implementation concerns are outside
the scope of this dissertation. Instead, | am particularly interested in the abstract model of
this network. | shall assume that one or more of the technologies outlined above will be
used to implement the proposed interconnect. Under such an implementation, the various
overheads associated with the reconfiguration of the network (such as beam steering, set-
ting up the computer-generated holograms, tuning the transmitters, or sending the fre-
guency code in a frequency hoping implementation etc.) are lumped together as the
reconfiguration delag. | assume that the reconfiguration deldymost of the time is con-

stant but occasionally may be unbounded due to hot spots in applications.

3.1.2.1 Communication Modeling

An important concern is to model the communication timesquired to send a mes-
sage from one node to another. | use the communication modeling of Hockney [66]. Hock-

ney’s model characterizes the communication time for a point-to-point communication

I
operation asT = t + r_m , Wwherg, is the start-up time which is equal to the time needed

[oe]

to send a zero byte message, and includes the time required to prepare the message, such
as adding a header, and a trailgf.  is the length of message to be transmitteg, and IS
the asymptotic bandwidtim Mbytes per second and is the maximum bandwidth achiev-
able when the message length approaches infinity. The communication time can be written

as:T = t,+1,1 wherer isthe per unittransmission time and is equal to the reciprocal of

r,. For theRON (k, N), | amend the model by explicitly including the reconfiguration

delayd that is necessary for a node to configure a link that would connect directly to its

target node(s). The transmission time then becomesd + t,+1 1

The time on the flyl,,, T, for small messages is negligible compared to the setup time,
t;, and the reconfiguration delay, In the current generation of parallel computer systems,
the setup timet, is several tens of microseconds [43]. Several researchers are working to

minimize the setup time by using user-level messaging techniques subttias Mes-
sageqgAM) [125] and Fast Message@M) [102]. In Chapter 6, | discuss issues regarding
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the software overhead component of the communication latency. | utilize the prediction
techniques proposed in this chapter to reduce the communication latency by avoiding

unnecessary memory copying operations at the receiver side of communications.

In this chapter, | am particularly interested in the techniques that hide the reconfigura-
tion delay,d. For this, and for the first time as far the author is aware, | propose and evalu-
ate different communication latency hiding predictors at the send side of communications
in message-passing systems using reconfigurable networks so that the reconfiguration
delay can be hidden. In essence, by utilizing such predictors, the hardware communication
latency in reconfigurable interconnects can be effectively hidden by reconfiguring the

communication networks concurrent to the computations.

3.2 Communication Frequency and Message Destination Distribution

Several researchers have investigated the communication behavior of parallel applica-
tions [30, 75, 68, 72, 37]. Chodnekar and his colleagues [30] have developed a traffic char-
acterization methodology for parallel applications. They have considered the inter-arrival
time distribution of messages (send calls), spatial message distribution, and the message
volume in message-passing and shared-memory applications. Kim and Lilja [75] exam-
ined the communication patterns of message-passing parallel scientific programs in terms
of message size, message destination, and generation distributions for the send time,
receive time, and computation time. Hsu and Banerjee [68] analyzed the communication
characteristics of parallel CAD applications on a hypercube. Karlsson and Brorsson [72]
have compared the communication properties of parallel applications in message-passing
applications using MPI, and shared memory applications using TreadMarks [10]. de
Lahaut and Germain [37] have shown that in scientific applications written in High Perfor-
mance Fortran (HPF) [85] a large part of communications can be known from the analysis
of the code. This is calledtatic communicationommunications that can be known at
compile-time, in contrast ta@lynamic communicationehere communications can be

determined only at run-time.
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Essentially, communication properties of parallel applications can be categorized by
the spatial temporal andvolumeattributes of the communications [30, 75, 68]. The tem-
poral attribute of communications in parallel applications characterizes the rate of mes-
sage generations, and the rate of computations. | present the cumulative distribution
function of the inter-send computation times of the applications studied in this thesis in
Chapter 4.

The volume of communications is characterized by the number of messages, and the
distribution of message sizes in the applications. In this chapter, | am particularly inter-
ested in the number of messages . In Chapter 4, | show the distribution of message sizes in

the parallel applications.

One of the communication volume characteristics of parallel applications is the fre-
guency of send messages. | use a number of parallel benchmarks, as introduced in Chapter
2, and extract their communication traces. The processes in these applications use block-
ing and nonblocking standard MPI send primitives, naniRl_Send MPI_Isend and
MPI_Sendrecv_replacf?2]. Figure 3.2 illustrates the number of send communication
calls per process in the applications under different system sizes. | executed all applica-
tions once for each different system size and counted the number of send calls for each
process of the applications. Hence, in Figure 3.2, by average, minimum, and maximum, |
mean the average, minimum, and maximum number of send calls taken over all processes
of each application. It is evident that processes in the BT, SP, CG, and QCDMPI applica-
tions have the same number of send communication calls for each different system size.
This is also true for LU, MG, and PSTSWM when the number of processes is four, four

and eight, and a power of two, respectively.

The Spatial attribute of communications in parallel applications is characterized by the
distribution of message destinations. It is commonly assumed that the message destina-
tions are evenly distributed among all of the processes although an individual process may

not see a uniform message destination distribution [75, 30].
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In MPI, the send operatioMPI_Send, MPI_IsendgndMPI_Sendrecv_replaceom-
munication calls in the parallel applications studied in this thesis), associatewelope
with a message. Messages in addition to the data part carry information that can be used to
distinguish messages and selectively receive them. This information consists of a fixed
number of fields, which is collectively called timeessage envelop&hese fields are the
source process of a messageurce the destination process of a messatgst the mes-
sage tagtag, and the message communicatoomm The message source is implicitly
determined by the identity of the message sender and need not be explicitly carried by
messages. The other fields are specified by arguments in the send operation. The destina-
tion process is specified by tldestargument. The integer-valued message tag is specified
by thetag argument. This integer can be used by the program to distinguish different types
of messages. A communicator specifies the communication context for a communication
operation. It also specifies the set of processes that share this communication context.
Each communication context provides a separate communication universe. Messages are
always received within the context they were sent, and messages sent in different contexts
do not interfere. The BT, SP, and PSTSWM applications use a number of different com-
municators including the predefined communicakéPl COMM_WORLD provided by
MPI while other parallel applications, CG, MG, LU, and QCDMPI use only the pre-

defined communicator.

As stated above, a message envelop consistsoofce dest tag, and comm The
sourceandtag of a message envelop do not affect the link establishment phase for a mes-
sage transmission to a destination process. Thus, | assigned a different identifier, called
unique message destination identiffer,each dest, comm tuple found in the communi-
cation traces of the applications. For simpilicity, from now on, | use the term “message
destination” instead of unique message destination identifier. Figure 3.3, shows the mini-
mum, average, and maximum number of message destinations per process in the applica-
tions under different system sizes. It is evident that processes in all applications
communicate with only a favorite subset of all other processes. Note that processes in the
BT, and SP applications, in contrast to the other applications, have the same number of

message destinations under different system sizes (except Migefour). This is also
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true for CG when the number of processes is 8 and 16, and for MG when it is 4 and 8.
Meanwhile, in all applications, except BT and SP, the number of message destinations
increases when the number of processes increases (note the exception cases in PSTSWM

and QCDMPI when the number of processes increases from 32 to 36).

Figure 3.4, illustrates the distribution of message destinations in the applications when
the number of processes is 64. The BT, SP, CG, PSTSWM, and QCDMPI applications
verify the assumption that the message destinations are uniformly distributed among all of
the processes. MG shows an almost uniform message destination. However, LU presents

three different peaks for message destinations.

Figure 3.5, shows the distribution of message destinations for one of the processes,
process zero, of the applications when the number of processes is 64. | choose process
zero because it is a favorite destination of all processes and is usually responsible for dis-
tributing data and verifying the results of the computation. It is clear that this process tends
to communicate with only a favorite subset of all other processes in the applications. |
have found similar results for all other processes in each application as it can be seen in
Figure 3.4.

3.3 Communication Locality and Caching

| define the termsnessage destination communication local#gd cachingin con-
junction with this work as follows. By message destination communication locality | mean
that if a certain source-destination pair has been used it will be re-used with high probabil-
ity by a portion of code that is “near” the place that was used earlier, and that it will be re-
used in the near future. If communication locality exists in parallel applications, then it is
possible tocachethe configuration that a previous communication request has made and
reuse it at a later stage. Caching in the context of this discussion will mean that when a
communication channel is established it will remain established until it is explicitly
destroyed. As already mentioned, in the context of free-space optical interconnect main-
taining an established communication channel does not interfere with communications

that are in progress in other parts of the network.
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In the message-passing programming paradigm, many parallel algorithms are built
from loops consisting of computation and communication phases. Therefore, communica-
tion patterns may be repetitive. This has motivated researchers to fiedriimaunication
locality properties of parallel applications [75, 68]. Kim and Lilja [75] have recently
shown that there is a locality in message destination, message sizes, and consecutive runs
of send and receive primitives in parallel algorithms. They have proposed and expanded
the concept of memory access locality based orL#est Recently UsgdlRU) [68] stack

model to determine these localities.

In the following subsection, | expand on the work by Kim and Lilja [75] by utilizing
the FIFO and LFU heuristics on the applications to see the existence of message destina-
tion communication locality or repetitive message destinations. | use thehteratio to
establish and compare the performance of these heuristics. If the next message destination
is already in the set of message destinations maintained by the LRU, LFU, and FIFO heu-
ristics, | count ahit, otherwise, | count aniss It is clear that the hit ratio is equal to the

number of hits divided by the total number of hits and misses.

3.3.1 The LRU, FIFO and LFU Heuristics
The Least Recently Use{LRU), First-In-First-Out (FIFO), andLeast Frequently

Used(LFU) heuristics, all maintain a set &f(k is thewindow siz¢ message destinations.

If the next message destination is not in the set, then it replaces one of the destinations in
the set according to which of the LRU, FIFO or LFU strategies is adopted. The window
size,k, corresponds to the number of input, output ports use’Om (k, N). Figure 3.6
shows the results of the LRU, FIFO, and LFU heuristics on the applications when the
number of processes is 64. Figure 3.7, Figure 3.8 and Figure 3.9 illustrate the size scali-
biltiy of the these heuristics on the applications. It is clear that the hit ratios in all applica-
tions approach 1 as the window size increases. The performance of the FIFO algorithm is
almost the same as the LRU for all benchmarks. However, the LFU algorithm has a better
performance than the LRU and FIFO heuristics, the exception is for the LU benchmark,
whenk =2 andN = 16, 32, and 64.



Average Hit Ratio

BT (64 processes)

LFU
LRU
FIFO

o o o
D (2] [o2]

Average Hit Ratio

o
)

4 K 12
Window Size

CG (64 processes)

FIFO

o o o
N (2] [ee]

Average Hit Ratio

o
N

2
Window Size

LU (64 processes)

— LFU
--- LRU
FIFO

2
Window Size

o o o
N (2] [ee]

Average Hit Ratio

o
N

o o o
D (2] [e2]

Average Hit Ratio

o
)

SP (64 processes)

— LFU
--- LRU
FIFO

o o
(2] [e:]

Average Hit Ratio
o
=

0.2r

4 8
Window Size

MG (64 processes)

12

o o
(o2} [e2)

Average Hit Ratio
o
b

3 6
Window Size

PSTSWM (64 processes)

— LFU
--- LRU
FIFO

Figure 3.6: Comparison of the LRU, FIFO, and LFU heuristics whien 64

2

3 4
Window Size

39



0

LRU (BT, SP)

thedted

0

12345678 9101112
Window Size

LFU (BT, SP)
n

TTAtnat
DB WNE OD
~ OO OO

1234567 8 9101112
Window Size

FIFO (CG)

“let i

2
Window Size

FIFO (BT, SP)

thedted

00123456789101112

Window Size

LRU (CG)

TARTT
D WE oA
A NO

NIZERE:

2
Window Size

LFU (CG)

z2zZzzZzZZz
[T T

D WE 00N

“let i

2
Window Size

Figure 3.7: Effects of the scalibilty of the LRU, FIFO,
and LFU heuristics on the BT, SP and CG applications

40



LRU (MG)

z2zZzzZzZZ
Ty T

D WE 00N

NESARS:

0 1 2 3 4 5 6
Window Size

o
©

LFU (MG)

TARTT
D WE oA
A NO

NiiSARE:

0 1 2 3 4 5 6
Window Size

[e)
©

FIFO (LU)

D WE 0N

“let i

2
Window Size

FIFO (MG)

z2zZzzZzZ2Z
Ty T

D WE 00N

NESARS:

0 1 2 3 4 5 6
Window Size

LRU (LU)

o
©

TARTT
D WE oA
A NO

NIZERE:

2
Window Size

LFU (LU)

z2zZzzZzZZ
Ty T

D WE 0N

“let i

2
Window Size

Figure 3.8: Effects of the scalibilty of the LRU, FIFO,
and LFU heuristics on the MG and LU applications

41



LRU (PSTSWM)
o—

%

z2zz2zz2z2zZ22Z22

1 2 3 4 5 6 7
Window Size

z2zzz2z2zZ2zZ22

JISESEIRd

1 2 3 4 5 6
Window Size

~

FIFO (QCDMPI)
% &

/

DB WWNE DN
POONUOO

z2zzzzzZzzZ22

ofttheot e

1 2 3 4
Window Size

[«2]

42

FIFO (PSTSWM)
>—%

O

z2zz2zz2z2zZ22Z22

JEISESE I RS

2 3 4 5 6
Window Size

~

LRU (QCDMPI)
%

22222222

altth4oted

1 2 3 4
Window Size

LFU (QCDMPI)
%

Z2Z2zZ2z22222
[T I R T

DB WWNE D
oo NUUO

albthdoted

1 2 3 4
Window Size

[«2]

Figure 3.9: Effects of the scalibilty of the LRU, FIFO, and LFU
heuristics on the PSTSWM and QCDMPI applications



43

Basically, the LRU, FIFO and LFU heuristics do not predict exactly the next message
destination but show the probability that the next message destination is in the message
destination set of the LRU, FIFO and LFU heuristics, respectively. For instance, the
PSTSWM application shows nearly 70% hit ratio for a window size of seven under the
LRU heuristic when the number of processes is 64. This means that 70% of the time one
of the seven most recent message destination will be used in the next message. The LRU,
FIFO, and the LFU heuristics perform better whers sufficiently large. However, this
adds to the hardware complexity laéinks should be setup and remain active before the

next message is ready to be sent.

| am interested in having predictors that can predict the next message destination with
a high probability, and work under single-port modeling to minimize the cost of hardware
implementation. In the following section, | propose a number of novel message destina-

tion predictors.

3.4 Message Destination Predictors

As noted earlier, a node sends a message to another node by first establishing a link to
the target (hence the reconfiguration dedagnd then sending the actual message over the
established link. It is obvious that if the link is already in place, then the configuration
phase does not enter the picture with a commensurate saving in the message transmission
time. | would like to establish efficient algorithms where the link establishment costs are
minimized. The stated objective can be accomplished, if the target of the communication
operation can beredictedbefore the message itself is available. In this way, the commu-
nication pathway can be established and be ready to be used as soon as the message to be

sent becomes available.

There are several ways of accomplishing this. If the communication operation is regu-
lar and known, then it is possible that one can determine the destinations and the instances
that these shall be used. | have developed such algorithms for broadcasting/multibroad-
casting [1] and discuss them in Chapter 5. However, if the algorithm is not known, as is
usually the case for point-to-point communications, the approach mentioned above cannot

be used.
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Prediction techniques have been proposed in the past to predict the future accesses of
sharing patterns and coherence activities in distributed shared memory (DSM) by looking
at their observed behavior [96, 77, 73, 133, 34, 107]. These techniques assume that mem-
ory accesses and coherence activities in the near future will follow past patterns. Sakr and
his colleagues have used time series and neural networks for the prediction of the next
memory sharing requests [107]. Dahlgren and his colleagues devised hardware regular
stride techniques to prefetch several blocks ahead of the current data block [34]. More
elaborate hardware-based irregular stride prefetching approaches have been proposed by
Zhang and Torrellas [133]. Kaxiras and Goodman have recently proposed an instruction-
based approach which maintains the history of load and store instructions in relation to
cache misses and predicting their future behavior [73]. This is in contrast to address-based
techniques that keep data-access history for the predictions. Mukherjee and Hill proposed
a general pattern-based predictmysmosto learn and predict the coherence activity for a
memory block in a DSM [96]. Cosmos makes a prediction in two steps. First, it uses a
cache block address to index into a message history table to obtain the <processor and
message-type> tuples of the last few coherence messages received for that cache block.
Then it uses these <processor, message-type> tuples to index a pattern history table to
obtain a <processor, message-type> tuple prediction. In a recent paper, Lai and Falsafi
proposed a new class of pattern-based predicteesnory sharing predictorso eliminate
the coherence overhead on a remote access latency by just predicting the memory request
messages, those primary messages that invoke a sequence of protocol actions [77]. It
improves prediction accuracy over cosmos by eliminating the acknowledgments messages
from the pattern tables. It also reduces memory overhead and perturbation in the tables
due to message re-ordering. Both works in [96, 77] are adaptations of Yeh and Patt’s two-
level PAp branch predictor [131]PApis a two-level adaptive branch predictor based on

the past behavior of the same branch.

In software-controlled prefetching, the programmer or compiler decides when and
what to prefetch by analyzing the code and inseriimgfetchinstructions. Mowry and
Gupta [95] have used software-controlled prefetching, and multithreading to hide and

reduce the latency in shared memory multiprocessors.
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As stated above, many prediction techniques have been proposed to reduce or hide the
latency of a remote memory access in shared memory systems. However, to the best of my
knowledge, no prediction technique has been proposed to predict the next message desti-
nation for message-passing systems to hide the latency of reconfiguration delay in recon-

figurable networks.

| explore the effect that a number of heuristics have in predicting the target of a com-
munication request. The set of predictors proposed in this section [2, 3] predict the mes-
sage destination of a subsequent communication request based on a past history of
communication patterns on a per source process basis. These predictors can be used
dynamically at the communication assist or network interface with or without the help of

the programmer or a compiler.

