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Abstract
With the availability of fast microprocessors and small-scale multiprocessors, in

node communication has become an increasingly important factor that limits the pe

mance of parallel computers. Essentially, message-passing parallel computers r

extremely short communication latency such that message transmissions have m

impact on the overall computation time. This thesis concentrates on issues regarding

ware communication latency in reconfigurable networks (optical or electronic), and

ware communication latency regardless of the type of network.

The first contribution of this thesis is the design and evaluation of two different cat

ries of prediction techniques for message-passing systems. This thesis utilizes the co

nications locality property of message-passing parallel applications to devise a num

heuristics that can be used to predict the target of subsequent communication reques

to predict the next consumable message at the receiving ends of communications.

Specifically, I propose two sets of predictors: Cycle-basedpredictors, which are purely

dynamic predictors, andTag-basedpredictors, which are static/dynamic predictors. Th

performance of the proposed predictors, specially Better-cycle2 and Tag-bettercycle

very good on the application benchmarks studied in this thesis. The proposed pred

could be easily implemented on the network interface due to their simple algorithms

low memory requirements.

As the second contribution of this thesis, I show that the majority of reconfigura

delays in reconfigurable networks can be hidden by using one of the proposed hig

ratio predictors. The proposed predictors can be used in establishing a communi

pathway between a source and a destination before this pathway is to be used.

The third contribution of this thesis is the analysis of a broadcasting algorithm tha

lizes latency hiding and reconfiguration in a single-hop reconfigurable network to s

the broadcasting operation. The analysis brings up closed formulations that yields th

mination time.
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The fourth contribution of this thesis is a new total exchange algorithm in single-

reconfigurable networks. I conjecture that this algorithm ensures a better termination

than what can be achieved by either the direct or standard exchange algorithms.

The fifth contribution of this thesis is the use and evaluation of the proposed predi

to predict the next consumable message at the receiving ends of communications

thesis contributes by claiming that these message predictors can be efficiently us

drain the network and cache the incoming messages even if the corresponding r

calls have not been posted yet. This way, there is no need to copy the early arriving

sages into a temporary buffer. The performance of the proposed predictors, Single-

Tag-cycle2 and Tag-bettercycle2, on the parallel applications are quite promising and

gest that prediction has the potential to eliminate most of the remaining message co
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Chapter 1

Introduction

Research in the area of advanced computer architecture has been primarily focu

how to improve the performance of computers in order to solve computationally inten

problems [32, 62, 69]. Some of these problems are calledgrand challenges. A grand chal-

lenge is a fundamental problem in science or engineering that has a broad eco

and/or scientific impact; coupled fields, geophysical, and astrophysical fluid dyna

(GAFD) turbulence, modeling the global climate system, formation of the large scale

verse, global optimization algorithms for macromolecular modeling, petroleum expl

tion, aerodynamic simulations, ocean circulation, are just a few to mention.

The performance of processors is doubling each eighteen months [62]. However,

is always a demand for more computing power. To solve grand challenge problems,

puter systems at theteraflop ( floating point operations per second) andpetaflop

(  floating point operations per second) performance levels are needed.

Processors are becoming very complex and only a few companies are designin

processors. Therefore, it is not cost-effective to build high performance computers ju

using custom-design high performance processors. The trend is to design parallel co

ers using commodity processors to achieve teraflop and petaflop performance

instance, two major projects to develop high performance supercomputers in the US

the federal program inComputing, Information and Communications(CIC) project at the

national coordination office [98], and the Department of EnergyAccelerated Strategic

Computing Initiative(ASCI) program including Intel/Sandia Option Red, IBM/Lawrenc

Livermore National Laboratory Blue Pacific, and SGI/Los Alamos National Laborat

Blue Mountain [39].

10
12

10
15
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This should not give us the wrong impression that such high performance compu

often calledMassively Parallel Processor(MPP) systems, are only used for grand cha

lenges and parallel scientific applications. Even for applications requiring lower com

ing power, parallel computing is a cost-effective solution. These days, many

performance parallel computing systems are being used in network and commercial

cations such as data warehousing, internet servers, and digital libraries.

Parallel processing is at the heart of such powerful computers. Although paralle

appears at different levels for a single processor system, such as lookahead, pipe

superscalarity, speculative execution, vectorization, interleaving, overlapping, multipl

time sharing, multitasking, multiprogramming, and multithreading, but it is the para

processing and parallel computing among different processors which brings us such

of performance.

Basically, a parallel computer is a “collection of processing elements that comm

cate and cooperate to solve large problems fast” [9]. In other words, a parallel comp

whethermessage-passingor distributed shared-memory(DSM), is a collection of com-

plete computers, including processor and memory, that communicate through a ge

purpose, high-performance, scalable interconnection network using acommunication

assist (CA) and/or anetwork interface (NI) [32], as shown in Figure 1.1.

$
$

P
PCommunication

Assist/

Memory

Network Interface

Figure 1.1:A generic parallel computer

Interconnection Network

P: Processor
$: Cache
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orks.
Message-passing multicomputers,among all known parallel architectures, are the be

to achieve such computing performance level. Message-passing multicomputers are

acterized by the distribution of memory among a number of computing nodes that

municate with each other by exchanging messages through their interconne

networks. Each node has its own processor, local memory, and communication assi

work interface. All local memories are private and are accessible only by the local pro

sors. The wide acceptance of message-passing multiprocessor systems has been pr

the introduction ofMessage Passing Interface(MPI) standard [92, 93]. Currently, in addi

tion to vendor implementations of MPI on commercial machines, there are many fr

available MPI implementations including MPICH [57] and LAM/MPI [78].