Actually, | propose two sets of predictors in this the€igcle-basegbredictors, which
are pure dynamic predictors, aidg-basedredictors, which are static/dynamic predic-
tors. In Cycle-based predictor§ingle-cycle, Single-cycle2, Better-cycbnd Better-
cycle2 predictions are done dynamically at the network interface without any help from
the programmer or compiler. In Tag-based predictdegyging, Tag-cycle, Tag-cycle2,
Tag-bettercycleand Tag-bettercycle2predictions are done dynamically at the network
interface as well, but they require some information to be passed from the program to the
network interface. This can be done with the help of the programmer and/or the compiler
through inserting instructions such pge-connect (tag)n the program. The Tag-based
predictors can be pure dynamic predictors if another level of prediction is done on the tag
themselves at the network interface. This way, there is no need for the program to pass
pre-connect (tag) information to the network interface. | leave this approach for the future

research.

It is worth mentioning that these predictors can be used in any circuit-switched net-
works including the works proposed in [36, 132]. Dao and his colleagues [36] exploit the
communication locality to improve the performance of parallel computers usag
switching,a hybrid switching technique for high performance routers in electronic inter-

connection networks. Wave switching combines wormhole switching and circuit switch-
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ing in the same router architecture to reduce the fixed overhead of communication latency
by exploiting communication locality. Thus, it is possible to reduce latency for communi-
cations that display locality and use pre-established physical circuits. Yuan and others
[132] use the communication locality in circuit-switched time-multiplexed optical inter-
connection networks. They rely upon existing techniques for identifying communication
patterns such that their compiled communication algorithms compute the minimal multi-
plexing degree required for establishing all-optical paths from sources to destinations in

such networks.

The predictors can even be useful in reducing the latency in current commercial net-
works. For example, Myrinet networks [23] have a relatively long routing time compared
with link transmission time. Predictors would allow sending the routing header in advance
for the predicted message destination. When the message becomes available, it can be
directly transmitted through the network if the prediction was correct, thus reducing
latency significantly. In case of a mis-prediction, a message tail is forwarded to tear the

path down. Obviously, null messages must be discarded at the destination.

As in the LRU, LFU, and FIFO heuristics, | use thi¢ ratio to establish and compare
the performance of these predictors. As a hit ratio, | define the percentage of times that the
predicted message destination was correct out of all communication requests. The hit
ratios presented for the performance of the predictors are either the minimum, the average,

or the maximum of the hit ratios taken over all nodes of each application.

3.4.1 The Single-cycle Predictor
The Single-cyclepredictor is based on the fact that if a group of message destinations

are requested repeatedly in a cyclical fashion, then a single port can accommodate these
requests by ensuring that the connection to the subsequent message destination in the
cycle can be established as soon as the current request terminates. This predictor imple-
ments a simple cycle discovery algorithm. Starting wittyale-headnessage destination

(this is the first message destination that is requested at start-up, or the one that causes a
miss), | log the sequence of requests until the cycle-head is requested again. This stored

sequence constitutes a cycle, and can be used to predict the subsequent requests. If the pre-
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dicted message destination coincides with the subsequent requested message destination,
then | record a hit. Otherwise, | record a miss and the cycle formation stage commences

with the cycle-head being the message destination that caused the miss.

Figure 3.10 illustrates an example for the operation of the Single-cycle predictor. The
top trace represents the sequence of requested message destinations, while the bottom
trace represents the predicted message destinations according to the Single-cycle predic-
tor. The arrows with the cross represent misses, while the ones with the circle represent
hits. The “dash” in place of a predicted message destination indicates that a cycle is being
formed, and therefore no predicted message destination is offered (note that this is also

added to the misses).

Request sequence
1 35513557 7135617 71321

Predicted sequence ?/ ?/ ?/ ?/

- - 3 5 51 -

Cycle Cycle Cycle Cycle Cycle
formation formation formation formation formation

Figure 3.10:Operation of the Single-cycle predictor on a sample request sequence

Figure 3.11, shows the behavior of this algorithm. The performance of the Single-
cycle predictor is very good on the CG, LU, MG (except whers 4, 8), BT and SP
(except wherN = 4). The Single-cycle predictor behaves poorly on the PSTSWM (except
whenN = 36, 49) and QCDMPI applications.

The performance of the Single-cycle predictor is much better than the LRU, FIFO and
LFU heuristics under the single-port modeling for the LU and CG benchmarks, for the
MG, PSTSWM applications (except whéh= 4, 8), and for BT and SP (except whiin=
4). However, the performance for QCDMPI is almost the same. Note that | compare the
performance of the predictors with the LRU, LFU, and FIFO heuristics under single-port

modeling for the same optical interconnect implementation cost although the proposed
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Figure 3.11:Effect of the Single-cycle predictor on the applications
predictors have higher memory requirements (refer to Section 3.5.1). Figure 3.12 com-

pares the performance of the Single-cycle predictor with the LRU, LFU, and FIFO under

single-port modeling wheN = 64.

Single—cycle, LRU/LFU/FIFO Comparison (64 processes)
10

— Il LRU, LFU, FIFO
M M Single—cycle

Average Hit Ratio

1

SP LU MG CG PSTSWM QCD

Figure 3.12:Comparison of the performance of the Single-cycle predictor with the LRU,
LFU, and FIFO heuristics on the applications under single-port modelingWhes¥

3.4.2 The Single-cycle2 Predictor

In the communication traces of some of the applications, there exist cycles of length
one (such as the one composed of the requested message destination 7 in Figure 3.10). For
these situations, there will always be two misses until the predictor determines that there is
a cycle of length one. Th8ingle-cycleredictor is identical to the single-cycle predictor
with the addition that during cycle formation, the previously requested message destina-

tion is offered as the predicted message destination. If a miss occurs during cycle forma-
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tion, the formation phase continues until a cycle is formed. Then and only then misses
cause a new cycle formation phase to begin. | applied the Single-cycle2 predictor to the
request sequence of the previous example as shown in Figure 3.13. As was expected, the
Single-cycle2  predictor reacts better to cycles of length  one.

Request sequence
1 35513557 7135517 7 1321

Ao

135535517 71355377132

Predicted sequence
Cycle Cycle Cycle Cycle Cycle
formation formation formation formation formation

Figure 3.13:Operation of the Single-cycle2 predictor on the sample request sequence

Figure 3.14 illustrates the performance of the Single-cycle2 predictor. This predictor

has a better performance than the single-cycle algorithm.

Single—cycle2 (64 processes) Single-cycle2
r U o6 —5 0
Il Minimum
[ Average 0.9
[ Maximum
0.8F 0.8
o o
E =07
=06 5 06
I T g
© 2057 ©
=) =)
©0.41r 0.4
g g Ze
> >
< Z 03 —* LU
-©- MG
0.2+ 0.2 & CG
-A- PSTSWM
0.1 —— QCDMPI
0 I I I I I I I
BT SP LU MG CG PSTSWM QCD % 10 20 30 40 50 60 70

Number of Processes

Figure 3.14:Effect of the Single-cycle2 predictor on the applications

3.4.3 The Better-cycle and Better-cycle2 Predictors

In the Single-cycle and Single-cycle2 algorithms, as soon as a message destination
breaks a cycle | discard the cycle and start forming a new cycle with this message destina-
tion as the new cycle-head. Then | just rely upon the new cycle to predict the next message
destination. The Single-cycle and Single-cycle2 predictors could achieve a better perfor-

mance if the previous cycle information was not discarded as new cycle is formed.
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In the Better-cycleoredictor, each cycle-head has its own cycle. For this, | keep the last
cycle associated with each cycle-head encountered in the communication pattern of each
process. This means that when a cycle breaks | keep this cycle in memory for the corre-
sponding cycle-head for later references. When a cycle breaks, if | haven't already seen
the new cycle-head then | form a cycle for it, otherwise | predict the next message destina-
tion based on the member of the cycle associated with this cycle-head that | have from the
past in memory. If the predicted message destination coincides with the subsequent
requested message destination, then | record a hit. If not, then | record a miss and revise

the cycle for this cycle-head. The state diagram of this predictor is shown in Figure 3.15.

Cycle-head

Miss [0 Cycle (new cycle-head) Hit

Cycle
formation

Cycle
prediction
phase

One-cycle-complete

919|dw092-3]942-3uQ

Cycle

prediction
phase

peay-aj942 mau) 8j942 [] SSIN

Cycle
revision
phase

Hit [J One-cycle-complete

Figure 3.15: State diagram of the Better-cycle predictor
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The top left state is the “cycle formation phase” initiated with a cycle-head. This is the
same as the cycle formation phase in the Single-cycle predictor. Upon a cycle completion,
| enter the “cycle prediction phase”. In case of a mis-prediction in the “cycle prediction
phase”, | move back to the “cycle formation phase” if the new cycle-head has not been vis-
ited so far (that is, there is no cycle associated with this new cycle-head in the memory).
Otherwise, | move forward to the “cycle prediction phase for the new cycle-head”. | move
back to “cycle prediction phase” after one complete cycle to continue the predictions for
this new cycle-head. In case of a mis-prediction during the first cycle of predictions in the
“cycle prediction phase for the new cycle-head”, | move to the “cycle-revision phase” to
revise the cycle for this new cycle-head. It is clear that after the revision phase, | move to

the “cycle prediction phase” for the next cycles of predictions.

Figure 3.16 illustrates the operation of the Better-cycle predictor on the sample request
sequence. It is clear that the first cycle associated with cycle-head 1 consists of message
destinations 1, 3, 5, and 6. However, in the fourth appearance of this cycle-head a revised

cycle forms which contains message destinations 1, 3, and 2.

Request sequence
135513557 7135517 7 1321

Predicted sequence ?/ { ?/ 7/ ?/

-- - -3551-7355137 7 35 -

Cycle Cycle Cycle
formation formation formation

Figure 3.16:Operation of the Better-cycle predictor on the sample request sequence

The performance of the Better-cycle predictor on the benchmarks is shown in Figure
3.17. Itis evident that its performance is exceptionally better for all benchmarks compared
to the Single-cycle predictor except for the QCDMPI benchmark W25, 32, 36 and
49.
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Figure 3.17:Effect of the Better-cycle predictor on the applications

The Better-cycleZredictor is identical to the Better-cycle predictor with the addition
that during cycle formation and cycle revision phases the previously requested message
destination is offered as the predicted message destination. Figure 3.18 illustrates the

operation of the Better-cycle2 predictor on the same sample request sequence.

Request sequence
1355135577 13551771321

ey

1355355177 3551377353
Predicted sequence

Cycle Cycle Cycle
formation formation formation

Figure 3.18:Operation of the Better-cycle2 predictor on the sample request sequence

The Better-cycle2 predictor has a better performance than the Single-cycle, Single-
cycle2, and the Better-cycle predictor for the QCDMPI benchmark. The performance of
this predictor is shown in Figure 3.19. It is worth mentioning that | found that the applica-
tions have a very small number of cycle-heads (at most 9) under the Better-cycle and Bet-
ter-cycle2 predictors and different system sizes. Section 3.5.1 discusses the memory

requirement of all predictors proposed in this thesis.
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Figure 3.19:Effect of the Better-cycle2 predictor on the applications

3.4.4 The Tagging Predictor

TheTaggingpredictor assumes a static communication environment in the sense that a
particular communication request (send) in a section of code, will be to the same message
destination with a large probability. Therefore, as the execution trace nears the section of
code in question, it can cause the communication subsystem to establish the connection to
the target node before the actual communications request is issued. This can be imple-
mented with the help of the compiler or by the programmer througleaconnect (tag)
operation which will force the communication system to establish the communication
connection before the actual communication request is issued. As noted earlier, for this
predictor and other Tag-based predictors, | can avoid the help from the compiler or the
programmer by predicting the tag itself at the network interface. This way, there is no need
for the program to pass pre-connect (tag) information to the network interface. However,
the performance of thestlevel Tag-basegrediction techniques has not been evaluated

yet.

| attach a differentag (this is different than the tag in an MPI communication call; it
may be a unique identifier or the program counter at the address of the communication
call) to each of the communication requests found in the applications. This tag is passed to
the communication subsystem by the pre-connect (tag) operation. To this tag and at the

communication assist, | assign the requested message destination the first time a link is
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established. A hit is recorded if in subsequent encounters of the tag, the requested message
destination is the same as the one already associated with the tag. Otherwise, a miss is

recorded and the tag is assigned the newly requested message destination.

The performance of the Tagging predictor is presented in Figure 3.20. As can be seen,
the Tagging predictor results in excellent performance (hit ratios in the upper 90%) for all
the application benchmarks except the CG, PSTSWM, and QCDMPI. The reason is that
these benchmarks include send operations with message destinations calculated based on
loop variables. Thus, the same section of code cycles through a number of different mes-
sage destinations. As we have seen earlier, the Better-cycle and Better-cycle2 predictors
are excellent in discovering such cyclic occurrences for the CG and PSTSWM bench-
marks. Meanwhile, the Better-cycle2 predictor has better performance for the QCDMPI

benchmark compared to the Tagging predictor.

Tagging (64 processes)
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Figure 3.20:Effects of the Tagging predictor on the applications

3.4.5 The Tag-cycle and Tag-cycle2 Predictors

The Tagging predictor does not have a good performance on the CG, PSTSWM, and
the QCDMPI benchmarks while the Single-cycle and Single-cycle2 predictors showed
good results for the CG benchmark. | combine the Tagging algorithm with the Single-

cycle algorithm and call it théag-cyclealgorithm.
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In the Tag-cycle predictor, | attach a different tag to each of the communication
requests found in the application benchmarks and do a Single-cycle discovery algorithm
on each tag. To this tag and at the communication assist, | assign the requested message
destination, to be calledgcycle-headnessage destination (this is the first message desti-
nation that is requested at this tag, or the one that causes a miss). | log the sequence of the
requests at this tag until the tagcycle-head is requested again. This stored sequence consti-
tutes a cycle at each tag, and can be used to predict the subsequent requests. A hit is
recorded if in subsequent encounter of the tag, the requested message destination is the
same as the predicted one in the cycle. If not, then | record a miss and the cycle formation
stage begins with the tagcycle-head being the message destination that caused the miss.
The Tag-cycle predictor performs exceptionally well across all the benchmarks except for
the QCDMPI benchmark as shown in Figure 3.21.
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Figure 3.21:Effects of the Tag-cycle predictor on the applications

The Tag-cycleZpredictor is identical to the Tag-cycle predictor with the addition that
during cycle formation, similar to the Single-cycle2 predictor, the previously requested
message destination is offered as the predicted one. The performance of the Tag-cycle2
predictor, as shown in Figure 3.22, is better than the Tagging and Tag-cycle predictors for

all benchmarks.
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Figure 3.22:Effects of the Tag-cycle2 predictor on the applications
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3.4.6 The Tag-bettercycle and Tag-bettercycle2 Predictors

The Better-cycle and Better-cycle2 algorithms have better performance on the parallel
applications than the Single-cycle and Single-cycle2 algorithms. Therefore, | combine the
Better-cycle and Better-cycle2 algorithms with the Tagging algorithm to get better perfor-
mance than the Tag-cycle and Tag-cycle2 algorithms. | call thegeettercy@ andTag-
bettercyclezredictors. The performance of these two predictors are shown in Figure 3.23,
and Figure 3.24.
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Figure 3.23:Effects of the Tag-bettercycle predictor on the applications

In Tag-bettercycle predictor, | attach a different tag to each of the communication
requests found in the benchmarks and do a Better-cycle discovery algorithm on each tag.

To this tag and at the communication assist, | assign the requested target node, to be called
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tagbettercycle-headode. The Tag-bettercycle2 predictor is identical to the Tag-bettercy-
cle predictor with the addition that during cycle formation, similar to the Better-cycle2
predictor, the previously requested message destination is offered as the predicted mes-
sage destination. The performance of Tag-bettercycle for the QCDMPI benchmark is bet-
ter than the Tag-cycle algorithm, but not better than the Tag-cycle2 predictor. However, the
Tag-bettercycle2 predictor is superior to all other predictors for all parallel benchmarks.
Moreover, | found that the applications have very small number of tagbettercycle-heads (at

most 3) under the Tag-bettercycle and Tag-bettercycle2 predictors and different system

SIZes.
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Figure 3.24:Effects of the Tag-bettercycle2 predictor on the applications

3.5 Predictors’ Comparison

Figure 3.25, presents a comparison of the performance of the predictors presented in
this chapter when the number of processors is 64, 32 and 36, and 16, respectively. It is evi-
dent that the Tag-bettercycle2 predictor has the best overall performance for all applica-
tions (except for QCDMPI when the number of processes is 16, and 64 where Better-
cycle2 has a better performance) and its hit ratio is consistently very high. It is also clear
that under single-port modeling, the proposed predictors outperform the classical LRU,
LFU, FIFO heuristics.
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3.5.1 Predictor's Memory Requirements

Table 3.1 compares the maximum memory requirement of the proposed message des-
tination predictors on the application benchmarks when the number of processors is 64. |
have found that the memory requirement of the predictors decrease gradually when the
number of processes decreases. The numbers in the table are the multiplication factor for
the amount of storage needed to maintain the message destination and its communicator.
Having 64 processes in this case study and at most 4 different communicators in the appli-
cations, one needs to have only one byte of storage per each message destination and its

communicator.

Table 3.1:Memory requirements (in bytes) of the predictors wiNen64

BT SP | CG | MG | LU | QCD | PSTSWM
Single-cycle(2) 49 49 9 7 4 8 33
Better-cycle(2) 49 49 18 28 12 32 297
Tagging 12 12 10 12 10 2 8
Tag-cycle(2) 24| 24| 40| 24/ 20 10 48
Tag-bettercycle(2 24 24 40 36 20 30 48

It is quite clear that the memory requirements of the predictors is very low. That makes
them very attractive for implementation on the communication assist or network interface.
Comparatively, the Better-cycle, and Tag-bettercycle predictors have a little higher mem-
ory requirements than the other predictors. Although, the classical LRU, LFU, and FIFO
heuristics need less memory, as stated earlier, the beauty of the proposed predictors lies in
the fact that they operate under single-port modeling. That is, only one communication
channel is available at any time, and this is reconfigured on demand. This brings the cost
of optical interconnect implementation to the minimum. The storage requirement of the

predictors have been found using the following formulae:



60

Memsjgie- cycig) = Maximum cycle length (3.1)

MeMseiter— cycigz) = MEMingie— cyciez) X Maximum number of cycle-heads(3.2)
Memy,44ing = Maximum number of tags (3.3)

MeMr g cycldz) = MEMragqing* Maximum cycle length of each tags  (3.4)

MeMraq_ bettercycler) = MEMrag_ cycig2) X Maximum number of tagbettercycle-heads
(3.5)

3.6 Using Message Predictors

In this section, | briefly discuss how a message destination predictor can be used and
integrated into the network interface. Predictors would reside beside the communication
assist or network interface and accelerate the reconfiguration phase of the interconnect.
They monitor the message destination patterns of their host node and make a prediction
according to their prediction algorithms. Then, the network interface uses the predictions

to establish the links to its final message destinations.

As stated above, the predictors would execute on the communication assist of each
node of the parallel machine, and predict the message destinations for communications
originating at the node on which they reside based on the past history of communications.
In Cycle-based predictors (Single-cycle, Single-cycle2, Better-cycle, and Better-cycle2),
predictors do not need any help from the compiler or programmer. However, as stated ear-
lier, in Tag-based predictors (Tagging, Tag-cycle, Tag-cycle2, Tag-bettercycle, and Tag-
bettercycle2), predictors require an interface to pass some information from the program

to the network interface. With a simple help from the programmer or compiler, this can be
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done through insertingre-connect (taginstructions in the program well above each spe-
cific send communication operation but evidently after the previous send communication

operation.

Determining when to perform the path setup action (reconfiguration phase) is quite
simple. Basically, predictors should map the prediction into the path setup action when the
previous communication has terminated. Thus, as soon as the previous message transmis-
sion is complete, the communication assist reconfigures the link to the next message desti-
nation. It is clear that upon a mis-prediction, the on-going reconfiguration which is not
correct and may or may not be completed by the time of the mis-prediction due to a
shorter inter-send computation time (to be discussed in Chapter 4) immediately stops and

a new reconfiguration takes place.

3.7 Summary

Interconnection networks are still a source of bottleneck for high performance com-
munications in massively parallel environments. In this chapter, | introduced a reconfig-
urable interconnection network that could alleviate the communication problems in such

environments.

In order to benefit from such interconnects effectively, reconfiguration delay should be
hidden. For this, | analyzed the communication properties of some parallel applications in
terms of communication frequency and message destination distributions. Using classical

memory hierarchy heuristics, | found that message destinations display a form of locality.

Having message destination locality in parallel applications, | proposed a number of
predictors that can be used to accurately predict the message destination of the subsequent
communication request. The proposed predictors would execute on the communication
assist of each node of the parallel machine. The performance of the proposed predictors,
especially Better-cycle2 and Tag-bettercycle2, are very good and they could effectively
hide the hardware communication latency by reconfiguring the communications network

concurrently to the computation.
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For these predictors to be used efficiently, | shall argue, in Chapter 4, that at least in the
application benchmarks studied, there is enough computation preceding a communication

request such that the predictors could effectively hide the reconfiguration cost [4,3].
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Chapter 4

Reconfiguration Time Enhancements Using Predictors

To reconfigure the optical interconnect concurrently to the computation, or to spectula-
tively setup the path in electronic interconnects, two conditions are necessary: (1) An
accurate prediction of the destination; (2) Enough lead time so that the reconfiguration of
the interconnect (or the path setup phase) be completed before the communication request

arrives.

In Chapter 3, | utilized the message destination locality property of parallel applica-
tions to devise a number of heuristics that can be used to “predict” the target of subsequent
communication requests. This technique, can be applied directly to reconfigurable inter-
connects to hide the communications latency by reconfiguring the communication net-

work concurrently to the computation.

| present the pure execution times of the computation phases of the parallel bench-
marks on the IBM Deep Blue machine at the IBM T. J. Watson Research Center using its
high-performance switch under the user space mode. This chapter contributes by arguing
that by comparing the inter-communication computation times of these parallel bench-
marks with some specific reconfiguration times, most of the time, we are able to fully uti-
lize these computation times for the concurrent reconfiguration of the interconnect when
we know, in advance, the next target using one of the proposed high hit-ratio target predic-

tion algorithms introduced in Chapter 3.

In this chapter, | first show the distribution of message sizes of the applications in Sec-
tion 4.1. In Section 4.2, the pure inter-send computation times of the parallel applications
on an IBM SP2 machine is presented. | present the performance enhancements of the pro-
posed predictors on the application benchmarks for the total reconfiguration time in Sec-
tion 4.3. In Section 4.4, | discuss how the predictors at the send side affect the receive side

of communications. Finally, I conclude this chapter in Section 4.5.
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4.1 Distribution of Message Sizes

The volume of communications is characterized by the number of messages, and the
distribution of message sizes in the applications. | presented the number of messages in
Chapter 3. In this chapter, | am particularly interested in the distribution of message sizes
in the applications. In Section 4.3, | use the size of messages in the applications to calcu-
late the message transfer delay time. Figure 4.1 through Figure 4.4 illustrate the distribu-
tion of message sizes of all applications under different systems sizes. The MG,
PSTSWM, SP, and BT applications use more distinct message sizes in their communica-
tion calls than the other applications. The CG, LU, and QCDMPI use a few number of dis-

tinct message sizes.

4.2 Inter-send Computation Times

In Section 4.3, | shall examine the effectiveness of the proposed predictors. | shall
guantify the ability of the proposed predictors in hiding the reconfiguration delays. For
this, | need to know the pure computation times between any two send communication

operations.

| did experiments on a fast machine to establish the inter-send computation times and
the effects of the heuristics on the total reconfiguration delay. | used the IBM SP2 Deep
Blue machine at IBM T. J. Watson Research Center, a 30 node machine with 160 MHZ
P2SC thin nodes, 256MB RAM and a second generation high performance switch and ran
the suite of applications, one process on each node under the user space mode, when | was
the only user of this machine. This avoided any task switching that might have affected my
measurements. My measurements determined a lower bound artéhsendcomputa-
tion times (i.e. the time devoted to computation between any two send communication

call).

| excluded all timing overheads in the profiling codes to compute the execution times
of the computation and communication phases of the parallel application benchmarks. The

inter-send computation measurements excluded any overhead associated with any other
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communication primitives (e.g. receive communication call, collective communications).
Thus it can be considered as a lower bound on the pure computation time. In Appendix A,

| explain how the pure inter-send computation times have been computed.

The temporal attribute of inter-send computations in parallel applications characterizes
the rate of computations. The inter-arrival times of the computation time can be used to
obtain the amulative distribution functiofCDF) of the computation times. The CDF of
the computation times can then be used for curve fitting to generate the inter-arrival times
of computation times for simulation purposes. Figure 4.5 presents the cumulative distribu-
tion function of the inter-send computation times for node zero of the applications (16
nodes for CG, MG, and LU; 25 nodes for BT, SP, PSTSWM, and QCDMPI). Note that |

have found similar cumulative distribution function plots for other system sizes.
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Table 4.1 shows the minimum pure inter-send computation times of the applications
under different system sizes. Note that LU, MG, and CG run only on a power-of-two num-
ber of processors. The inter-send computation times for the CG (4 nodes) and QCDMPI
application benchmarks are quite large while all other applications have a minimum of

less than 23 microseconds pure computation times.

Table 4.1:Minimum inter-send computation times (microseconds) in NAS
Parallel Benchmarks, PSTSWM, and QCDMPI when 4, 8, 9, 16, and 25

4 nodes © firn;(.jr’essp) 16 nodes 25 nodes
BT (W) 4.161 4.161 4.161 4.161
BT (A) 4.576 4.472 4.472 4.889
SP (W) 4.161 4.161 4.161 4.161
SP (A) 4.784 4.472 4.472 4.576
LU (W) 9.568 8.216 8.112 ---
LU (A) 22.568 12.688 13.519
MG (W) 6.344 5.720 5.928 ---
MG (A) 7.592 7.176 6.760 ---
CG (W) 407.99 6.864 7.384
CG (A) 829.92 7.176 6.657 ---
PSTSWM 7.176 6.240 6.032 16.639
QCDMPI 1392.352 695.344 353.080 193.127

IBM Deep Blue uses a state-of-the-art high performance CPU, Power2-Super (P2SC)
microprocessor, in its nodes. The nodes are interconnected via an adapter to a high perfor-
mance, multistage, packet-switched network for interprocessor communications. | am
interested in having a rough comparison between the pure inter-send computation times of
the applications running on such powerful machines and the current state-of-the-art recon-
figuration delay associated with optical interconnects. Researchers in optical engineering
are using different approaches to design reconfigurable interconnects [103, 81]. In [103],

the authors report a 25 microseconds reconfiguration delay for their experimental recon-
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figurable interconnects. Based on these reports, | compare the pure computation times of
the application benchmarks with 25 microseconds reconfiguration time, and with reconfig-
uration times of 10, 5, and 1 microseconds as a measure of future advancements in the
area of reconfigurable interconnects. Figure 4.6 presents the distribution of the inter-send
computation times on different applications when the computation times are more than 5,

10, 25 microseconds and the number of processors is 4, 8 or 9, 16, and 25.

Examining the distribution of the inter-send times, revealed that they are quite widely
distributed. All applications have nearly 100% inter-send computation times that are
greater than 5 microseconds. For the BT, SP, LU, MG, and CG (except 4 nodes) applica-
tion benchmarks, between 60% to 80% of the computation times are above 25 microsec-
onds. The PSTSWM and QCDMPI application benchmarks have nearly 100% inter-send
computation times that are greater than 25 microseconds. It is evident that the majority of
the reconfigurations can proceed in parallel with the computation and be readied before
the end of the computation. For the cases where the computation time is not sufficiently
long to completely hide the reconfiguration it effectively reduces the reconfiguration cost

by the corresponding length of time.

4.3 Total Reconfiguration Time Enhancement

| assume a multicomputer with nodes similar to the thin nodes of an IBM SP2 system
but with a reconfigurable optical interconnect which has a reconfiguration déthy 1,
5, 10, 25 microseconds). It is interesting to see the effectiveness of the proposed predictors
on such a multicomputer system. Specifically, | shall quantify the ability of the proposed
predictors in hiding the reconfiguration delays. For the calculations used to quantify the
reconfiguration hiding capabilities of the predictors, | use the lower bound of the inter-

send computation times.

Figure 4.7 illustrates different scenarios for message transmission in the multicom-
puter with the reconfigurable optical interconnect. Note that as soon as a send call is
issued, the message can be sent to the destination if the link is already established. Recon-
figuration is started as soon as the message is delivered to the destination. Thus, the

message_transfer_deléthe delay associated with the transfer of a message) reduces the



72

4 Nodes (W class for NAS) 4 Nodes (A class for NAS)

[%] [%]
Q Q
£ £
= =
o e
o o
@ 100 == ml AOE BEE EEE 1 ‘@100F _ == =i AOE BEE EEE 1
] _ _ ]
=} ™ =}
Q. Q.
£ 8o 1 £ 8o 1
o o
O O
G 60F j 5 60k i
(9] (9]
j=2} j=2}
8 a0p Bl 8 40t 4
c c
Q Q
=4 =4
o 201 1 @ 201 R
o o
51025 51025 51025 51025 51025 51025 51025 51025 51025 51025 51025 51025 51025 51025
BT sP LU G CG PSTSWM QCD BT sP LU G CG PSTSWM QCD
8 Nodes (9 nodes for BT, SP; W class for NAS) 8 Nodes (9 nodes for BT, SP; A class for NAS)
[%] [%]
Q Q
£ £
= =
c c
i=] i=]
S 100 = = = e e 1 S 100F _ T = e e 1
S = s -
> ™ >
Q. Q.
€ sof 4 £ 8ol i
o o
O O
S 6of ] ‘G 60 i
(<] (<]
[=2] [=2]
8 ao0p 1 8 ao0p 1
= =
[} [}
<4 <4
o 20f E o 20f E
o o
51025 51025 51025 51025 51025 51025 51025 51025 51025 51025 51025 51025 51025 51025
BT SP LU MG CG PSTSWM QCD BT SP LU CG PSTSWM QCD
16 Nodes (W class for NAS) 16 Nodes (A class for NAS)
[%] [%]
Q Q
£ £
= =
c c
o o
@ 100 — ml ml ml (T P et e R @ 100F — == ml ml (T P et e R
i - i
=} =}
Q. Q.
£ 8o 1 £ 8o 1
o o
O O
G 60F j 5 60k i
(9] (9]
j=2} j=2}
8 a0p Bl 8 40t 4
c c
Q Q
=4 =4
o 201 1 @ 201 R
o o
51025 51025 51025 51025 51025 51025 51025 51025 51025 51025 51025 51025 51025 51025
BT sP LU MG ~ CG PSTSWM QCD BT sP LU G CG PSTSWM QCD
25 Nodes (W class for NAS) 25 Nodes (A class for NAS)
[%] [%]
Q Q
£ £
= =
c c
i=] i=]
PR - — M T 100F — — M
S S
> >
Q. Q.
£ sof 4 £ sol i
(=] (=]
O O
S 6of ] ‘G 60 i
(<] (<]
[=2] [=2]
8 ao0p 1 8 a0t 1
= c
[} [}
<4 <4
o 20f E o 20f E
o o
. . . o . . .
5 10 25 5 10 25 5 10 25 5 10 25 5 10 25 5 10 25 5 10 25 5 10 25
BT SP PSTSWM QCD BT SP PSTSWM QCD

Figure 4.6: Percentage of the inter-send computation times for different benchmarks
that are more than 5, 10, and 25 microseconds Whed, 8 or 9, 16, and 25.
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amount of time available before the next send call is issued. For this, | subtract the
message_transfer_del&ipr the specific message size) from the corresponititeg-send
timeand call the remaining time, trevailable_time This allows me to compute the lower
bound of the times that can be hidden. For em&ssage_transfer_delaglculation, | use

the corresponding message size and a one Gigabyte per second communication channel.

If the available_time is greater than zero as in Figure 4.7(a) (that is the
message_transfer_delay less than the correspondimgter-send timg and it is more
than thereconfiguration_delayhen a correct prediction would help completely hide the
reconfiguration_delg If the available_times greater than zero as in Figure 4.7(b) but it
is less than theeconfiguration_delayhen part of theeconfiguration_delagqual to the
available_timecan be hidden. However, if thavailable timeis less than zero as in
Figure 4.7(c) (that is thenessage_transfer_del&ygreater than the correspondimger-

send timg then prediction would not help.
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Figure 4.7: Different scenarios for message transmission in a multicomputer with a
reconfigurable optical interconnect (a) when the message_transfer_delay is less than the
inter_send time, and the available time is larger than the reconfiguration_delay (b) when
the message_transfer_delay is less than the inter_send time, and the available time is less

than the reconfiguration_delay (c) when the message_transfer_delay is larger than the
inter-send time

The algorithm used to obtain the time spent in reconfiguring the interconnect with and
without applying the predictors is given by the following pseudocode. The
total_original_reconfigurations the sum of the reconfiguration delays encountered in the

applications’ run-time. Theotal _new_reconfiguratios the sum of the reconfiguration
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delays encountered in the applications’ run-time when predictions are used to hide them
with the inter-send computation times. Threconfiguration-ratio is the ratio of
total_new_reconfigurationvertotal original_reconfigurationlt is clear that the less this

ratio, the better is the predictor’s capability to hide the reconfiguration delay.

total_new_reconfiguration = 0.0;
total original_reconfiguration = 0.0;
for each inter_send_computation {
available_time = inter_send_computation - message _transfer_delay;
if (available_time < 0) {
total_new_reconfiguration += reconfiguration _delay;

total_original_reconfiguration += reconfiguration_delay;

}
else {
if (hit) then
if (available _time < reconfiguration_delay) then
total_new_reconfiguration += reconfiguration _delay - available time;
else;
else total new_reconfiguration += reconfiguration_delay;
total_original_reconfiguration += reconfiguration_delay;
}

}

reconfiguration-ratio = total_new_reconfiguration / total_original _reconfiguration

Figure 4.8 through Figure 4.11 illustrate tieeonfiguration-ratiq the average ratio of
the total new reconfiguration delay (after applying predictions) over the total original
reconfiguration delay for each application benchmark under two different CPU speeds and
four different reconfiguration delays. | present the results for two different CPU speeds:
one for the current P2SC thin nodes, and one for a 10 times faster CPU as a measure of
future CPUs. The results are shown for the best predictors, Better-cycle2 and Tag-
bettercycle2. In these figures, shorter bars are better. For the sake of completeness, | have

included the results for LRU, LFU, and FIFO heuristics under single-port modeling (recall
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Figure 4.8: Average ratio of the total reconfiguration time after hiding over the total
original reconfiguration time for different benchmarks with the current generation and a
10 times faster CPU wheh= 1, 5, 10, and 25 microseconds; A class for NPB, 4 nodes

(shorter bars are better)
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Figure 4.10: Average ratio of the total reconfiguration time after hiding over the total
original reconfiguration time for different benchmarks with the current generation and a
10 times faster CPU wheh= 1, 5, 10, and 25 microseconds; A class for NPB, 16nodes

(shorter bars are better)
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Figure 4.11: Average ratio of the total reconfiguration time after hiding over the total
original reconfiguration time for different benchmarks with the current generation and a
10 times faster CPU wheh= 1, 5, 10, and 25 microseconds, A class for NPB, 25 nodes
(shorter bars are better)
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that the LRU, LFU, and FIFO heuristics under single-port modeling predict the next desti-
nation to be the same as the previous message destination). It is clear that the Better-
cycle2, and Tag-bettercycle2 predictors outperform the LRU/LFU/FIFOF heuristics. The
Tag-bettercycle2 predictor improves the total reconfiguration delay better than the Better-
cycle2 predictor, especially when the number of processors is 4, or 9. Under the Tag-
bettercycle2 predictor, the majority of reconfiguration delays in the CG, MG, and LU
benchmarks can be hidden. Meanwhile, the reconfiguration-ratio for BT and SP decreases
from 0.4 to 0.18 when the number of nodes increases from 4 to 25. The QCDMPI has a
reconfiguration-ratio between 0.3 and 0.5. However, the PSTSWM application shows a
consistent reconfiguration-ratio of near 0.6 (except wiken4). It is also evident that the

ratios increase with a faster CPU for the same reconfiguration delay. However, the recon-
figuration delay time may also decrease in the future. In this respect, it is informative to
compare the bar graphs under different reconfiguration delays and processor speeds. From
the plots for BT, SP, QCDMPI, and PSTSWM, it seems that the reconfiguration delay is
not a factor. It means that either the inter-send computation times are so short that they
cannot hide the reconfiguration delays or they are long enough that they can hide large

reconfiguration delays.