Recently,Networks of Workstations(NOW) [11], Clusters of Workstations(COW),

andClusters of Multiprocessors(CLUMP) [87], have been proposed to build inexpensi

parallel computers, however, often at a lower performance level compared to MPP

tems. The development of high-performance switches specially for building cost-effe

interconnects known asSystem Area Networks(SAN) [23, 67, 113, 54] has motivated suit

ability of the networks of workstation/multiprocessors as an inexpensive high-pe

mance computing platform. System area networks such as the Myricom Myrinet [23]

IBM Vulcan switch in the IBM SP2 machine [113], the Tandem ServerNet [67], and

Spider switch in SGI Origin 2000 machine [54], are a new generation of networks

falls between memory buses and commercial local area networks (LANs).

Parallel processing, whether MPP, DSM, NOW, COW, or CLUMP, puts tremend

pressure on the interconnection networks and the memory hierarchy subsystems.

communication overhead is one of the most important factors affecting the performan

parallel computers [76, 69, 43], there has been a growing interest in the design of inte

nection networks. In this respect, various types of interconnection networks, such as

plete networks, hypercubes, meshes, rings, tori, irregular switch-based, stack-graph

hypermesh have been proposed and some of them have been implemented [46, 124

Meanwhile, many routing algorithms [47, 56, 12] have been proposed for such netw
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In parallel processing systems, the ability to efficiently communicate and share

between processors is very critical to obtaining high performance. In essence, pa

computers require extremely short communication latencies such that network tra

tions have minimal impact on the overall computation time. Communication hardw

latency, communication software latency, and the user environment (multiprogramm

multiuser) are the major factors affecting the performance of parallel computer sys

This thesis concentrates on issues regarding hardware communication latency in

tronic networks and reconfigurable optical networks, and software communication lat

(regardless of the type of network).

In this thesis, I propose a number of techniques to achieve efficient communicatio

message-passing systems. This thesis makes five contributions:

• The first contribution of this thesis (Chapter 3) is the design and evaluation of

different categories of prediction techniques for message-passing systems. S

cally, I use these predictors to predict the target of communication messag

parallel applications.

• As the second contribution of this thesis (Chapter 4), I show that the majorit

reconfiguration delays in reconfigurable networks can be hidden by using on

the high hit ratio proposed predictors in Chapter 3.

• The third contribution of this thesis (Chapter 5) is the analysis of a latency hid

broadcasting algorithm on single-hop reconfigurable networks under single

andk-port modeling which brings up closed formulations that yield the termin

tion time.

• As the fourth contribution of this thesis (Chapter 5), I propose a new to

exchange algorithm in single-hop reconfigurable networks under single-port ak-

port modeling.

• Finally, the fifth contribution (Chapter 6) is the use and evaluation of the propo

predictors in Chapter 3 to predict the next consumable message at the rece

ends of message-passing systems (regardless of the type of network). I argu
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these message predictors can be efficiently used to drain the network and cac

incoming messages even if the corresponding receive calls have not been p

yet.

Chapter 2 introduces the parallel applications used in this thesis. Chapter 7 conc

this dissertation and gives directions for future research. Appendix A describes how

ing disturbances have been removed from the timing profiles of the parallel applica

used in this thesis.

The rest of this chapter is organized as follows. In Section 1.1, I explain the comm

cation locality in message-passing parallel applications and discuss different latenc

ing techniques for parallel computer systems. In Section 1.2, I discuss the advanta

using prediction techniques at the send side of communications in the reconfigurable

cal interconnection networks, and in the circuit switched and wormhole routing electr

interconnection networks. In Section 1.3, I describe the issues related to the mess

layer and software communication overhead in message-passing systems, and how

tion can help eliminate redundant message copying operations. I give an introducti

the issues regarding collective communications in Section 1.4. Finally, I summariz

contributions of this thesis in Section 1.5.

1.1 Communications Locality and Prediction Techniques

In this thesis, I am interested in the message-passing model of parallelism as me

passing parallel computers scale much better than the shared-memory parallel com

Communication properties of message-passing parallel applications can be categori

thespatial, temporal, andvolumeattributes of the communications [30, 75, 68]. The tem

poral attribute of communications in parallel applications characterizes the rate of

sage generation, and the rate of computations in the applications. The volum

communications is characterized by the number of messages, and the distribution o

sage sizes in the applications.
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The Spatial attribute of communications in parallel applications is characterized b

distribution of message destinations. Point-to-point communication patterns may be

itive in message-passing applications as most parallel algorithms consist of a numb

computation and communication phases. Several researchers have worked to find

thecommunications locality properties of parallel applications [30, 75, 68, 36, 37].

By message destination communication locality, I mean that if a certain source-dest

nation pair has been used it will be re-used with high probability by a portion of code

is “near” the place that was used earlier, and that it will be re-used in the near future

message reception communication localityI mean that if a certain message reception c

has been used it will be re-used with high probability by a portion of code that is “ne

the place that was used earlier, and that it will be re-used in the near future.

Traditionally, one approach to deal with communication latency is totolerate the

latency; that is, hide the latency from the processor’s critical path by overlapping it

other high latency events, or hide it with computations. The processor is then free

other useful tasks.

Three approaches can be used to tolerate latency in shared-memory and messag

ing systems [32]. They areproceeding past communication in the same thread, multi-

threading,andprecommunication. The first approach, proceeding past communication

the same thread in message-passing systems, is to make communication message

chronous and proceed past them either to other asynchronous communication mes

or to the computation in the same thread. This approach is usually used by the pa

algorithm designers. Some of the applications studied in this thesis use this type of la

tolerance by using nonblocking asynchronous MPI calls.

In multithreading, a thread issuing a communication operation suspends itself an

another thread run. This approach is used for other threads too. It is hoped that wh

first thread is rescheduled, its communication operations have concluded. Multithre

can be done in software or hardware. Software multithreading is very expensive. S

hardware multithreading research architectures for message-passing systems such a

Machine [35], and the M-Machine [52] have been reported.
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In precommunication, communication operations are pulled up from the place

communications naturally occur in the program so that it is partially or entirely comple

before data is needed. This can be done in software by inserting aprecommunication oper-

ation, or in hardware, bypredicting the subsequent communication operations and is

them early.

Precommunication is common in receiver-initiated communications (that is, in sha

memory systems) where communication commences when a data is needed such a

operation. Insoftware-controlled prefetching, the programmer or the compiler decide

when and what to prefetch by analyzing the program and then insertingprefetchinstruc-

tions before the actual data request in the program [95]. Inhardware-controlled prefetch-

ing, dedicated hardware is used to predict the future accesses of sharing pattern

coherence activities by looking at their observed behavior [96, 77, 73, 133, 34, 107]. T

there is no need to add instructions to the program. These techniques assume that m

accesses and coherence activities in the near future will follow past patterns. The

hardware prefetches the data based on its prediction.

In sender-initiated systems (that is, in message-passing systems), it is usually di

to do the communication operation earlier at the send sides and thus hide the latenc

is because message communication is naturally initiated to transfer the data when th

is produced. However, messages may arrive earlier at the receiver than it is needed

leads to a precommunication for the receiver side of communication.

As far as the author is aware, no precommunication technique has been propos

message-passing systems. Predictions techniques can be used to predict the sub

message destinations, and message reception calls in message-passing systems. T

sis, for the first time, proposes and evaluates two categories of pattern-based pred

namely,Cycle-basedpredictors, andTag-basedpredictors for message-passing system

These predictors can be used dynamically (at the send side or receive side of comm

tions) at the communication assist or network interface with or without the help of a

grammer or the compiler.
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1.2 Using the Proposed Predictors at the Send Side

In the following, I explain how message destination prediction can be helpful in hid

the reconfiguration delay in single-hop and multi-hop reconfigurable optical intercon

tion networks, and in hiding path setup time in circuit switched electronic networks. I

describe the benefit of message destination prediction techniques to reduce the late

communications in current commercial wormhole routed networks.

The interconnection network plays a key role in the performance of message-pa

parallel computers. A message is sent from a source to a destination through the int

nection network. High communication bandwidth and low communication latency

essential for efficient communication between a source and a destination. However,

munication latency is the most important factor affecting the performance of mess

passing parallel computers. In this thesis, I am interested in hiding and reducing the

munication latency. Two categories of interconnection networks exist: electronic inter

netcion networks, and optical interconnection networks. I have developed predi

techniques that can be applied to both electronic and optical interconnection networ

The proposed predictors can be used to set up the paths in advance in electron

works using either circuit switching orwave switching. In circuit-switching, the routing

header flit progresses through the message destination and reserves physical links

switching is a hybrid switching technique for high performance routers in electronic in

connection networks. Wave switching combines wormhole switching and circuit sw

ing in the same router architecture to reduce the fixed overhead of communication la

by exploiting communication locality. Hence, it is possible to hide the hardware comm

cation latency using message destination predictions to pre-establish physical circu

circuit switching and wave switching networks.

The predictors can even be useful to reduce communication latency in current

mercial networks. For example, Myrinet networks [23] have a relatively long routing t

compared with link transmission time. Predictors would allow sending the message h

in advance for the predicted message destination. When data becomes available, th
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be directly transmitted through the network if the prediction was correct, thus redu

latency significantly. In case of mis-prediction, a message tail is forwarded to tear the

down. Obviously, null messages must be discarded at the destination.

Optics is ideally suited for implementing interconnection networks because o

superior characteristics over electronic interconnects such as higher bandwidth, g

number of fan-ins and fan-outs, higher interconnection densities, less signal cros

freedom from planar constraint as it can easily exploit the third spatial dimension w

dramatically increases the available communication bandwidth, lower signal and c

skew, lower power dissipation, inherent parallelism, immunity from electromagnetic in

ference and ground loops, and suitability for reconfigurable interconnects [100, 51, 7

50, 129, 82, 19].

Future massively parallel computers might benefit from using reconfigurable op

interconnection networks. Currently, there are some problems with the optical inter

nect technology. Signal attenuation, optical element aligning, low conversion

between electronics to photonics and vice versa, and high reconfiguration delay are

disadvantages of optics which are mostly due to its relatively immature technology. H

ever, this technology is maturing fast. As an example,Lucent’s WaveStar LambdaRoute

[86] relies on an array of hundreds of electrically configurable microscopic mirrors fa

cated on a single substrate so that an individual wavelength can be passed to any

input and output fibers.

As stated above, the reconfiguration delay in reconfigurable optical interconne

networks is currently very high. The proposed message destination predictors can b

ciently used to hide the reconfiguration delay in the single-hop and multi-hop reco

urable optical interconnection networks concurrently to the computations [127, 84].