In general, the results are consistent with the fact that we can hide most of the recon-
figuration delays using one of the proposed high hit-ratio predictors. Figure 4.12 shows a
summary of the average ratio of the total new reconfiguration delay over the total original
reconfiguration delay with the current generation and a 10 times faster CPU when apply-
ing the Tag-bettercycle2 predictor on the benchmarks fo25 microseconds, A class for

NPB, and under different system sizes.

4.4 Predictors' Effect on the Receive Side

It is interesting to discover the effect of applying the heuristics at the send side of com-
munications on the receiving sides and hence on the total execution time. Using one of the
high hit-ratio predictors reduces the total reconfiguration delay. When this happens at the

sender sides, most of the time the messages are delivered sooner at the receiver sides. If
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Figure 4.12: Summary of the average ratio of the total reconfiguration time after hiding
over the total original reconfiguration time with the current generation and a 10 times
faster CPU when applying the Tag-bettercycle2 predictor on the benchmarkis=nath
microseconds, A class for NPB, and under different system sizes

the receive calls have been issued after the message has arrived, there would be no gain.
However, if they are issued earlier, then there would be performance enhancement on the

receiving side and therefore on the whole execution time. This is shown in the Figure 4.13.

| have used the following strategy for discovering the number of times that the receive
calls are issued earlier than their corresponding send calls. | synchronized the timing
traces of each node of these applications. | have considered the times just before the send
and receive calls are issued. In case of blocking and non-blocking send calls, the time just
before the callsNIPI_SendandMPI_Isend have been taken into account. That is the time
that the message is ready to be sent over. For the blocking receiv®&dllRecy, | did
the same. That is the time that the receiver is ready to get the message. However, for the
non-blocking receive callMPI_Irecy), | consider the time when the wait caMPI_Waif)
is issued for the corresponding receive cBIR1_lIrec\). This gives us the worst case sce-
nario for the number of times the receive calls are issued before their corresponding send

calls.
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Figure 4.13:Heuristics effects on the receiving side

| present the average percentage of the times that the receive calls are issued earlier
than their corresponding send calls for the CG, SP, and PSTSWM benchmarks in Figure
4.14. The results are true fdr= 1, 5, 10, and 25 microseconds. LU and MG benchmarks
are usingMPl_ANY_SOURCID2] for some of their receive calls and hence one cannot
identify the sources of messages to compare with. What | have calculated is a lower bound
of the improvement. A trace-driven simulator should be written for the exact calculation of

the improvement.

4.5 Summary

In order to efficiently use the proposed predictors in Chapter 3 to hide the hardware
latency of the reconfigurable interconnects, enough lead time should exist such that the
reconfiguration of the interconnect be completed before the communication request
arrives. For this, | presented the distribution of execution times of the computation phases
of the parallel application benchmarks on an IBM SP2 machine. The results showed that
most of the time, we are able to fully utilize these computation times for the concurrent
reconfiguration of the interconnect when we know, in advance, the next target using one of

the proposed high hit-ratio target prediction algorithms.
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Figure 4.14: Average percentage of the times the receive calls are
issued before the corresponding send calls
| also presented the performance enhancements of the best predictors, Better-cycle2,

and Tag-bettercycle2, on the application benchmarks for the total reconfiguration time.

Finally, | considered the effects that using message destination predictors have on the
receiving sides of communications. | showed that up to 50% of the time applications
might benefit from the situations where they post early receive calls. However, A trace-

driven simulator should be written for the calculation of the improvement.

| did not evaluate the application speedup when using the predictors on the applica-

tions. Rough estimates point to minimal speedup gains. This is because the parallel appli-

: . : cgmmunication -
cations studied are very coarse-grained and hence R . ratio is small.
computation

Table 4.2 shows the communication to computation ratios for the applications under dif-

ferent system sizes. These applications have been written to avoid a lot of communications
between pair-wise nodes mostly because of the high communication latency in the current
generation of parallel systems [43], and partly because of the algorithms, themselves. As

shown in Table 4.2, the communication to computation ratio is increasing when the num-
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ber of nodes increases. This means that we might have better speedup for these applica-
tions for larger system sizes. However, the inter-send computation times may decrease and
thus reconfiguration delays cannot be hidden.

Table 4.2: Communication to computation ratio of the applications

4 nodes © f?):]g'jr’essp) 16 nodes 25 nodes
BT (W) 0.015 0.098 0.210 0.260
BT (A) 0.003 0.037 0.061 0.099
SP (W) 0.015 0.074 0.167 0.280
SP (A) 0.009 0.034 0.053 0.115
LU (W) 0.033 0.072 0.143
LU (A) 0.012 0.033 0.126 ---
MG (W) 0.096 0.088 0.171 ---
MG (A) 0.009 0.013 0.028
CG (W) 0.105 0.189 0.772 ---
CG (A) 0.052 0.089 0.264 ---
PSTSWM 0.055 0.114 0.277 0.5
QCDMPI 0.082 0.79 0.333 4.42

In this chapter, and Chapter 3 of this dissertation, | am particularly interested in the
point-to-point communications in parallel applications. In Chapter 5, | discuss efficient

collective communication algorithms for such reconfigurable interconnects.
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Chapter 5

Collective Communications on a Reconfigurable
Interconnection Network

Collective communicationare basic patterns of interprocessor communication that
are frequently used as building blocks in a variety of parallel algorithms. Proper imple-
mentation of collective communication algorithms is a key to the overall performance of

parallel computers.

Free-space optical interconnection is used to fashion a reconfigurable network. Since
network reconfiguration is expensive compared to message transmission in such networks,
latency hiding techniquesan be used to increase the performance of collective communi-

cations operations.

| present and analyze a broadcasting/multi-broadcasting algorithm [20] that utilizes
latency hiding and reconfiguration in the netwoRON (k, N), to speed these operations.
As the first contribution of this chapter, the analysis of the broadcasting algorithm includes
a closed formulation that yields the termination time. Secondly, | contribute by proposing
acombined total exchange algorithmased on a combination of tlgect[109, 120], and
standard exchangfr1, 24] algorithms. This ensures a better termination time than what
can be achieved by either of the two algorithms. Meanwhile, known algorithms for scatter-
ing and all-to-all broadcasting from the literature [40, 21] have been adapted to the net-

work.

5.1 Introduction

Communication operations may be eitlp@int-to-point as discussed so far, oollec-
tive, in which more than two processes patrticipate. The study of classical algorithms
brings up some generic communication patterns, collective communications, that appear

very often in parallel algorithms [70, 76]. Collective communications are common basic
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patterns of interprocessor communication that are frequently used as building blocks in a
variety of parallel algorithms. Proper implementation of these basic communication oper-
ations on various parallel architectures is a key to the efficient execution of the parallel

algorithms that use them, and hence, on the overall performance of the parallel computers.

Whether communication operations are programmed by the user (low-level routines),
contained in a library such as MPI [92, 93], drakrallel Virtual Machine(PVM) [115], or
generated by a compiler to translate high-level data parallel language sdHalhaRerfor-
mance Fortran(HPF) [85], their latency directly affects the total computation time of the
parallel application. The growing interest in collective communication operations is evi-

dent by their inclusion in the MPI.

Collective communication operations can be used for data movement, process syn-
chronization, or global operations, as shown in Figure 5.1. Data movement operations
include, broadcasting, multi-broadcasting, muticasting, scattering, gathering, multinode
broadcastingandtotal exchangeln broadcasting, a node sends its uniqgue message to all
other nodes. Broadcasting is used in a variety of linear algebra algorithms [76], such as
matrix-vector multiplication, matrix-matrix multiplication, LU-factorization, and House-
holder transformations. It is also used in database queries and transitive closure algo-
rithms. In multi-broadcasting, a node broadcasts a number of messages to all other nodes.
In multicasting, a special case of broadcasting, a node sends its unique message to a subset
of all the other nodes. In scattering, a node sends a different message to all other nodes. It
is basically used for distribution of data among the processors. Gathering is the exact
reverse of scattering. That is, a node receives a different message from all other nodes. |
will not discuss it here as a separate operation. In multinode broadcasting, all nodes send
their unique messages to all other nodes. In total exchange, all nodes send their different
messages to all other nod€&grsonalized communicatisiiscattering, gathering, and total
exchange) are used, for instance, in transposing a matrix, and the conversion between dif-
ferent data structures, or in neural network simulations. It is worth mentioning that the ter-

minology is not yet standard. For example, broadcasting is referrednago-all
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multinode broadcasting is referred @&to-all or gossiping scattering is referred geer-
sonalized one-to-alland total exchange is referredraslti-scatteringor personalized all-

to-all.

Barrier synchronizationis a type of process synchronization. It defines a logical point
in the control flow of an algorithm at which all members of the group must arrive before
any of the processes in the subset is allowed to proceed further. Therefore, one of the pro-
cesses plays the role of a barrier process. This process gathers messages of all other pro-

cesses, and then broadcasts a message to them indicating that they can continue.

Global operations includeeduction andscan In reduction, an operation suchssm
max min, is applied across data items received from each member of the groupNiti an
reductionoperation, the resultant data resides at the root node. Therefore, it contains a
gathering operation. In aN/N reductionoperation, every node or process involved in the

operation obtains a copy of the reduced data. Hence, it is a combination of gathering and

broadcasting. In scan operation, given procepges,, .. , P, and data itemsp, dy, ...,
d,, an operatiori] is applied such that the resulg L d, O ... O d; is available at the pro-

cessp;.

Collective operations have been usually proposed and designed for systems that sup-
port only point-to-point, owunicast communication in hardware. In these environments,
collective operations are implemented by sending multiple unicast messages. Such imple-
mentations are callednicast-basedAn alternative approach is to provide more direct
support for collective communication in the hardware. Two main approaches have been
studied. The first approach uses a network other than the primary data network to imple-
ment collective communications [80]. In the second approach, the data network is
enhanced to better support some collective communications. To improve collective com-
munication performance and reduce software overhead, two such enhancements to routers
have been proposemessage replicatioandintermediate receptiarMessage replication

refers to the ability to duplicate incoming messages onto more than one outgoing chan-
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Figure 5.1: Some collective communication operations
nels, while intermediate reception is the ability to simultaneously deliver an incoming
message to the local processor, and to an outgoing channel. Ni has proposed how scalable

parallel computers should support efficient hardware multicast [99].

Numerous works have been reported on collective communications. Excellent surveys
on collective communication algorithms store-and-forwardsystems can be found in
[53]. Another survey of broadcasting and multinode broadcasting in store-and-forward
systems can be found in [61]. Dimakopoulos and Dimopoulos have shown how total
exchange can be done in cayley graphs [41]. They have also presented collective commu-
nication algorithms on binary fat trees [42]. McKinley and his colleagues have surveyed
collective communications on hypercubes, meshes, and tarormhole-routechetworks
[90]. Recently, Banikazemi and others, have proposed efficient broadcasting and multi-
casting algorithms using communication capabilities of heterogeneous networks of work-
stations [15]. In the context of optical interconnection networks, Berthome and Ferreira
[20, 21] have presented broadcasting and multicasting algorithms for networkopsing

cal passive stargOPS). Comparative Study of one-to-many wavelength division multi-
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plexing (WDM) lightwave interconnection networks, based on hypergragh theory [18],
have been studied by Bourdin and his colleagues [25]. Gravenstreter and Melhem have
presented some communication algorithmgpanrtitioned optical passive starfOPS)
networks [59].

In this chapter, | present and analyze some collective communication algorithms for
the reconfigurable networRON (k, N) defined in Chapter 3. In Section 5.2, | describe the
communication modeling. | present and analyze broadcasting [20], and multi-broadcast-
ing algorithms that utilize the reconfiguration capabilities of the network in Section 5.3.
Later on in Section 5.5 and Section 5.6, known algorithms from literature for scattering
and multinode broadcasting [20, 40] are adapted to the network. Then, | propose a new
algorithm for total exchange operation, to be caltedhbined total exchange algorithim

Section 5.7. Finally, | summarize this chapter in Section 5.8.

5.2 Communication Modeling for Broadcasting/Multi-broadcasting

As discussed in Chapter 3, | use a modified Hockney’s communication model [66]. |
modify the Hockney’s model into two models. In this section, | define the first model as
used for hiding the reconfiguration delays in broadcasting and multi-broadcasting algo-
rithms. In Section 5.4, | define the second model for other collective communication algo-
rithms. The second model supports combining messages into a single message as used in
scattering, multinode broadcasting, and total exchange algorithms, to be discussed later.
Note that these algorithms are efficient but they do not hide the reconfiguration delay in

the network.

The communication time to send a unit length messgge, , from one node to another
in the network is equal td = d+ t,+ 1,1 . lincorporate bath  ahgd into a single
message delayt,, = t;+1, 1 . Thus, a unit length message transmission takes
T = d+t,,. For the remaining of the discussion, and without loss of generality, | shall
assume that, = 1 for a message of fixed length used in broadcasting/multi-broadcast-

ing.
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Culler and his colleagues have proposedltbgP model [33] which uses another ter-
minology for communication modeling. LogP models sequences of point-to-point com-
munications of short messagésis the network hardware latency for one-word message

transfer.O is the combined overhead in processing the message at the segdand
receiver ¢,). P is the number of processors. The gapis the minimum time interval

between two consecutive message transmission from a processor. Alexandrov and others
have proposed theogGP model [8] which incorporates long messages into the LogP
model. The Gap per byte for long messagesis defined as the time per byte for a long
message. Bar-Noy and Kipnis have developedpbstal model[16], a special case of

LogP model, wherg is one. However, they don't consider the parametersdG.

A node in LogP, LogGP, and postal models can send another message immegliately
time after the previous message has been sent without waiting for the previous message to
be delivered at the destination. These models are more suitable for the current state-of-the-
art wormhole-routed networks where messages can be pipelined through the network.
However, a node in my communication modeling can send another message only after its
previous message has been delivered and its link has been reconfigured (if needed). This is
because my model is glephone-like moddbased on the circuit-switching technique

which is suitable for reconfigurable optical networks.

The model that | have used is slightly different from the model that is offered in [20,
21, 40]. The difference lies in the fact that in the netwdRKQN (k, N) only the sender is
allowed to reconfigure, and hence the delay penalties occur there. The receiver, in contrast

to the models in [21, 40], and in [20] is entirely passive.

| use the notation8,,, MB,,, S, G, TEy, for broadcasting time, multi-broadcasting
time, scattering time, multinode broadcasting time, and total exchange time, respectively.
| derive time complexities of collective communication algorithms in the network,
RON (k, N) under the modein, wherem O { F1, Fk} .F1 stands for full-duplex, single-

port communication. Whileésk stands for full-duplexg-port communication.
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5.3 Broadcasting and Multi-broadcasting

In this section, | shall concentrate in techniques that could effectively hide the recon-
figuration delayd in the network. By reconfiguration latency hiding, | mean the process in
which while some nodes are in their reconfiguration phase, other nodes are in their mes-
sage transmission phase. Hence, the reconfiguration phase is overlapped with the message
transmission phase which ultimately reduces the broadcasting and multi-broadcasting

times.

5.3.1 Broadcasting
In broadcasting, a node, assuming nogevithout loss of generality, sends its unique

message to all other nodes. | assume an unbounded number of available wavelengths for
the system. As noted earlier in Chapter 3, techniques such as spread-spectrum can be used
in case of limited number of available wavelengths. In the following, | first discuss the
broadcasting algorithm und&sport modeling, and then present the results for the single-

port modeling.

K-port: The naive algorithm is to let the broadcasting nogenform k new nodes at a

step. Clearly, it takegd + 1)['\'7_1—‘ time units. In a more efficient algoritBi,, node

N sends the messagekother nodes and the&eodes, upon receiving the message, send
it to k other nodes each, which are distinct from the nodes that have received the message

thus far. Continuing this way, the algorithm will terminate ai]fdzcngk(N(k— 1) + 1)"| -1

steps, while in terms of elapsed time, the algorithm will take

(d+1)([log,(N(k—=1) + 1) |- 1) time units.