1.3 Redundant Message Copying in Software Messaging Layers

The communication software overhead currently dominates the communication

in cluster of workstations/multiprocessors. Crossing protection boundaries several

between the user space and the kernel space, passing several protocol layers, and in

a number of memory copying are three different sources of software communication
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Several researchers are working to minimize the cost of crossing protection bo

aries, and using simple protocol layers by utilizinguser-level messagingtechniques such

as Active Messages(AM) [125], Fast Messages(FM) [102], Virtual Memory-Mapped

Communications(VMMC-2) [48], U-Net [126], LAPI [110], Basic Interface for Parallel-

ism (BIP) [105],Virtual Interface Architecture (VIA) [49], andPM [121].

A significant portion of the software communication overhead belongs to a numb

message copying operations. Ideally, message protocols should copy the message

from the send buffer in its user space to the receive buffer in the destination withou

intermediate buffering. However, applications at the send side do not know the

receive buffer addresses and, hence, the communication subsystems at the receiv

still copy messages at a temporary buffer.

Several research groups have tried to avoid memory copying [79, 14, 106, 119,

They have been able to remove the extra memory copying operations between the ap

tion user buffer space and the network interface at the send side. However, they h

been able to remove the memory copying at the receiver sides. They may achieve a

copy messaging at the receiver sides only when the receive call is already posted,

dez-vous type communication is used for large messages, or the destination buffer a

is already known by an extra communication (pre-communication). However, the pre

tors proposed in this dissertation can be efficiently used to predict the next message

tion calls and thus move the corresponding incoming messages to a place near th

such as a staging cache.

1.4 Collective Communications

Communication operations may be eitherpoint-to-point, which involve a single source

and a single destination, orcollective, in which more than two processes participate. Co

lective communications are common basic patterns of interprocessor communicatio

are frequently used as building blocks in a variety of parallel algorithms. Proper im

mentation of these basic communication operations is a key to the performance of th
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allel computers. Therefore, there has been a great deal of interest in their design a

study of their performance. Excellent surveys on collective communication algorithms

be found in [90, 53, 61].

Collective communication operations can be used for data movement, process co

or global operations. Data movement operations include,broadcasting, muticasting, scat

tering, gathering, multinode broadcasting,andtotal exchange. Barrier synchronization, is

a type of process control. Global operations includereduction, andscan. The growing

interest in collective communications is evident by their inclusion in the Message Pa

Interface (MPI) [93, 92].

1.5 Thesis Contributions

In Chapter 2, I describe the applications used in this thesis along with the poin

point communication primitives that they use. I explain the experimental methodo

used to collect the communication traces of the applications.

In Chapter 3, I introduce a complete interconnection network using free-space re

figurable optical interconnects for message-passing parallel machines. A computing

in this parallel machine configures its communication link(s) to reach to its destina

node(s). Then it sends its message(s) over the established link(s).

I characterize some communication properties of the parallel applications by pre

ing their communication frequency and message destination distributions. I defin

concept of communication locality in message-passing parallel applications, and ca

in reconfigurable networks. I present evidence, using classical memory hierarchy h

tics, LRU, LFU, andFIFO, that there exists message destination communication loca

in the message-passing parallel applications.

The first contribution of this thesis (Chapter 3) is the design and evaluation (in term

hit-ratio) of two different categories of hardware/software communication latency hid

predictors for such reconfigurable message-passing environments. I have utilized the

sage destination locality property of message-passing parallel applications to dev

number of heuristics that can be used topredict the target of subsequent communicatio
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calls. This technique, can be applied directly to reconfigurable interconnects to hid

communications latency by reconfiguring the communications network concurrent

the computation.

Specifically, I propose two sets of message destination predictors: Cycle-basedpredic-

tors, which are purely dynamic predictors, andTag-basedpredictors, which are static/

dynamic predictors. In cycle-based predictors,Single-cycle, Single-cycle2, Better-cycl

andBetter-cycle2, predictions are done dynamically at the network interface without a

help from the programmer or compiler. In Tag-based predictors,Tagging, Tag-cycle, Tag-

cycle2, Tag-bettercycle,andTag-bettercycle2, predictions are done dynamically at the ne

work interface as well, but they require an interface to pass some information from

program to the network interface. This can be done with the help of a programmer o

compiler through inserting instructions in the program such aspre-connect (tag)(or

pre-receive (tag)as in Chapter 6). The performance of the proposed predictors, Be

cycle2 and Tag-bettercycle2, is very high and prove that they have the potential to hid

hardware communication latency in reconfigurable networks. The memory requirem

of the predictors is very low. That makes them very attractive for the implementatio

the communication assist or network interface.

In order to efficiently use the proposed predictors in Chapter 3 to hide the hard

latency of the reconfigurable interconnects, enough lead time should exist such th

reconfiguration of the interconnect be completed before the communication req

arrives. In Chapter 4, I present the pure execution times of the computation phases

parallel applications on the IBM Deep Blue machine at the IBM T. J. Watson Rese

Center using its high-performance switch and under the user space mode.

As the second contribution of this thesis, Chapter 4 states that by comparing the

send computation times of these parallel benchmarks with some specific reconfigu

times, most of the time, we are able to fully utilize these computation times for the con

rent reconfiguration of the interconnect when we know, in advance, the next target

one of the proposed high hit ratio target prediction algorithms introduced in Chapte

present the performance enhancements of the proposed predictors on the appl
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benchmarks for the total reconfiguration time. Finally, I show that by applying the pre

tors at the send sides, applications at the receiver sides would also benefit as me

arrive earlier than before.

As the third contribution of this thesis (Chapter 5), I present and analyze a broad

ing algorithm that utilizes latency hiding and reconfiguration in the network to speed

broadcasting operation under single-port andk-port modeling. In this algorithm, the

reconfiguration phase of some of the nodes is overlapped with the message transm

phase of the other nodes which ultimately reduces the broadcasting time. The an

brings up closed formulation that yields the termination time of the algorithm.

The fourth contribution of this thesis (Chapter 5) is acombined total exchange algo

rithm based on a combination of thedirect [109, 120], andstandard exchange[71, 24]

algorithms. This ensures a better termination time than that which can be achieve

either of the two algorithms. Also, known algorithms [20, 40] for scattering and all-to

broadcasting have been adapted to the network.

In Chapter 6, I present the frequency and distributions of receive communication

in the applications. I present evidence that there exists message reception communic

locality in the message-passing parallel applications. As I stated earlier, the commu

tion subsystems at the receiving end still copy early arriving messages unnecessari

temporary buffer. As far as the author is aware, no prediction techniques have bee

posed to remove this unnecessary message copying.

I use the proposed predictors introduced in Chapter 3 to predict the next consum

message, and to thus establish the existence of message reception communication

ity. As the fifth contribution of this thesis, Chapter 6 argues that these message pred

can be efficiently used to drain the network and cache the incoming messages even

corresponding receive calls have not been posted yet. This way, there is no need to u

essarily copy the early arriving messages into a temporary buffer.

The performance of the proposed predictors, Single-cycle, Tag-cycle2 and

bettercycle2, in terms of hit ratio, on the parallel applications are quite promising and

gest that prediction has the potential to eliminate most of the remaining message c
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implement. Finally, I discuss ways in which these predictions could be used to drasti

reduce the latency due to message copying.

In Chapter 7, I conclude this thesis and give some directions for future research.
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Chapter 2

Application Benchmarks and Experimental
Methodology

In Section 2.1, I describe the applications used in this thesis. I explain the va

point-to-point message-passing primitives of the applications in Section 2.2. I discus

experimental methodology in Section 2.3.

2.1 Parallel Benchmarks

This thesis (except Chapter 5) studies the computation and communication char

istics of actual parallel applications. For these studies, I have used some well-known

lel benchmarks form theNAS parallel benchmarks(NPB) suite [13], theParallel Spectral

Transform Shallow Water Model(PSTSWM) parallel application [125], and the pur

Quantum Chromo Dynamics Monte Carlo Simulation Codewith MPI (QCDMPI) parallel

application [65]. Although the results presented in this thesis are for the above pa

applications, these applications have been widely used as benchmarks represent

computations in scientific and engineering parallel applications.

I used the MPI [92] implementation of the NAS benchmarks, version 2.3,

PSTSWM, version 6.2, and the QCDMPI, version 1.4, and run them on several IBM

machines. I chose the IBM SP2 as it is a message-passing parallel machine so that th

sen parallel applications are mapped directly on it. I used different system sizes and

lem sizes of the applications in this study. NPB 2.3 comes with five problem sizes for

benchmark: small class “S”, workstation class “W”, large class “A” and larger classes

and “C”. Due to access limitations in the use of the IBM Deep Blue machine at the IBM

J. Watson Research Center, and space limitations in using the University of Victoria

SP2, I was able to experiment with only the “W” and “A” classes and the results inclu

in this thesis represent theses classes.
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2.1.1 NPB: NAS Parallel Benchmarks Suite

The NAS Parallel Benchmarks (NPB) [13] have been developed at the NASA A

Research Center to study the performance of massively parallel processor system

networks of workstations. The NAS Parallel Benchmarks are a set of eight bench

problems, each of which focuses on some important aspect of highly parallel super

puting for aerophysics applications. The NPB are a set of implementations of the

Parallel Benchmarks based on Fortran 77 and the MPI message-passing interfac

dard, and are not tied to any specific system.

The NPB consists of five “kernels”, and three “simulated computational fluid dyna

(CFD) applications”. The three simulated CFD application benchmarks,lower-upper

diagonal (LU), scalar pentadiagonal(SP), andblock tridiagonal (BT) are intended to

accurately represent the principal computational and data movement requirements o

ern CFD applications. The kernels,conjugate gradient(CG),multigrid (MG), embarrass-

ingly parallel (EP), 3-D fast-Fourier transform(FT), andinteger sort(IS) are relatively

compact problems, each of which emphasizes a particular type of numerical comput

I am interested in the point-to-point patterns of the LU, BT, and SP applications, and

and MG kernels. EP, FT, and IS kernels are not suitable for this study. EP and FT use

collective communication operations while each node in the IS kernel always comm

cates with a specific node.