Obviously, one can do better than this if one allows the nodes that have already been
informed, to re-send the same message to a different group of nodes. Thus, starting with

noden,, it sends the message konodes. At the end of this stek,+ 1 nodes possess the
message which they now sendkother nodes each. Proceeding this way, this algorithm,
B2, will terminate after[log, , ;N| steps and will required + 1)[ log, , ;N'|  time

units.
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The above algorithm®3 1, andB2, are logarithmic in time, but they suffer because

of the large reconfiguration delagl, that each node incurs. | am interested in devising
algorithms that will overcome the existence of the large reconfiguration delays by essen-

tially hiding it. The algorithmB1g, can be improved if the configuration of all the links

forming the tree proceed in parallel. Hence, in this new algoritB8g,, the broadcasting

message would reach the leaves of the tree indimﬁlogk( N(k—1) + 1)'| -1

The algorithmB2¢, can be improved if the configurations can take place concurrent to
the message transmissions. | adopt a greedy algoriB#y, where a node reconfigures
its links to reachk children which lead to gpre-configuredtree of an appropriate
O(log,N) depth. As soon as the broadcasting node has finished sending its message, it
reconfigures its links to reach another predefined tree. It is understood that while this node
is reconfiguring (this taked steps time units), nodes that have already been configured

and are in possession of the message sendkingighbors each. This process repeats at

each node every time it sends the message. Potentially, the message, startingrgt node

d+1
d k

will reach 1+ k+ K + ... +k% = k—Il nodes before nodg be able to reconfigure.

Figure 5.2 depicts thB4g, algorithm for a 2-port network with 41 nodes and a reconfigu-

ration delay of 1. This algorithm is optimal since a node after sending/receiving the mes-
sage immediately reconfigures to send the message to a new node. This algorithm is
similar to the broadcasting algorithm by Berthome and Ferreira for their loosely-coupled
optically reconfigurable parallel computer, ORPC (kising optical passive stars (OPS)
[20].

It is clear that either this broadcasting network is a dedicated network, or there exists a
global control where nodes understand that a broadcasting is going to take place and hence
they reconfigure their links correspondingly. In the latter case, an early reconfiguration

delay should be added to the broadcasting time.
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14 15 16 12

32Y3 4 37 39

Figure 5.2: Latency hiding broadcasting algorithm fRON (k, N), N=41,k=2,d=1

5.3.1.1 Analysis of the Greedy Algorithm
Before presenting the analysis of the greedy algorithm, it is worth noting that it can be
shown that the total number of nod@¥,S), informed up to stef® follows the recurrence

relations:

= 1 for S=0
N(S) = E KN(S-1)+1 for S< d+1 (5.1)
0 KN(S-1) + N(S—d-1) for S>d+1

It can also be shown that the number of nod€S), that receive the message at each

step,S follows the recurrence relations:

[(S) = E kN(S-1) for S< d+1 (5.2)
OKN(S-1)+N(S-d-1) for S>d+1

These recurrence relations are a kind of generalization of the Fibonacci functions
defined by Bar-Noy and Kipnis for the postal model [16], and are similar to the recurrence
relations of the broadcasting algorithms by Berthome and Ferreira [20]. The above rela-

tions and those in [16, 20] cannot be solved for a gergerahey should be computed step
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by step or be given in a table in order to find the termination time of the algorithms. How-
ever, as will be shown in the following, the analysis of the broadcasting algorithm includes

a closed formulation that yields the termination time.

| present another approach to find a closed formula for the total number of iN{&gs,
up to the stefs. The problem | shall endeavor to solve is to find the time required for the
greedy algorithm to complete. | shall approach the analysis constructively, that is, | shall
find the number of nodes that will be informed as time progresses, and | shall stop when

all nodesN have been informed.

Denote bySthe termination time (in units df,)). Then starting from an arbitrary node
Ng, the nodes that will be informed and assuming no reconfiguration, belongaoyeree

Kriog

w_1 nodes in this tree, and | shall

rooted at nod@g and of deptls There areN,; =

reference them as belonging to the first generation. Each of the nodes in this tree, once it
has broadcast the message to its own children, will reconfigure and will become the root of

a new tree over which a new wave of broadcasting will commence and proceed concur-
rently with the broadcasting in the first generation tree. This can only hapigs d+ 2
ensuring that the first node to be reconfigured (nggevill have enough time to reconfig-

ure and broadcast to kschildren.

| shall refer to the nodes belonging to the trees rooted at nodes which were included in

the first generation tree and reconfigured, as the second generation nodes. Thung, node

can send its message again at tuirvel after its router has been reconfigured to connect to

a set ofk new nodes. By sending this new messagectually embeds a nelwary tree at
depthd + 1. The nexk nodes at depth 1 of the first generation of trees enkaditferentk-
ary trees at depttl + 2. Using this concept, tHe>" d-2nodes at deptB- d - 2 of the first
generation embed the ldst~ 9 2 different trees at deptB - 1 in the second generation.
Figure 5.3 depicts the embedding of the first two generations of the nodes.

Denote byN, the total number of new nodes in the second generation, amd biye

total number of new nodes in the trees of the second generation rooted at depth
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Figure 5.3: First and second generation trees. The numbers underneath
each tree denote the number of trees having the same height. These trees are
rooted at nodes that were at the same level in the first generation tree.

Therefore,

S—(d+1) _ K59k

2
My,; = k+K +... +K 1 (5.3)
S-d 2
My, , = k(k+ K+ .. +k5(@*2) = K - ‘1" (5.4)
S-d 3
My, = Ko(k+ K+ +k5 (43 = K k_‘lk (5.5)
This continues until deptB- 1 where:
S-d [ S-d-1
S-d-2 k™ -k
Ms_1 =K (k) = 1 (5.6)
Therefore, the total number of new nodes in the second geneidgjoml be:
S-1 S- d—lks_d kj
N2 = z Mi = Z W (57)

i=d+1 i=1
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The process of reconfiguring the optical interconnects continues by the nodes as soon
as they have broadcast the message to their children. Each generation of trees embeds a

new generation that commences at deppth 1 from its parent generation. It is clear that

the total number of generations[igs_l—‘
+

Let us now count the total number of nodésgin the third generation. The first tree of
the third generation is embedded at deptth 2(1) by ng. | begin with those trees of this

generation which are embedded by the nodes of the first tree in the second generation. Let

1 .
Qi denotes the total number of nodes in these trees rooted at.depth

Therefore,
S-2d-1
1 2 S—2(d+1 k -k
Qaasyy = kKt +kEHITH = £ (5.8)
S-2d-1 2
1 2 S-2(d+1)-1 K -k
Qo er = Kkt KB 4k ST2ID = X =% (5.9
S-2d-1 3
1 2 2 S—2(d+1)-2 k -k
Q2(d+1)+2 = k'(k+K +... +k (d+1) ) = —T (5.10)
This continues until the dep8+1 where:
S-2d-1 [S-2d-2
Qs_; = K73k = K —K (5.11)

k—1
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Now, consider trees embedded in the third generation by the nodes of thie tress
at depthS- d - 2 in the second generation, and @I% denotes the total number of nodes in
these trees rooted at deptiherefore,

2 2 S—2(d+1)-1 KS~2d-1_2
Q2(d+1)+l = k(k+ K+...+k ) = —k—l (5.12)

2 2 S—2(d+1)-2 529713
Qa+1)+2 = k(k(k+ K +... +k )) = k-1 (5.13)

2 2 2 S—2(d+1)-3 KS-20-1_ A
Qoa+1)+3 = K(K(k+ Kk +... +k ) = T (5.14)

This continues until the dep8r- 1 where:

2 S—2d_4 kS—Zd—l_kS—Zd—Z
Qs-1 = k(K (k) = 1 (5.15)

| continue with the trees embedded in the third generation by the nodes of thie next

trees of deptts- d - 3 in the second generation, and [@f denotes the total number of

nodes in these trees rooted at depifherefore,

3 2 2 S—2(d+1)-2 KO24-1_ 3
Qaa+1y+2 = K(K+ K +... +k ) = T (5.16)

3 2 2 S—2(d+1)-3 K572y A
Qoa+1)+3 = K (k(k+ K +... +k ) = (5.17)

3 2,2 2 S—2(d+1)—4 K521 8
Qoa+1)+a = K(K(K+K +... +k )) = S — (5.18)
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This continues until the dep8r- 1 where:

S-2d-1 ,S-2d-2
S-2d-5 k k

3 B —
(k) = (5.19)

Qs_; = Kk

The process of generating trees in the third generation continues up to the trees embed-

ded at deptlS - 1, by the nodes of the trees in the second generation, rooted at depth

S-d-2. Lethz id -2 denotes the total number of nodes in these trees. Therefore,
S-2d-1 ,S-2d-2
S-2d-2 S-2d-3 K -k
Qs-1 ~ =k (k) = 1 (5.20)

Now, | am at the stage to sum the number of nodes at each depth in the third genera-

tion. Let Qi denotes the total number of nodes of the trees in the third generation rooted at

depthi.
Therefore,
S—2d-1
k -k
Qo+1) = k=1 (5.21)
(S-2d-1_ 2
Q2(d+1)+1 = 2—k—1 (5.22)
S-2d-1 3
k -k
Qa+1)+2 = 3 w—1 ' (5.23)
(S-2d-1_ 8-2d-2

Qs_1 = (S-2d-2) (5.24)

k—1
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Hence, the total number of the new nodes in the third generiijowill be:

S-2d-2 | s-2d-1
—kj[]

i=2(d+1) ji=1

In a similar manner, | can compute the number of nodes for the fourth and fifth gener-

ations as:
S-3d-3 S—3d- 2 j
i +1)d< KD
Na= 2 75 k-1 O (5:26)
j=1
S— S-4d-3 j
_ J(J +1)(] +2)rK K0
Ny = z T T o (5.27)

ji=1
This process implies lemma 1.

Lemma 1 The number of new nodes in generaiienl, i > 1 can be found as:

N B i(d+l)|j+i_ZDj(S_i(d+l)+l—ij
i+1 - Z Oj-q M k-1 H

(5.28)
j=1

Proof. | give a combinatorial argument for its validity. Assume a tree belonging to
generation -1 and rooted at depth {1)(d + 1). This tree will produce a number of trees
(S—id+ 1]

k—1

sents the number of new nodes in the first tree of generatmoted at deptid + 1). Sub-

belonging to generationand rooted at deptifd + 1). The term repre-

sequent trees in this generation, have a decreasing (by one) number of levels, but since
they were produced by nodes that are at lower levels in the parent generation, their num-
bers grow with the power d&. Therefore, the number of nodes within all the trees at each
i(d+1)+1 kj

k—1

level, remains the same and equalftc
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| have however accounted for the number of trees produced by a single tree in a parent

generation. There is more than one tree of identical depth in the parent generation, and the
multiplicative term%l T'_IZE accounts for this number based on the Pascal’s triangle
[27]. |

The total number of nodes in all generatidW), informed up to stef,is equal to:

N(S) = N+ N2+...+N( , or (5.29)

i}—l
a+1

S _|-1
S+1 (dﬂ} S—i(d+1) . . S—i(d+1)+1
_k -1 0+i—-2rK -k
NS = ===+ Zl Zl Oi-1 0 k=1 (5.30)
= j=

Note that Equation 5.30 is a closed formula and easier to compute (less computation
and memory requirements) than the recurrence Equation 5.1, and Equation 5.2. To deter-
mine the termination timé& one has to solve Equation 5.30 f8r This equation can be
solved numerically. Table 5.1 and Table 5.2 provide a comparison of some numerical

examples for the broadcasting time under different broadcasting algoriBitag, B2,
B3r«, B4y, and for the best cadeg, , 1N when there is no reconfiguration delag (i.e.

= 0), for a particular number of nodds, reconfiguration delay), and port modelings. It
is quite clear that the latency hiding algorithB¥g,, performs better than the other algo-

rithms.

Table 5.1:Broadcasting time&k=2,d =1

N Blre | B2rk | B3rk | B4rk | [10gy 4N
99 12 10 7 5 5
1393 20 14 11 8 7
19601 28 18 15 11 9
114243 32 22 17 13 11
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Table 5.2:Broadcasting timek=4,d =3

N Blry | B2rc | B3¢ | B4p | [logy, N

85 12 12 6 3 3
1369 24 20 9 5 5
22703 32 28 11 7 7
88633 36 32 12 8 8

Single-port In this case, a node can only use one of its links. Therefore, instdad of
ary trees, linear arrays are embedded. Hence, using the same concept &spartimaod-

eling, the total number of nodes for generations 1, 2, 3, 4 are:

N, = S+1 (5.31)
S-d-1
Ny = 5 S-d-j (5.32)
i=1
S—2(d+1)
Ng= F  j(S-2d-1-)) (5.33)
=1
S—3(d+1) . .
+1 .
N,= Y %(s—sd—z—n. (5.34)

=1

If I continue in a similar manner to theport modeling, then the total number of nodes

in all generationd\(S), would be:

(dTSJ_lS—i(d+1)_ _
N =S+1+ 5 Y %‘TLEZEFS—i(d+1)+1—j) (5.35)
i=1  j=1
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Table 5.3 provides a comparison of some numerical examples for the broadcasting

time of the latency hiding algorithnmBg,, of the spanning binomial algorithnj114],
(d+ 1)|'IogZN"| , and for the best cadeg,N  when there is no reconfiguration delay (i.e.

d = 0), for a particular number of node¥, and reconfiguration delag, It is clear that the

algorithm,Bg4, performs better than the spanning binomial algorithm.

Table 5.3:Broadcasting timeg = 3

N (d+1)[log,N| | Bpg [1og,N |
69 28 12 7
1252 44 21 11
8657 56 27 14

82629 68 34 17

5.3.1.2 Grouping schema

The total number of nodebl(S) informed up to stefis given as Equation 5.1. Mean-
while, the number of nodes(S), that receive the message at each stap defined as
Equation 5.2. The nodes are divided into two groups. The group that has already received
the message and the one that has not. The nodes that know the message at any give step
can be grouped into those nodes that have already received the message and those that
receive at this time step. The nodes that receive at each step, is propotitinag) to
the number of nodes that have received the message at the last step and those that have

sent the messagk+1  steps ago.

The same grouping schema as in [20] can be used to find the set of nodes that transmit
the message, and the set of the nodes that receive the message at any given step. The set
T(S)consists of the nodes transmitting the message at step S. While, fR€S3ebnsists
of the nodes that receive the message at step S. These two sets can be found by Equation
5.36. Note that the same grouping schema can be applied to the multi-broadcasting case to

be discussed in the next section.



102

0 T(0) = 0
FR(S = {N(S=1) +1, ..., N(9} (5.36)
HT(9 = T(S- d-1) OR(S-1)

5.3.2 Multi-broadcasting

If there areM messages to be broadcast by a node to all other nodes, the simplest algo-

rithm is to use the above latency hiding broadcasting algoritiB¥s,( or Bg;) M times in
sequence. This algorithm, denote itlNB1, gives an upper bound for multi-broadcasting

and takesM x (d + B4g,) , andM x (d + Bg;) time units undesport and single-port

modeling, respectively. A lower bound for multi-broadcastiNg-1 + MB,, MB(,is the

broadcasting time for an optimal algorithm), can be achieved by pipelining the messages

through the network. That is, nodg sends its M messages in sequence in an optimal

broadcasting algorithm.

One may think of another algorithiv|B2g, where the first message embeds a broad-
casting tree (first generation tree) rooted at nipgld€each of the subsequent messages use
this embedded tree to broadcast thus bypassing the reconfiguration costs that the first mes-
sage incurred. Hence, the first message will incur a delayﬁo([logkN( k—1) + 1"| -1)
time units to broadcast over &l nodes and to embed the broadcast tree, while the second

and subsequent messages would only incur a broadcast deFagg%N(k— 1)+ 1"| -1

each. Therefore, the total cost is

MB2g = d+ M([logN(k—1) +17-1) (5.37)

Table 5.4 compares the two algorithM81-x andMB2-. Note that an optimal algo-

rithm for multi-broadcasting is to be devised such that messages are pipelined through the

embedded trees using the latency hiding broadcasting algoriB#gs ¢r Bgq).
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Table 5.4: Multi-broadcasting timek=4,d =3,M = 10

N | MBlg, | MB2g

85 60 33

1369 80 63
22703 | 100 83
88633 | 110 93

5.4 Communication Modeling for other Collective Communications

In this section, | define the second communication modeling used for scattering, mult-
inode broadcasting, and total exchange algorithms. This model supports combining mes-
sages into a single larger message as used in these algorithms. Note that the algorithms for
scattering, multinode broadcasting, and total exchange are quite efficient but they do not

hide the reconfiguration delay in the network.

As stated in Section 5.2, the communication time to send a unit length message from

one node to another in the network is equallte= d+ t,+1,1 . Without loss of general-

ity, | normalize the timeT with respect tol ;1 . Thus, a representative length message
transmission take§ = d+ t,+1 . The communication time to senMaepresentative

length message from one node to another wouldbe d+ t,+ M . Note that, sending a
combined message (that is a larger message) does not affect the start-up time, , and the

reconfiguration delayd. For simplicity, | incorporate both, and into a single message

delayd = d+t, .

5.5 Scattering
The scattering operation, is used basically to distribute data to the nodes of a parallel
computer. The easiest algorithm for the scattering operation is based seqgiential tree

[101]. In this case, the source node sends its different messages to each of the other nodes
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sequentially, as shown in Figure 5.4 for single-port modeling. As the source of communi-

cation is the same for the whole scattering operation, this node should reconfigure its links

after each step. Therefore, the scattering tBig,, is (N - 1)(8 + 1) time units.