2.1.1.1 CG

The conjugate gradientkernel, CG, tests the performance of the system for unstr

tured grid computations which by their nature require irregular long distance commu

tions which is a challenge for all kinds of parallel computers. Essentially, it requ

computing a sparse matrix-vector product. The inverse power method is used to fi

estimate of the largest eigenvalue of a symmetric positive-definite sparse matrix w

random pattern of non-zeros. This code requires a power-of-two number of process
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2.1.1.2 MG

The second kernel benchmark is a simplifiedmultigrid kernel, MG, which solves a

3-D poisson PDE. Four iterations of the V-cycle multigrid algorithm are used to obtai

approximate solutionu to the discrete Poisson problem on a

grid with periodic boundary conditions. This code is a good test of both short and long

tance highly structured communication. This code requires a power-of-two number of

cessors. The partitioning of the grid onto processors occurs such that the gr

successively halved, starting with thez dimension, then they dimension and then thex

dimension, and repeating until all power-of-two processors are assigned.

2.1.1.3 LU

The lower-upper diagonalbenchmark, LU, employs a symmetric successive ov

relaxation (SSOR) numerical scheme to solve a regular-sparse block lower

upper triangular system. A 2-D partitioning of the grid onto processors occurs by ha

the grid repeatedly in the first two dimensions, alternatelyx and theny, until all power-of-

two processors are assigned, resulting in vertical pencil-like grid partitions on the ind

ual processors. The ordering of point based operations constituting the SSOR proc

proceeds on diagonals which progressively sweep from one corner on a givenz plane to

the opposite corner of the samezplane, thereupon proceeding to the nextzplane. Commu-

nication of partition boundary data occurs after completion of computation on all dia

nals that contact an adjacent partition. LU is very sensitive to the small-mes

communication performance of an MPI implementation. It is the only benchmark in

NPB 2.3 suite that sends large numbers of very small (40 byte) messages.

2.1.1.4 BT and SP

The BT and SP algorithms have a similar structure: each solves three sets of unco

systems of equations, first in thex, then in they, and finally in thez direction. In theblock

tridiagonal benchmark, BT, multiple independent systems of non-diagonally domin

block tridiagonal equations with a block size are solved. In thescalar pentadiago-

nal benchmark, SP, multiple independent systems of non-diagonally dominant, scala

∇2
u v= 256 256× 256×

5 5×

5 5×



18

uire a

arallel

then

ut are

nne

l algo-

using

ithms

dels.

e, as

ritten

es. I

PI

mo

tur-

as the

are

tition-
tadiagonal equations with a block size are solved. Both BT and SP codes req

square number of processors. These codes have been written so that if a given p

platform only permits a power-of-two number of processors to be assigned to a job,

unneeded processors are deemed inactive and are ignored during computation, b

counted when determining Mflop/s rates.

2.1.2 PSTSWM

TheParallel Spectral Transform Shallow Water Model (PSTSWM) application [125],

was developed by Worley at Oak Ridge National Laboratory and Foster at Argo

National Laboratory. PSTSWM is a message-passing benchmark code and paralle

rithm testbed that solves the nonlinear shallow water equations on a rotating sphere

the spectral transform method. PSTSWM was developed to evaluate parallel algor

for the spectral transform method as it is used in global atmospheric circulation mo

Multiple parallel algorithms are embedded in the code and can be selected at run-tim

can the problem size, number of processors, and data decomposition. PSTSWM is w

in Fortran 77 with VMS extensions and a small number of C preprocessor directiv

used the MPI implementation of the PSTSWM with the default input sizes.

2.1.3 QCDMPI

Pure Quantum Chromo Dynamics Monte Carlo Simulation Code with M

(QCDMPI) [65], written by Hioki at Tezukayama University, is a pure Quantum Chro

Dynamics simulation code with MPI calls. It is a powerful tool to analyze the non-per

bative aspects of QCD. This program can be applied to any dimensional QCD such

3-dimensional QCD in which the color and/or quark confinement mechanism

obtained. QCDMPI runs on any number of processors and also any dimensional par

ing of the system can be applied.

5 5×
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2.2 Applications’ Communication Primitives

As stated earlier, I am only interested in the patterns of the point-to-point commun

tions between pair-wise nodes in the above applications as discussed in Chapter 3, C

4, and Chapter 6 of this thesis. Efficient algorithms for collective communications are

sented in Chapter 5. These applications use synchronous and asynchronous MPI se

receive primitives [92]. I briefly explain these communication primitives here.

An MPI program consists of autonomous processes, executing their own code,

multiple instructions multiple data(MIMD) style. Note that all parallel applications stud

ied in this thesis use ansingle program multiple data(SPMD) style. Processes are ident

fied according to their relative rank in a group, that is, consecutive integers in the ran

to groupsize- 1. If the group consists of all processes then the processes are ranked f

to N - 1 whereN is the total number of processes in the application.

The processes communicate via calls to MPI communication primitives. The b

point-to-point communication operations aresendand receive. There are two genera

point-to-point communication operations in MPI:blocking and nonblocking. Blocking

send or receive calls will not return until the parameters of the calls can be safely m

fied. That is, in the case of a send call, themessage envelophas been created and the me

sage has been sent out or has been buffered into a system buffer. For the case of a

call, it means that the message has been received into the receive buffer. Note that th

sage envelop consists of a fixed number of fields (source, dest, tag, comm) and it is used to

distinguish messages and selectively receive them. Nonblocking communication o

tions just post or start the operation. Thus the application programmer must expl

complete the communication call later at some point in the program using one of the

ous function calls in MPI such asMPI_Wait or MPI_Waitall.

There are four communication modes in MPI:standard, buffered, synchronous, and

ready. These correspond to four different types of send operations. In the synchro

mode send call, the call will not finish until a matching receive call has been issued

has begun reception of the message. In the buffered mode send call, the send call i

(in contrary to other communication modes where the send calls are nonlocal) and



20

ll is

lier. In

onous

ll

mple-

, data

nous

, and

ed. It

tion

omm,

ssage

and
waiting for the receive call to be posted. Actually, it buffers data when the receive ca

not posted. In the ready mode send call, the receive call must have been posted ear

the standard mode, it is up to the system to buffer the data or send it as in synchr

mode. Note that the standard mode is the only mode for the receive calls.

2.2.1 MPI_Send

MPI_Send (buf, count, datatype, dest, tag, comm)[92] is a standard blocking send ca

which is a combination of buffered and synchronous mode and is dependent on the i

mentation. When the call finishes, the send buffer can be used. In the buffered mode

is written from the send buffer to the system buffer and the call returns. In the synchro

mode, the call waits for the receiver to be posted and then returns. The LU, MG, CG

PSTSWM applications use this type of send call.

2.2.2 MPI_Isend

MPI_Isend (buf, count, datatype, dest, tag, comm, request)[92] is a standard non-

blocking send call. It returns immediately. Therefore, the send buffer cannot be reus

can be implemented in the buffered or synchronous mode. It needs another call,MPI_Wait

or MPI_Waitall, to complete the call. These completion calls are explained later in Sec

2.2.6 and Section 2.2.7, respectively. BT and SP use this type of send call.

2.2.3 MPI_Sendrecv_replace

MPI_Sendrecv_replace (buf, count, datatype, dest, sendtag, source, recvtag, c

status)[92] combines in one call the sending of a message and receiving another me

in the same buffer. QCDMPI uses this type of communication call.

2.2.4 MPI_Recv

MPI_Recv (buf, count, datatype, source, tag, comm, status)[92] is a standard blocking

receive call. When it returns, the data is available at the destination buffer. LU

PSTSWM use this type of receive call.
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2.2.5 MPI_Irecv

MPI_Irecv (buf, count, datatype, source, tag, comm, request)[92] is a standard non-

blocking receive call. It immediately posts the call and returns. Hence, data is not ava

at the time of return. It needs another completion call such asMPI_Waitor MPI_Waitall to

complete this call. All applications except QCDMPI use this type of receive call.

2.2.6 MPI_Wait

A call to MPI_Wait (request, status)[92] returns when the operation identified b

requestis complete. ForMPI_Isendoperation, whenMPI_Waitreturns the send buffer can

be reused. ForMPI_Recvoperation, the completion of theMPI_Wait call notifies the

availability of the data at the receive buffer. BT, LU, MG, CG, PSTSWM applications

use this type of completion call.

2.2.7 MPI_Waitall

MPI_Waitall (count, array_of_requests, array_of_statuses)[92] waits for the comple-

tion of all nonblocking calls associated with the active handles in the list. BT and SP

this type of completion call.

2.3 Experimental Methodology

I executed the applications on the 12-node IBM SP2 machine at the University of

toria for gathering their communication traces, and on the 30-node IBM Deep Blue a

IBM T. J. Watson Research Center for collecting their timing profiles. I wrote my o

profiling codes using the wrapper facility of the MPI to gather the communication tra

and the timing profiles of these applications. I did this by inserting monitor operation

the profiling MPI library for the communication related activities. These operati

include arithmetic operations for the calculation of the desired characteristics. It is w

mentioning that gathering communication traces does not affect the communication

terns of these applications. However, it affects the temporal properties of these ap

tions. In Appendix A, I explain the approach used to remove the timing disturbances

the timing profiles of the applications.
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Chapter 3

Design and Evaluation of Latency Hiding/Reduction
Message Destination Predictors

Interconnection networks and their services such as message delivery and flow c

are a major source of communication hardware latency in parallel computer system

Section 3.1, I briefly describe message-passing computers and message switching

Then, as a specific circuit switched interconnection network, I introduce areconfigurable

optical network, RON(k, N), for message-passing parallel computers. The advantage

such reconfigurable optical interconnects are their high bandwidth and their ability to

vide versatile application-dependent network reconfigurations.

I characterize some communication properties of the parallel application benchm

by presenting their communication frequency and message destination distributio

Section 3.2. I define the concept ofcommunication localityin message-passing paralle

applications, andcaching in reconfigurable networks in Section 3.3. I present eviden

that there exists message destination communication locality in the message-passin

allel applications in Section 3.3.1. Using classical replacement heuristics,LRU, LFU,and

FIFO, I show that message destinations display a form of locality.

I have utilized the message destination locality property of message-passing pa

applications to devise a number of heuristics that can be used topredict the target of sub-

sequent communication requests. Thus, in Section 3.4, I contribute by proposing and

uating (in terms of hit ratio) two different categories of hardware/softwarecommunication

latency hiding predictorsfor message-passing environments. By utilizing such predicto

the hardware communication latency in reconfigurable interconnects can be effec

hidden by reconfiguring the communication network concurrent to the computatio
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compare the performance and storage requirements of the proposed predictors in S

3.5. In Section 3.6, I elaborate on how these predictors can be used and integrated in

network interfaces. Finally, I summarize this chapter in Section 3.7.

3.1 Introduction

Message-passing multicomputers are composed of a number of computing mo

that communicate with each other by exchanging messages through their interconn

networks. Each computing module has its own processors, local memory, and com

cation assist/network interface. All local memories are private and are accessible on

the local processors. Communication hardware latency, communication software la

and the user environment (multiprogramming, multiuser) are the major factors affe

the performance of message-passing parallel computer systems.