Figure 5.4: Sequential tree algorithm

The spanning binomial tree algorithrf®1] used for broadcasting/multicasting opera-
tions can also be used for scattering operation. In this algorithm, the number of informed
nodes doubles at each step, and each node stores its own message and forwards the rest of
the messages it received, if necessary, to its children. As illustrated in Figure 5.5, the
source node sends its messages for the upper half of the nodes to the node 4. In the second
step, nodes 0 and 4 are responsible for sending messages to the nodes in their halves. That
is, to the node 2 (messages for nodes 2, and 3), and node 6 (messages for nodes 6, and 7),

respectively. In the third step, all nodes send the remaining messages to the remaining
nodes. These three steps (actuddig,N steps) takes each ( d 4), ( +2ﬁ and ( +1)

time units, respectively. Generally, this algorithm has a scattering time:

Note that | have neglected the data permutation time at each node. It should be noted
that he spanning binomial algorithm has a much better termination time than the sequen-
tial algorithm for theRON (k, N)(except for the trivial casé\ = 2, where they have the

same termination time).

k-port: The sequential tree algorithm can be extended{port modeling. That is, at

each step the source node send& deferent messages toother different nodes. There-

fore, S1p, = (d+ 1)%“7_15.
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Figure 5.5: Spanning binomial tree algorithm

Desprez and his colleagues have extended the spanning binomial algorithm Ker the

port modeling [40]. In this algorithm, the scattering nagg sendsk messages ofk:\_l—l

length each, to it« children. Therefore, there ar& ¢ 1) nodes havinq(tl—l different

messages. These nodes, at step 2, communicate each witk théidren and send one

(k + 1)-th of their initial message to each one. This process continues and all nodes are

informed afterlog, , ;N communication steps. Thus the scattering time is equal to

logy.. ;1N

_ N O
S2 = + -
- iZl @ (k+1)ID

_N-1
k

+dlog, , ;N (5.39)

5.6 Multinode Broadcasting

In multinode broadcasting, also called gossiping [53], all nodes send their unique mes-
sages to all other nodes, and this is basically used in parallel algorithms when all nodes
need to exchange their data. The simplest algorithm for multinode broadcasting is to use
the latency hiding broadcasting algoriti¥times, one for each node. Another algorithm
is to consider the multinode broadcasting as a degenerate case of total exchange, to be dis-

cussed in the next section. However, better algorithms exist.
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Single-port In the direct algorithms [109, 120], at any ste@ nodep sends its mes-

sage to nodep(+ i) mod N Clearly, the cost of this algorithi®1g4, is (N -1)(& +1).

One may use a better algorithm, just like tstandard exchangalgorithms for the
total exchange operation [71, 24], where during each step, the complete network is recur-
sively divided into halves, and messages are exchanged across new divisions at each step.
This algorithm combines messages into larger messages to be transmitted as a single unit.

Actually, each node sends its message along with the other messages it received at the pre-

vious steps. Hence, the multinode broadcastingdwpN steps, and a cost of
G2, = N—1+dlog,N (5.40)

Figure 5.6 shows pairwise communications and the length of messages at each step for
multinode broadcasting on an 8 node message-passing multicomputer. Unfortunately,

latency hiding cannot improve this cost.

r—nA r— A r—a1,r—n1 r—-=a4r—nA
|O<JLL>4| 10 2' 2 |_0__| L_}

| 1 [ |1 31 r— a4 r—n
ST =4 b= gt
|2 ‘| 1 |. 6| |4<—|%|—>6| :4_<H>5:
| S| |5l L F=354 r =7
L — Jd L — Jd L5_J L_7J I_6__| |__7_|

Figure 5.6: Multinode broadcasting on an 8-ndd®N (k, NJunder single-port modeling

k-port: A simple algorithm is based on the extension of the direct algorithrik-funrt

modeling. That is, at stepnodep sends its message to the nodes (i - 1)k + 1) mod N

P+ (@(-2Dk+2)mod N ..., (p + ikl mod N This algorithm has a cost of:

- -1
Glgy = (d+ 1)%NTE-



107

Desprez and his colleagues [40] extended@2e, algorithm fork-port modeling by

letting the nodes combine the messages to reduce the effect of reconfiguration delay. Fig-

ure 5.7 illustrates this algorithm whé&h=9 andk = 2. | divide the nodes inta':l—l groups

of (k + 1) nodes each. Nodes are grouped as (0,.1k), (k+ 1, k+ 2, ..., 2k +1) - 1),
ey (N-(k+1),N-(k+1)+1,... ,N-1). At step 1, all nodes within a group exchange
their messages. At the end of this step, each nodelkhad) messages. At step 2, noge

exchanges all its messages with nodes (k+ 1)) mod N (p + 2(k +1)) mod N ..., (p +

k(k + 1)) mod N At the end of this step, each node h@s+ 1)2 messages. Let

S = log, , 1 N. This process continues to stepwhere nodeg exchanges its messages
with nodes p + (k+1)° ") mod N (p + 2(k+1)° ) mod N ..., (p + k(k+ 1))

mod N It is clear that at each stepf this algorithm, each node sendls+ 1)i -1 mes-

sages tk other nodes. Hence, this algorithm has a multinode broadcasting time:

logy , ;N ) 5
G2 = Y (A+(k+1) 7Y = N;1+dlogk+1N (5.41)
i=1

Step 1 1 0 1 1 'i‘l 1 61
1{1_'\§ 2 4‘4/‘T> 5 7‘/'14—'\> 8

0 1 2

3 3 3 3 3 3
Step 2 3/<—>3\ 6 4/<—>'3\‘ 7 5‘/4—\3 8

Figure 5.7: Multinode broadcasting on an 9-noB®N (k, N)under2-port modeling
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5.7 Total Exchange
In total exchange, all nodes send their different messages to all other nodes. A naive
algorithm for total exchange is to perform a scattering operaldimes in sequence.

However, better algorithms exist.

Single-port: In the direct algorithms [109, 120], at any step nodep sends the mes-
sage to destined nodp ¢ i) mod N Clearly, the cost of this algorithnT,E1-4, is equal to

(N-1)d +1).

One may also use the standard exchange algorithm for total exchange similar to the
ones used in hypercubes, and meshes [71, 24], where during each step, the complete net-
work is recursively divided into halves, and messages are exchanged across new divisions
at each step. Nodes combine messages into larger messages to be transmitted as a single
unit. Consider this algorithm for an 8-node multicomputer, as shown in Figure 5.8. There
are N/2 messages to be sent by each node at any step in this algorithm. | only describe
this for node 0. Node 0 sends all its messages for the nodes at the upper half (that is, nodes
4,5, 6, and 7) to node 4 at step 1. At the same time, it receives the messages for its half
from node 4. At the second step, node 0 sends its message, along with the messages from

node 4, destined to nodes 2 and 3, to node 2. At the same time, it receives the messages

from the nodes 2, and 6 for itself and node 1. At the third step (actuathyN steps),

node 0 sends its message along with the other messages from nodes 2, 4, and 6 to node 1.

It is clear that at the end of this step all nodes have exchanged all their messages. Thus,

this algorithm,TEZ-4, has a cost o@ + gaogzN

r—-|4r—-| r—=a 4 r—n-" r—=a 4 r—n1
|0<JTL>4I Ig |4| g: LO_J 4 L _}
= r— A

r—n r— - — =

4 — 4 r .

e |4~ 6 A —5
|S— 7| |5t L 7! r—=n4r=7
L — 4 L — 1 |_5_J |__7J |_6_J |__7.|

Figure 5.8: Total exchange on an 8-noB®N (k, Nunder single-port modeling
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Which algorithm, TE1-; or TEZ-, is faster depends on the number of notlesind

the term,a . | propose another algorithm, calleoimbined total exchange algorithm

TE34, which is a combination of these two algorithms.

| begin this algorithm by doing some of (or even none of) the steps involved in the
standard total exchange algorithm, and then continue with the direct algorithm. That is, |
divide the nodes in the complete network in half and do the steps involved in the standard
total exchange algorithm up to a point(s) that there is no gain in continuing to do so. From
that step(s) on, the direct algorithm is used for all the nodes in each of the created sub-
groups at the same time. Actually, the goal is to find the number of steps, or a bound for
the number of steps, before switching to the direct algorithm such that the time associated
with this algorithm is less than (or at least equal to) the other two (direct, and standard

exchange) algorithms.

Let me explain this algorithm with= 1 (number of doing the standard exchange algo-
rithm) for the example shown in Figure 5.8. At the step 1, the nodes in the complete net-

work are divided in halves. Each node exchanges 4 messages with its corresponding node

at the other half. This taked + 4, and at this point, each of the network halves contain
messages destined to the half itself. As a matter of fact, each node now has two messages
for each of the nodes in its half. These messages can be distributed to their destinations

using a direct algorithm. There are 4 nodes in each half and 2 messages to be exchanged at

a time for a cost of (4 - 1f( +2) =@ +6. Hence, this algorithm has a total cosiof 4 +

10.

Lemma 2 The combined total exchange algorithomder single-port modeling on
RON (K, N)as a cost of

T N -
TE3., = il +§E+%§—1€Fd+2) (5.42)

wherei is the number of steps to do the standard exchange algorithm before switching to

the direct algorithm.
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Proof. In the combined total exchange algorithm, each time a standard exchange algo-

. . ~ N . . . . N[ .
rithm step is done a cost af + > Is added. This brings up the n@w >0 . The first

part of the second tem%:— - 1% , Is for the number of nodes in the groups doing the direct

i
algorithms simultaneously. The second peat,-l- 2i) , stands for the delay associated with

the transfer of messages which is doubled at each steps. |

It is clear that this algorithm is exactly the same as the direct algorithm whénand

the standard exchange algorithm when log,N

k-port: The direct algorithm for thé&-port modeling requires nodeat stepi to send

its message to the nodgs« (i - 1)k+ 1)mod N (p+ (i - L)k+2)mod N ..., (p +ik) mod

N. This algorithm has a cost oFE1;, = (d+1) %NT_lg

The same grouping and algorithm &2, can be used for total exchange with the
exception that this time each node serﬁ\?l—l messages at a time. Therefore, the cost of
logy ;N

, , , N O_ N , ,
this algorithm,TEZx is _zl % + 10 % + kTlaog“ 1N . Figure 5.9 illustrates
1 =

the above algorithm whex =9 andk = 2.

Step 1 3 0 3 3 3 3 63
1‘4/'3_'>\‘ 2 4‘4/"?» 5 7‘4/'T'>\ 8

0 1 2
3 3 3 3 3 3
Step 2 3/' 3\ 5 4/‘ '3\‘ - 5/' \38

Figure 5.9: Total exchange on an 9-noB®N (k, NJunder2-port modeling
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Which algorithm,TE1g, or TEZ, is faster depends on the number of noblesium-

ber of input/output channelk, and the terma . Just like the single-port modeliagom-
bined total exchange algorithfTE3;,, is proposed which is a combination of the above

two algorithms.

Lemma 3 The combined total exchange algorithmander k-port modeling on
RON (k, Nhas a cost of

. N O l.D N B ~ i
TE3;, = |§+—k+1D+ e 1Hd + (k+1)") (5.43)

wherei is the number of steps to do the standard exchange algorithm before switching to

the direct algorithm.

Proof. In the combined total exchange algorithm and urdport modeling, each time

a standard exchange algorithm step is done a ca?tt-roii':l—l is added. This brings up the

- — 1% , is for the number of

. N O . 1
+ ——=.Thef f th
term@ i+ 10 e first part of the second terig(lﬁl)'

nodes in the groups doing the direct algorithms simultaneously. The second part,
(a +(k+ 1)i) , stands for the delay associated with the transfer of messages. i

It is clear that this algorithm is exactly the same as the direct algorithm whénand

the standard exchange algorithm wher log, , ;N . | haven't found any mathematical

proof that this algorithm is better than the known algorithms. However, in all the numeri-
cal examples (more than one hundred thousand examples) that | have performed for the
comparison of these algorithms, | have always found a s$tépr which, the combined

total exchange algorithm had a shorter or equal exchange time than both the direct algo-

rithm, (a +1) %NT_lg and the standard exchange algorit@,-k %1%09'“ N . The
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above statement is also true for single-port modeling. Therefore, It is conjectured that the

proposed algorithm is better than (or at least equal to) both known algorithms. Table 5.5

and Table 5.6 summarize some typical examples with optimal cost&fgs;, andTE3:,.

5.8 Summary

Table 5.5: Total exchange timé\ = 1024, single-port

g TElr | TE2m TE3g,

2 3069 | 5140 | 2558 € 1,2)
5 6138 | 5170 | 3202 € 3)
20 | 21483 | 5320| 4272€05)
50 | 52173| 5620| 5082 € 6)

Table 5.6: Total exchange timé\ = 1024,k = 3

g TElr, | TE2¢, TE3q,

2 1023 | 1290 768i = 1)
5 2046 | 1305 963i = 2)
20 7161 | 1380 | 1248 € 3)
50 | 17391 | 1530| 1466 € 3)

In this chapter, | presented and analyzed a broadcasting algorithm [20] that could

effectively hide the reconfiguration deldyn the network RON (k, N) Essentially, in this

algorithm, the reconfiguration phase of some of the nodes is overlapped with the message

transmission phase of the other nodes which ultimately reduces the broadcasting time. The

analysis of the broadcasting algorithm includes a closed formulation that yields the termi-

nation time.

The solution for the total exchange problem combines two known algorittimest
[109, 120], andstandard exchanggrl, 24], and it includes an optimization phase that

determines the number of steps after which the first algorithm terminates and the second
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one is engaged. This ensures a termination time that is better than what can be accom-
plished by either of the two algorithms. Meanwhile, known algorithms for scattering and
all-to-all broadcasting from literature [40, 21] have been adapted to the network,
RON (k, N)

The scattering, multinode broadcasting, and total exchange algorithms discussed in
this chapter assumed that the number of nodes irR@&l (k, N) is a power of 2, or a
power of k + 1) under single-port anklport modeling, respectively. However, when the
number of processors is not a power of 2, or a powerkof (1), dummy nodes can be

assumed to exist until the next power of 2kof 1) with a little performance loss.

So far, in this thesis, | have been concerned about efficient communications in mes-
sage-passing parallel computer systems using reconfigurable interconnects. | have used
knowledge of the next destination (either by prediction or algorithmically) to hide the
reconfiguration latency of the interconnect. In Chapter 6, regardless of the type of the
interconnection network, | utilize prediction techniques in general, and more specifically
the proposed predictors in Chapter 3, to remove the redundant message copying at the

receiving side of communications in message-passing systems.
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Chapter 6

Efficient Communication Using Message Prediction for
Clusters of Multiprocessors

A significant portion of the software communication overhead belongs to a number of
message copying operations. Ideally, it is desirable to have a true zero-copy protocol
where the message moves directly from the send buffer in its user space to the receive
buffer in the destination without any intermediate buffering. However, due to the fact that
message-passing applications at the send side do not know the final receive buffer

addresses, early arriving messages have to be buffered in a temporary area.

| explain the motivation behind this work and discuss related work in Section 6.2. In

Section 6.3, | elaborate on how prediction would help eliminate message copying at the
receiving side of communications. | explain the experimental methodologies to gather
communication traces of the parallel applications in Section 6.4. | characterize some com-
munication properties of the parallel application benchmarks by presenting the frequency
and distributions of receive communication calls in Section 6.5. | show that there is a mes-
sage reception communication locality in message-passing parallel applications [5]. Hav-
ing this communication locality at the receiver sides, | use the proposed predictors
introduced in Chapter 3 to predict the next consumable message. This chapter contributes
by arguing that these message predictors can be efficiently used to drain the network and
cache the incoming messages even if the corresponding receive calls have not been posted
yet. This way, there is no need to unnecessarily copy the early arriving messages into a
temporary buffer. As shown in Section 6.6, the performance of these predictors, in terms
of hit ratio, on some parallel applications is quite promising [5] and suggest that prediction
has the potential to eliminate most of the remaining message copies. | compare the perfor-
mance and storage requirements of the predictors in Section 6.7. Finally, | summarize this

chapter in Section 6.8.
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6.1 Introduction

With the increasing uniprocessor and SMP computation power available today, inter-
processor communication has become an important factor that limits the performance of
workstations clusters. Essentially, communication overhead is one of the most important
factors affecting the performance of parallel computers. Many factors affect the perfor-
mance of communication subsystems in parallel systems. Specifically, communication
hardware and its services, communication software, and the user environment (multipro-

gramming, multiuser) are the major sources of the communication overhead.

The communication hardware aspect includes the architecture and placement of the
network interface, and the interconnection network and its services. Many architectures
have been proposed for the network interfaces. They are classified as (1) direct [52, 7, 63,
80, 97, 88] and (2) memory-based [48, 112, 126, 23]. Direct network interfaces allow a
processor to directly access the network queue. However, they mostly ignore the issue of
multiprogramming. That is, a single thread can only use the network interface at a time.
Memory-based interfaces provide protection but have high latency. Interconnection net-
works themselves are another source of communication hardware latency. Communication

services including flow control, and message delivery also add to this latency.

Communication software overhead currently dominates the communication time in
clusters of workstations. In the current generation of parallel computer systems, the soft-
ware overheads are tens of microseconds [43]. This is worse in clusters of workstations.
Even with high performance networks [23, 67, 111] available today, there is still a gap
between what the network can offer and what the user application can see. The communi-
cation software overhead cost comes mainly from three different sources; crossing protec-
tion boundaries several times between the user space and the kernel space, passing several

protocol layers, and involving a number of memory copying operations.

Several researchers are working to minimize the cost of crossing protection bound-
aries, and using simple protocol layers by utilizinger-level messagingchniques such
as Active MessagefAM) [125], Fast Message¢FM) [102], Virtual Memory-Mapped
CommunicationgVMMC-2) [48], U-Net[126], LAPI[110], Basic Interface for Parallel-
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ism (BIP) [105], Virtual Interface ArchitecturgVIA) [49], and PM [121]. A significant

portion of the software communication overhead belongs to a number of message copy-
ing. ldeally, message protocols should transfer messages in a single copy (this is usually
called a true zero-copy). In other words, the protocol should copy the message directly
from the send buffer in its user space to the receive buffer in the destination without any
intermediate buffering. However, applications at the send side do not know the final
receive buffer addresses and, hence, the communication subsystems at the receiving end
still copy messages unnecessarily from the network interface to a system buffer, and then
from the system buffer to the user buffer when the receiving application posts the receive

call.

Some researchers have tried to avoid memory copying [48, 79, 106, 14, 119, 118].
While they have been able to remove the memory copying between the application buffer
space and the network interface at the send side by using user-level messaging techniques,
they haven’t been able to remove the memory copying at the receiver sides completely.
They may achieve a zero-copy messaging at the receiver sides only if the receive call is
already posted, a rendez-vous type communication is used for large messages, or the desti-
nation buffer address is already known by a pre-communication. Note, however, that
MPI-2 [93] supports a remote memory access (RMA) operation but this is mostly suitable

for receiver-initiated communications arising from the shared-memory paradigm.

| am interested in bypassing the memory copying at the destination in the general case,
eager or rendez-vous and for sender-initiated communications as in MPI1 [92, 93]. In this
chapter, | argue that it is possible to address the message copying problem at the receiving
side by speculation. | support my claim by showing that messages display a form of local-

ity at the receiving ends of communications.

| introduce here, for the first time, the notion of message prediction for the receiving
side of message-passing systems. By predicting the next receive communication call, and
hence the next destination buffer address, before the receiving call is posted one will be
able to copy the message directly into the CPU cache speculatively before it is needed so

that in effect a zero-copy transfer can be achieved.
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| am interested in utilizing the proposed predictors in Chapter 3 [3, 2], but this time at
the receiver sides to predict the next consumable message and drain the network as soon as
the message arrives. Upon a message arrival, a user-level thread is invoked. If the receive
call has not been issued yet, the message will be cached, but efficient cache mapping
mechanisms need to be devised to facilitate binding at the moment the receive call is
issued. If the receive call has already been issued, then the message can be written to its

final destination.

This chapter concentrates on message predictions at the destinations in message-pass-
ing systems using MPI in isolation. This is analogous to branch prediction, and coherence
activity prediction [97] in isolation. Our tools are not ready for measuring the effective-
ness of the predictors on the application run-time yet. My preliminary evaluation measures
the accuracy of the predictors in terms of hit ratio. The results are quite promising and sug-

gest that prediction has the potential to eliminate most of the remaining message copies.

6.2 Motivation and Related Work

High performance computing is increasingly concerned with efficient communication
across the interconnect due to the availability of high-speed highly-advanced processors.
Modern switched networks, calleslystem Area NetworSAN), such as Myrinet [23]
and ServerNet [67], provide high communication bandwidth and low communication
latency. However, because of high processing overhead due to communication software
including network interface control, flow control, buffer management, memory copying,
polling and interrupt handling, users cannot see much difference compared to traditional

local area networks.

Fortunately, several user-level messaging techniques have been developed to remove
the operating system kernel and protocol stack from the critical path of communications
[125, 102, 48, 126, 49, 105, 110, 121]. This way, applications can send and receive mes-
sages without operating system intervention which often greatly reduces the communica-

tion latency.
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Data transfer mechanisms and message copying, control transfer mechanisms, address
translation mechanisms, protection mechanisms, and reliability issues are the key factors
for the performance of a user-level communication system. In this chapter, | am particu-

larly interested to avoid message copying at the receiver side of communications.

A significant portion of the software communication overhead belongs to a number of
message copying. With the traditional software messaging layers, there are usually four
message copying operations from the send buffer to the receive buffer, as shown in Figure
6.1. These copies are namely from the send buffer to the system buffer (1), from the sys-
tem buffer to the network interface (NI) (2), and at the other end of communication from
the network interface to the system buffer (3), and from the system buffer to the receive
buffer (4) when the receive call is posted. Note that, | haven’t considered data transfer
from the network interfag (NI) at the sending process to the network interface at the
receiving process as a separate copy. Also, the network interface’s place can be either on

the I/O bus or on the memory bus.

At the send side, some user-level messaging layers use programmed I/O to avoid sys-
tem buffer copying. FM uses programmed I/O while AM-1l and BIP do so only for small
messages. Some other user-messaging layers use DMA. VMMC-2, U-Net, and PM use
DMA to bypass the system buffer copy while AM-1I and BIP do so only for large mes-
sages. In systems that use DMA, applications or a library dynamically pins and unpins
pages in the user space that contain the send and the receive buffers. Address translation
can be done using a kernel module as in BIP, or by caching a limited number of address
translations for the pinned pages as in VMMC-2, U-Net/MM [17], and PM. Some network
interfaces also permit bypassing message copying at the network interface by directly

writing into the network.

Contrary to the send side, bypassing the system buffer copying at the receiving side
may not be achievable. Processes at the sending sides do not know the destination buffer
addresses. Therefore, when a message arrives at the receiving side it has to be buffered if
the receive call has not been posted yet. VMMC [22] for the SHRIMP multicomputer is a

communication model that provides direct data transfer between the sender’s and
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Send Process Receive Process
Send buffer Receive buffer
1 v+
System buffer System buffer
NI NI

-
Figure 6.1: Data transfers in a traditional messaging layer

receiver’s virtual address space. However, it can achieve zero-copy transfer only if the

sender knows the destination buffer address. Therefore, the receiver exports its buffer

address by scouting a message to the sender before the actual transmission can take place.

This leads to a 2-phase rendez-vous protocol which adds to the network traffic, and net-

work latency especially for short messages.

VMMC-2 [48], uses aransfer redirectiormechanism instead. It uses a default, redi-
rectable receive buffer for a sender who does not know the address of the receive buffer.
When a message arrives at the receiving network interface, the redirection mechanism
checks to see if the receiver has already posted its buffer address. If the receive buffer has
been posted earlier than the message arrival, the message will be directly transferred to the
user buffer. Thus it achieves a zero-copy transfer. If the buffer address is not posted, the
message must be buffered in the default buffer. It will then be transferred when the receive
buffer is posted. Thus, it achieves a one-copy transfer. However, if the receiver posts its
buffer address when the message arrives, part of the message is buffered at the default

buffer and the rest is transferred to the user buffer.
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Fast sockets [106] has been built using active messages. It uses a mechanism at the
receiver side callececeive postingo avoid the message copy in the fast socket buffer. If
the message handler knows that the data’s final memory destination is already known upon
message arrival the message is directly moved to the application user space. Otherwise, it

has to be copied into the fast socket buffer.

FM 2.x [79] uses a similar approach as fast sockets, nataghr interleaving FM
collaborates with the handler to direct the incoming messages into the destination buffer if

the receive call has already been posted.

MPI-LAPI [14] is an implementation of MPI on top of LAPI [110] for the IBM SP
machines. In the implementation of the eager protocol, the header handler of the LAPI
returns a buffer pointer to LAPI which tells LAPI where the packets of the message must
be reassembled. If a receive call has been posted, the address of the user buffer is returned
to LAPI. If the header handler doesn’t find a matching receive, it will return the address of
anearly arrival bufferand hence a one-copy transfer is accomplished. Meanwhile, mes-

sage sizes of larger than eager size is transferred using 2-phase rendez-vous protocol.

Some research projects have proposed solutions to multi-protocol message-passing
interfaces orclusters of multiprocessor&Clumps) using both shared-memory for intra-

node communications and message-passing for inter-node communications [118, 55, 87].

MPICH-PM/CLUMP [118] is an MPI library implemented on a cluster of SMPs. It

uses a message-passing only model where each process runs on a processor of an SMP
node. For inter-node communications, it ugegerandrendez-vouprotocols. For short
messages, it achieves one-copy using eager protocol as the message is copied into a tem-
porary buffer if the MPI receive primitive has not been issued. For large message, it uses
rendez-vous protocol to achieve zero-copy by using a remote write operation but it needs
an extra communication. For intra-node communications, it achieves a one-copy using a
kernel primitive that allows to copy messages from the sender to the receiver without

involving the communication buffer.
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BIP-SMP [55], for intra-node communications, uses shared memory for small mes-
sages with two memory copy, and direct copy for large messages with a kernel overhead.

For inter-node communications, it works like MPI-BIP which is a port of MPICH [57].

TOMPI [38] is a threaded implementation of MPI on a single SMP node. It copies a
message only once by utilizing multiple threads on an SMP node. Unfortunately, it is not

scalable to a cluster of SMP machines.

Other techniques to bypass extra copying ara¢hmapping andcopy-on-writetech-
niques [31, 45]. Both techniques require switching to the supervisor mode, acquiring nec-
essary locks to virtual memory data structure, and changing virtual memory mapping at
several levels for each page, and then performiranslation Lookaside BuffefTLB)/
cache consistency actions, and finally returning to the user mode. This limits the perfor-
mance of the page re-mapping, and copy-on-write techniques. A zero-copy TCP stack is
implemented in Solaris by using copy-on-write pages and re-mapping to improve commu-
nication performance [31]. It achieves a relatively high throughput for large messages.
However, it does not have a good performance for small messages. This work is also

solely dedicated to the SUN Solaris virtual memory system.

fbufs[45] is also using the re-mapping technique to avoid the penalty of copying large
messages across different layers of protocol stack. However, fbufs allows re-mapping only

for a limited range of user virtual memory.

It is quite clear that even user-level messaging techniques may not achieve a zero-copy
communication all the time at the receiver side of communications. Meanwhile, the major
problem with all page re-mapping techniques is their poor performance for short messages

which is extremely important for parallel computing.

As stated in Chapter 3, many prediction techniques have been proposed in the past to
predict the future accesses of sharing patterns and coherence activities in distributed
shared memory (DSM) by looking at their observed behavior [96, 77, 73, 133, 34, 107].
Recently, Afsahi and Dimopoulos proposed some heuristics to predict the destination tar-

get of subsequent communication requests at the send side of communications in mes-
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sage-passing systems [3, 4]. However, to the best of my knowledge, no prediction
technique has been proposed for the receive side of communications in message-passing

systems to reduce the latency of a message transfer.

This chapter of the thesis, reports on an innovative approach for removing message
copying at the receiving ends of communications for message-passing systems. | argue
that it is possible to address the message copying problem at the receiving sides by specu-
lation. | introduce message prediction techniques such that messages can be directly trans-

ferred to the cache even if the receive calls have not been posted yet.

6.3 Using Message Predictions

In this section, | analyze the problem with the early arrival of messages at the destina-
tions in message-passing systems. In such systems, a number of messages arrive in arbi-
trary order at the destinations. The consuming process or thread will consume one
message at a time. If | know which message is going to be consumed next, then | can move
the message upon its arrival to near the place that it is to be consumed (e.g. a staging
cache), or | could schedule which thread to execute next preferably at the same processor
as the consuming thread to enhance the chances that the data will be in the processor cache

when it is accessed by the consumer.

For this, one has to consider three different issues. First, deciding which message is
going to be consumed next. This can be done by devising receive call predictors, history-
based predictors that predict subsequent receive calls by a given process in a message-
passing program, Second, deciding where and how this message is to be moved in the
cache. Third, efficient cache re-mapping and late binding mechanisms need to be devised

for when the receive call is posted.

In this chapter, | am addressing the first problem. That is, utilizing message predictors
and evaluating their performance. | am working on several methods to address the remain-

ing issues.
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6.4 Experimental Methodology

In exploring the effect that different heuristics have in predicting the next receive call,
| used a number of parallel benchmarks, and extracted their communication traces on
which | applied the predictors. Specifically, | used BT, SP, and CG benchmarks from NPB
suite [13], and PSTSWM application [128], introduced in Chapter 2. | didn’t use the MG
and LU benchmarks form the NPB suite because these benchmarks use
MPI_ANY_SOURCEHEN some of their receive calls (MPI_Recv and MPI_Irecv). This
means that the applications may receive a particular message from different sources
depending on the order of arrival. | also didn’t use the QCDMPI application as this appli-
cation uses the synchronous communication primifwe)_Sendrecv_replacevhere the
sender waits for the receive call to be posted. Then it transmits the message. In this case,

prediction wouldn't help as the receive call is already posted.

| experimented with the workstation class “W”, and the larger class “A” of the NPB
suite, and the default problem size for the PSTSWM application. Note that because of
space and access limitations | did not experiment with the larger classes “B”, and “C”. The
NPB results are almost the same for “W” and “A” classes. Hence, | report only for the “A”
class here. Note that | also removed the initialization part from the communication traces
of the PSTSWM application.

6.5 Receiver-side Locality Estimation

The applications use blocking and nonblocking standard MPI receive primitives,
namely MPI_Recvand MPI_Irecv [92]. MPI_Recv (buf, count, datatype, source, tag,
comm, statusis a standard blocking receive call. When it returns, data is available at the
destination buffer. The PSTSWM application uses this type of receive M&ll. Irecv
(buf, count, datatype, source, tag, comm, requsst)standard nonblocking receive call. It
immediately posts the call and returns. Hence, data is not available at the time of return. It
needs another call to complete the call. All applications in this study use this type of

receive call.
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As noted earlier in Chapter 3, one of the communication characteristics of any parallel
application is the frequency of communications. Figure 6.2 illustrates the minimum, aver-
age, and maximum number of receive communication calls in the applications under dif-
ferent system sizes. | executed the applications once for each different system size and
counted the number of receive calls for each process of the applications. Hence, in Figure
6.2, by average, minimum, and maximum, | mean the average, minimum, and maximum
number of receive calls taken over all processes of each application. It is clear that all pro-
cesses in the BT, SP, and CG applications have the same number of receive communica-
tion calls for each different system size. While processes in the PSTSWM application have

different number of receive communication calls.
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Figure 6.2: Number of receive calls in the applications under different system sizes



125

MPI_Recv and MPI_lIrecv calls have a 7-tuple set consistingaefrce, tag, count,
datatype buf, commandstatusor requestin order to choose precisely one of the received
messages at the network interface and transfer it to the cache, the predictors need to con-
sider all the details of a message envelop. Thasasirce, tag, count, datatypbuf, and
comm(l don’t considerstatusandrequestas they are just a handle when the calls return).
| did not rely only on the buffer addredsuf, of a receive call as many processes may send
their messages to the same buffer address of a particular destination process. Nor | could
depend only on the sendaQurce of a message, or on the lengtlgunt of a message.
Therefore, | assigned a different identifier for each unique 6-tuple found in the communi-
cation traces of the applications. Figure 6.3 shows the numbanigtie message identifi-
ersin the applications under different system sizes. By average, minimum, and maximum,
| mean the average, minimum, and maximum number of unique identifiers taken over all
processes of each application. It is evident that all processes in the BT, and CG applica-
tions have the same number of unique message identifiers while processes in the SP, and
PSTSWM applications have different number of unique message identifiers (except when

the number of processes is four for the SP benchmark).

Figure 6.4 shows the distribution of each unique message identifier for process zero of
the applications when the number of processes is 64 for CG and 49 for the other applica-
tions. | chose process zero because this process almost always had the largest number of
unique message identifiers among all processes in the applications and is also responsible
for distributing data and verifying the results of the computation. As it is shown in Figure
6.4, the message identifiers are evenly distributed in BT. However, the distribution of the
message identifiers in CG and PSTSWM are almost bimodal with two separated peaks.
The SP benchmark shows four different peaks for the message identifiers. Similar distribu-

tions have been found for other system sizes [6].

6.5.1 Communication Locality
As noted in Chapter 3, some researchers have tried to find or userni@unications
locality properties of parallel applications [3, 4, 75, 30, 36]. | define the teressage

reception localityin conjunction with this work. By message reception locality | mean that
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if a certain message reception call has been used it will be re-used with high probability by
a portion of code that is “near” the place that was used earlier, and that it will be re-used in

the near future.
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Figure 6.3: Number of unique message identifiers in the
applications under different system sizes

In the following subsection, | present the performance of the classical LRU, LFU, and
FIFO heuristics on the applications to see the existence of locality or repetitive receive
calls. I use thénit ratio to establish and compare the performance of these heuristics. As a
hit ratio, | define the percentage of the times that the predicted receive call was correct out

of all receive communication requests.
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Figure 6.4: Distribution of the unique message
identifiers for process zero in the applications

6.5.2 The LRU, FIFO and LFU Heuristics
The Least Recently Use@RU), First-In-First-Out (FIFO), andLeast Frequently

Used(LFU) heuristics, all maintain a set &f(k is the window size) unique message iden-
tifiers. If the next message identifier is already in the set, then a hit is recorded. Otherwise,
a miss is recorded and the new message identifier replaces one of the identifiers in the set
according to which of the LRU, FIFO or LFU strategies is adopted.

Figure 6.5 shows the results of the LRU, FIFO, and LFU heuristics on the application
benchmarks when the number of processes is 64 for CG and 49 for all other applications.
It is clear that the hit-ratios in all benchmarks approach 1 as the window size increases.
The performance of the FIFO algorithm is the same as the LRU for BT, and PSTSWM

benchmarks, and almost the same for the SP and CG benchmarks. The LFU algorithm
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consistently has a better performance than the LRU and FIFO heuristics on the BT, CG,
and PSTSWM applications. It also has a better performance than the LRU and FIFO heu-
ristics on the SP benchmark for window sizes of greater than five. It is interesting to see
that a real application like PSTSWM needs window sizes of greater than 150 to achieve a
good performance (hit ratios above 80%) under the LFU policy. Similar performance

results for the LRU, FIFO, and LFU heuristics on other system sizes can be found in [6].
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Figure 6.5: Effects of the LRU, FIFO, and LFU
heuristics on the applications

Essentially, the LRU, FIFO and LFU heuristics do not predict exactly the next receive
call but shows the probability that the next receive call might be in the set. For instance,
the SP benchmark shows nearly a 60% hit ratio for a window size of five under the LRU
heuristic. This means that 60% of the time one of the five most recently issued calls will be

issued next. These heuristics perform better when the windowksgeufficiently large.
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However, this large window adds to the hardware and software implementation complex-
ity as one needs to move all messages in the set to the cache in the likelihood that one of

them is going to be used next. This is prohibitive for large window sizes.

| am interested in having predictors that can predict the next receive call with a high
probability. In Section 6.6, | utilize the novel message predictors proposed in Chapter 3

employing different heuristics and evaluate their performance on the applications.

6.6 Message Predictors

The set of predictors used in this section predict the subsequent receive calls based on
the past history of communication patterns on a per process basis. These predictors were
proposed in Chapter 3 to predict the destination target of subsequent communication
requests at the send side of communications. It is worth mentioning that the message re-
ordering effect [77] (messages from different processes may arrive out-of-order even if
messages from the same processes may arrive in-order in most networks) has no effect on
the predictions as the predictors predict the next receive calls based on the patterns of the
receive calls in the program that runs on the same process and not on the arriving mes-
sages unless the order of receive calls depends on the order of message arrival. Note that in
the following figures, by average, minimum, and maximum, | mean the average, mini-

mum, and maximum hit ratio taken over all processes of each application.

6.6.1 The Tagging Predictor

As described earlier in Chapter 3, thaggingpredictor assumes a static communica-
tion environment in the sense that a particular communication receive call in a section of
code, will be the same one with a large probability. | attach a diffetamnto each of the
receive calls found in the applications. This can be implemented with the help of a com-
piler or by the programmer throughpae-receive (tagpperation which will be passed to
the communication subsystem to predict the next receive call before the actual receive call

is issued.
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Figure 6.6: Effects of the Tagging predictor on the applications

The performance of the Tagging predictor is shown in Figure 6.6. It is evident that this
predictor doesn’'t have a good performance for the applications studied. It cannot predict
the communication patterns of PSTSWM at all, and has a degrading performance for all

other applications when the number of processes increases.

6.6.2 The Single-cycle Predictor
The Single-cyclepredictor, proposed in Chapter 3, is based on the fact that if a group

of receive calls are issued repeatedly in a cyclical fashion, then | can predict the next
request one step ahead. The performance of the Single-cycle predictor is shown in Figure
6.7. Itis evident that its performance is consistently very high (hit ratios of more than 0.9).
Note that for the PSTSWM application, the Single-cycle predictor has a zero hit-ratio for
one of the processes. However, it doesn't affect the average hit-ratio over all the processes.
It is worth mentioning that all Cycle-based predictors proposed in Chapter 3, (Single-
cycle, Single-cycle2, Better-cycle, and Better-cycle2) have the same performance for the

applications studied. Thus, | just reported the results for the Single-cycle predictor here.

6.6.3 The Tag-cycle2 Predictor

The Tag predictor didn’t have a good performance on the applications while the Sin-
gle-cycle predictor had a very good performance. Tag-cycleZpredictor, proposed in
Chapter 3, is a combination of the Tag predictor and the Single-cycle2 predictor. In the

Tag-cycle2 predictor, | attach a different tag to each of the communication requests found
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in the benchmarks and do a Single-cycle2 discovery algorithm on each tag. The perfor-
mance of the Tag-cycle2 predictor is shown in Figure 6.8. The Tag-cycle2 predictor per-
forms well on all benchmarks. Its performance is the same as the Single-cycle predictor on
BT and PSTSWM. However, it has a better performance on CG and a lower performance
on SP.
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Figure 6.8: Effects of the Tag-cycle2 predictor on the applications

6.6.4 The Tag-bettercycle2 Predictor
In the Single-cycle and Tag-cycle2 predictors, as soon as a receive call breaks a cycle |
remove the cycle and form a new cycle. In thag-bettercycledredictor, proposed in

Chapter 3, | keep the last cycle associated with each tagbettercycle-head encountered in
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the communication patterns of each process. This means that when a cycle breaks | main-
tain the elements of this cycle in memory for later references. The performance of the Tag-
bettercycle2 predictor is shown in Figure 6.9. The Tag-bettercycle2 predictor performs
well on all benchmarks. Its performance is the same as the Single-cycle and Tag-cycle2
predictors on the BT and PSTSWM. However, it has a better performance on the CG and a
lower performance on the SP relative to the Single-cycle predictor. The Tag-bettercycle2
predictor has a better performance on the SP application compared to the Tag-cycle2 pre-
dictor. I also found that the applications have very small number of tagbettercycle-heads

(at most 2) under the Tag-bettercycle2 predictor and different system sizes.

Tag-betttercycle2 predictor Tag-bettercycle2 predictor
1r &—b £ =

Hl Minimum A A
I Average
] Maximum

o
©
o
[

o
)
o
o

o
IS

Average hit-ratio
Average hit-ratio
o
~

-B- BT
—— SP
—# CG
—A— PSTSWM
BT SP CG PSTSWM 0 10 20 30 40 50 60 70

Number of processes
N = 64 for CG, and 49 for others

o
)
o
N

0

Figure 6.9: Effects of the Tag-bettercycle2 predictor on the applications

6.7 Message Predictors’ Comparison

Figure 6.10 presents a comparison of the performance of the predictors on the applica-
tions under some typical system sizes. As we have seen so far, Single-cycle, Tag-cycle2
and Tag-bettercycle2 all perform exceptionally well on the benchmarks. However, the per-
formance of the Single-cycle is better on the SP benchmark while Tag-cycle2 and Tag-

bettercycle2 have better performance on the CG benchmark.

6.7.1 Predictor's Memory Requirements

Table 6.1 compares the maximum memory requirement of the message predictors on
the application benchmarks when the number of processes is 64 for CG, and 49 for BT, SP,

and PSTSWM. | have found that the memory requirement of the predictors decrease grad-
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ually when the number of processes decreases. The numbers in the table are the multipli-
cation factor for the amount of storage needed to maintain the message 6-tuple sets. It is
quite clear that the memory requirements of the predictors is low. That makes them very
attractive for the implementation at the network interface. Comparatively, predictors (Sin-
gle-cycle, Tag-cycle, and Tag-bettercycle) need higher memory requirement for the
PSTSWM application. Although, the classical LRU, LFU, and FIFO heuristics need less
memory requirements, but as stated earlier, the beauty of the predictors lies on the fact that
they predict with high accuracy and transfer only one message to the cache which should
dramatically reduce the cache pollution effect, if any. This should also bring down the

software cost of the implementation.

Table 6.1:Memory requirements (in 6-tuple sets) for the predictors viher64
for CG, andN = 49 for BT, SP, and PSTSWM

BT SP CG | PSTSWM
Tagging 12 12 10 7
Single-cycle 43 43| 138 204
Tag-cycle2 60 72 40 693
Tag-bettercycle2 60 108 40 693

6.8 Summary

Communication latency adversely affects the performance of networks of worksta-
tions. A significant portion of the software communication overhead belongs to a number
of message copying operations. Ideally, it is very desirable to have a true zero-copy proto-
col where the message is moved directly from the send buffer in its user space to the
receive buffer in the destination without any intermediate buffering. However, this is not
always possible as a message may arrive at the destination where the corresponding
receive call has not been issued yet. Hence, the message has to be buffered in a temporary
buffer.

In this chapter of the dissertation, | have shown that there is a message reception com-
munication locality in message-passing applications. | have utilized the different predic-

tors proposed in Chapter 3 to predict the next receive call at the receiver side of
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communications. By predicting receive calls early, a process can perform the necessary
data placement upon message reception and move the message directly into the cache. |
presented the performance of these predictors on some parallel applications. The perfor-

mance results are quite promising and justify more work in this area.

| envision these predictors to be used to drain the network and place the incoming mes-
sages in the cache in such a way so as to increase the probability that the messages will

still be in cache when the consuming thread needs to access them.
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Chapter 7

Conclusions and Directions for Future Research

Parallel processing is the key to the design of high performance computers. However,
with the availability of fast microprocessors and small-scale multiprocessors, internode
communication has become an increasingly important factor that limits the performance
of parallel computers. In essence, parallel computers require extremely short communica-
tion latency such that network transactions have minimal impact on the overall computa-
tion time. This thesis uses a number of techniques to achieve efficient communications in

message-passing systems. This thesis makes five contributions.

The first contribution of this thesis is the design and evaluation of two different catego-
ries of prediction techniques for message-passing systems. | present evidence that mes-
sage destinations display a form of locality. This thesis utilizes the message destination
locality property of message-passing parallel applications to devise a number of heuristics

that can be used to predict the target of subsequent communication requests.

Specifically, | propose two sets of message destination predictpcte-Basegredic-
tors, which are purely dynamic predictors, afag-basedpredictors, which are static/
dynamic predictors. In cycle-based predictd8ggle-cycle, Single-cycle2, Better-cycle,
andBetter-cycle2predictions are done dynamically at the network interface without any
help from the programmer or compiler. In Tag-based predici@gging, Tag-cycle, Tag-
cycle2, Tag-bettercyclendTag-bettercycleZpredictions are done dynamically at the net-
work interface as well, but they require an interface to pass some information from the
program to the network interface. This can be done with the help of programmer or com-
piler through inserting instructions in the program suclp@sconnect (tag)The perfor-

mance of the proposed predictors, specially Better-cycle2 and Tag-bettercycle2, are very
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well on all application benchmarks. Meanwhile, the memory requirements of the predic-
tors is very low. The proposed predictors should be easily implemented on the network

interface due to their simple algorithms and low memory requirements.

The heuristics proposed are only possible because of the existence of communications
locality that can be used in establishing a communication pathway between a source and a
destination in reconfigurable interconnects before this pathway is to be used. This is a very
desirable property since it allows us to effectively hide the cost of establishing such com-
munications links, providing thus the application with the raw power of the underlying

hardware (e.g. a reconfigurable optical interconnect).

As the second contribution of this thesis, | show that the majority of reconfiguration
delays in single-hop reconfigurable networks can be hidden by using one of the proposed
high hit ratio predictors. In other words, by comparing the inter-send computation times of
some parallel benchmarks with some specific reconfiguration times, most of the time, we
are able to fully utilize these computation times for the concurrent reconfiguration of the
interconnect when we know, in advance, the next target using one of the proposed high hit
ratio target prediction algorithms. This thesis also states that by utilizing the predictors at
the send side of communications, applications at the receiver sides would also benefit as

messages arrive earlier than before.

As the third contribution of this thesis, | analyze a broadcasting algorithm that utilizes
latency hiding and reconfiguration in the network to speed the broadcasting operation
under single-port an#t-port modeling. In this algorithm, the reconfiguration phase of
some of the nodes is overlapped with the message transmission phase of the other nodes
which ultimately reduces the broadcasting time. The analysis brings up closed formula-

tions that yield the termination time of the algorithms.

The fourth contribution of this thesis is a new total exchange algorithm in single-hop
reconfigurable networks under single-port &abrt modeling. | conjecture that this algo-
rithm ensures a better termination time than what can be achieved by either of the direct,

and standard exchange algorithms.
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Ideally, message protocols should copy the message directly from the send buffer in its
user space to the receive buffer in the destination without any intermediate buffering.
However, Applications at the send side do not know the final receive buffer addresses and,
hence, the communication subsystems at the receiving end still copy messages unneces-

sarily at a temporary buffer.

This thesis presents evidence that there exists message reception communications
locality in message-passing parallel applications. Having message reception communica-
tions locality, the fifth contribution of this thesis is the use and evaluation of the proposed
predictors to predict the next consumable message at the receiving ends of communica-
tions. This thesis contributes by claiming that these message predictors can be efficiently
used to drain the network and cache the incoming messages even if the corresponding
receive calls have not been posted yet. This way, there is no need to unnecessarily copy the
early arriving messages into a temporary buffer. The performance of the proposed predic-
tors, Single-cycle, Tag-cycle2 and Tag-bettercycle2, on the parallel applications are quite
promising and suggest that prediction has the potential to eliminate most of the remaining

message copies.

7.1 Future Research

The proposed predictors in Chapter 3 of this thesis such as Tag-bettercycle2 and Bet-
ter-cycle2 perform exceptionally well on all applications except QCDMPI, under different
system sizes. It seems that this application repeatedly changes its message destinations in
different cycles that even the best proposed predictors cannot always capture them. Thus,
it might be helpful to devise other predictors, calklttcycle andTag-allcycle that could
maintain all cycles associated with each cycle-head and tagbettercycle-head found in the
communication traces of the applications. In case that these two predictors, All-cycle and
Tag-allcycle, have high memory requirements, it might be better to devise predictors that
fall somewhere between the extreme cases. That is, predictors that can maintain more than
one cycle but less than all of the cycles associated with each cycle-head and tagbettercy-
cle-head. Not to mention that searching in different cycles may add to the performance

penalty.



139

The Tag-based predictors proposed in Chapter 3 can be pure dynamic predictors if
another level of prediction is done on the tag themselves at the network interface. This
way, there is no need for the program to ppss-connect (tagjor pre-receive (tagps in
Chapter 6) information to the network interface. It is interesting to see what would be the

performance of suck-level Tag-basegredictors.

In Chapter 4, | roughly showed that up to 50% of the times applications at the receiv-
ing end might benefit when the predictors are applied at the send side of communications.
However, a trace-driven simulator should be written to precisely evaluate the effect that
applying the predictors at the send side has on the receive side, and on the total application

run-time.

This thesis in Chapter 5 analyzes efficient broadcasting/multi-broadcasting algorithms
that utilizes latency hiding to speed these operations. An optimal algorithm for multi-
broadcasting is to be devised such that messages are pipelined in the embedded trees using

the latency hiding broadcasting algorithni4§,, or Bg4). In this thesis, although algo-

rithms for scattering, all-to-all broadcasting, and total exchange are very efficient but they
do not use latency hiding technique. Although very challenging, efficient algorithms for
multicasting, scattering, all-to-all broadcasting, and total exchange should be devised such

that they use latency hiding technique to hide the reconfiguration delay in the network.

As stated in Chapter 6, by predicting receive calls early, a node can perform the neces-
sary data placement upon message reception and move the message directly into the cache
in such a way so as to increase the probability that the messages will still be in cache when
the consuming thread needs to access them. Further issues that should be investigated are
deciding where and how this message is to be moved in the cache. Would this cache be a
first-level cache, a second-level cache, a third-level cache or even a network-cache? What
mechanism should be used to transfer the message into the cache? User-level messaging
and/or multithreaded MPI environment. Meanwhile, efficient cache re-mapping and late
binding mechanisms need to be devised for when the receive call is posted. Also, cache

pollution and inaccurate timing are the other issues that should be addressed.
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The performance of the predictors proposed in this thesis were evaluated under single-
port modeling. That is the predictors predict one step ahead. However, Cycle-based pre-
dictors, Single-cycle, Single-cycle2, Better-cycle, and Better-cycle2, and Tagcycle-based
predictors, Tag-cycle, Tag-cycle2, Tag-bettercycle, and Tag-bettercycle2 maintain the
message destinations of a cycle. Therefore, it is possible to predict more than one step
ahead. It is interesting to find the performance of the predictors under such modeling in

terms of hit ratio, and for the total reconfiguration delays, and the application run time.

Finally, all the applications studied in this dissertation are scientific and engineering
ones. It is interesting to discover the impact of the predictors on the performance of com-

mercial applications.
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Appendix A

Removing Timing Disturbances

| wrote my own profiling codes using the wrapper facility of the MPI to gather the
communication traces, and the timing profiles of our application benchmarks. In this
appendix, | explain how | removed the timing disturbances from the timing profiles of the

applications.

Each inter-send computation time is the computation time between two successive

communication operations (send operations). In the following exartyplé; is the com-
putation time between two successiMP|_Sendoperations wherés is the time just

before the second call is issued witjés the time just after the first send call finishes.

t; MPI_Send (buf, count, datatype, dest, tag, comm); t

computation

tz MPI_Send (buf, count, datatype, dest, tag, commp); t

The example above has no other MPI calls between the two send primitives. In cases
that other MPI calls exist between successive send calls, we have to take out these extra
times to obtain the pure inter_send computation times. In the following example, two
other MPI callsMPI_IrecvandMPI_Wait exist.
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t; MPI_Send (buf, count, datatype, dest, tag, comm); t

computation

tz MPI_Irecv (buf, count, datatype, source, tag, comm, requegt); t

computation

ts MPI_Wait (request, status);q t

computation

t; MPI_Send (buf, count, datatype, dest, tag, comrg); t

Therefore, the pure computation time is equattet, - ((t4 - t3) + (tg - ts)). To com-
pute the pure inter-send computation times, | need to know the exact times before and
after each MPI call. For these, | did not insert ¥i®1_Wtimecall in the source codes of
the applications, but instead | wrote my own profiling codes to gather the timing traces.
Thus, each MPI call in the applications calls its own profiling code, as shown in the fol-

lowing example for th&1P1_Send
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t, MPI_Send (buf, count, datatype, dest, tag, comm); t

Profiling code
start_time [index] = MPI_Wtime(); t

PMPI_Send (buf, count, datatype, dest, tag, comm);

end_time [index] = MPI_Wtimeg); t

() index++;
(i) label = k;
return;

The MPI_Wtimecalls give the timest; andty before and after the profiling call,
PMPI_Sendrespectively, while what | really need are the timgandty, It is clear that

there are overheads entering and exiting the profiling code in addition to the overhead of
the instructions andii. | computed these extra overheads for each type of the MPI calls

used in the applications and took them out to find the pure inter-send computation times.
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