Interconnection networks, and their services such as message delivery and flow c

are a major source of communication hardware latency. Essentially, an interconne

network is characterized by itstopology, switching strategy, flow control mechanism, and

routing algorithm. The topology is the physical structure of the network. The interconn

tion network [46] might be a shared-medium network (such as Ethernet, Token Rin

direct network (such as mesh, torus), an indirect network (multistage interconnection

work such as IBM SP [112], or irregular such as Myrinet [23]), or a hybrid network (s

as hypermesh) [117].

The routing algorithm determines which routes messages should follow through

network to reach their destinations. There are many different routing algorithms with

ferent guarantees and performance such as Duato’s adaptive routing [47], Glass an

turn-model routing [56], and up*-down* routing [12].

The flow control mechanism determines when the message, or packet, or portio

message should move along its route. Packets or flits may be blocked, buffered, disc

or detoured to an alternate route based on the flow control mechanism.
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3.1.1 Message Switching Layers

The switching strategy determines how a message moves along its routes. The

many switching strategies.Circuit switching, packet switching, virtual cut-through,and

wormhole switchingare the basic switching strategies [46]. In packet switching, messa

are divided into fixed-size packets. Each packet is routed individually from source to

tination and has to be buffered in each intermediate node. It is also calledstore-and-for-

ward switching. In virtual cut-through switching, the entire packet does not need to

buffered in the nodes. The packet header can be examined and after the routing dec

made and the output channel is free the header and the following data can be immed

transmitted. In wormhole switching, the packet is broken up into flits. Wormhole swi

ing pipelines the flits through the network just like the virtual cut-through switching st

egy but it has reduced buffer requirements.

In circuit switching, a physical path is reserved from a source to a destination be

the actual message transmission takes place. The routing header is injected into th

work. It reserves physical links as it is transmitted through intermediate nodes. A c

plete path is set up when the routing header reaches the destination. The

acknowledgment is transmitted back to the source. Then, the message contents can

along the reserved channels. The disadvantage is that during message transmissio

messages may be blocked. The advantage is the minimum message transfer latenc

physical path is already established.

In Chapter 3 through Chapter 5 of this thesis, I am interested in the circuit switc

strategy. As I explain later in Section 3.3, message destinations in message-passing

lel applications display a form of locality. Thus, it is possible to use this communica

locality to pre-establish the physical links and thus hide the path setup time. This ap

both to the electronic circuit switched interconnection networks, and to the reconfigu

optical interconnection networks. However, as I describe in Section 3.4, the predi

techniques that I propose in this chapter would also reduce the communication tim

wormhole routed networks. In the next section, I consider a circuit switched reco

urable optical interconnection network as an specific case.



25

erties

ssors

of the

e

uting

n net-

h

ee

ing

s.

f its

den-

fan-

each

talk.
3.1.2 Reconfigurable Optical Networks

Several topological properties, such asdegree, average distance, anddiameter, can be

used to evaluate and compare different interconnection networks. Most of these prop

can be derived from the underlying graph of an interconnection network, where proce

and communication links are mapped onto the vertices (nodes) and edges (links)

graph, respectively.

A Graphconsists of a set of vertices,V, interconnected by a set of edges,E, symbol-

ized asG = (V,E) [122]. The number of vertices and edges in a graph is , and

respectively. An edge connects verticesu andv, written ase = uv, and is said to be

incidentwith u andv. A vertexv hasdegree dv if it is incident with exactlydv edges. In a

regular graphG, all vertices have the same degree, equal todG. A path from v1 to vk is a

sequence of distinct verticesv1, v2, , vk such that for every , the edgevi vi+1 is

in E. Thedistancebetweenu andv, dist(u,v), is the minimum length of a path betweenu

and v. The eccentricity of u is e(u) = dist(u,v), where v is a vertex such that

dist(u,v) = dist(u,w). The maximum eccentricity among all vertices is th

diameter of the graph.

I am interested in having a complete interconnection network, where any comp

node can communicate with any other node in a single-hop. Complete interconnectio

works can be modeled by a complete graph,KN. A complete graph is a regular grap

where allN vertices are linked together and the diameter is one. Each vertex has degrdG

equal toN - 1, and the number of edges, , isN(N -1)/2 far too high to be of practical

interest whenN is large. These limitations prevent implementing complete networks us

metal-based interconnections as there is a fixed physical link between any two node

Optics is ideally suited for implementing interconnection networks because o

superior characteristics over electronics [100, 51, 74], such as higher interconnection

sity, higher bandwidth, suitability for reconfigurable interconnects, greater fan-in and

out, lower error rate, freedom from planar constraints (light beams can easily cross

other), immunity from electromagnetic field and ground loops, lower signal cross

N V= E

e E∈

… 1 i k<≤

MAXw V∈

E
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Several research groups in academia and industry are working on different aspects

lizing optical interconnects in massively parallel processing systems including work

the feasibility study and technology related problems of optical interconnects, arch

tures for optically interconnected computer systems, and communications and algori

issues for such parallel systems [82, 19].

One of the main features of an optical interconnect is its capability toreconfigure. This

is very suitable for the construction of 3-D VLSI computers [89]. Byinterconnect recon-

figuration, I simply mean the ability to change the interconnect dynamically up

demand. In essence, the advantages of reconfigurable optical interconnects are due

ability to provide versatile application-dependent network configurations.Free-space opti-

cal interconnectsare a class of optical interconnects that can support network reconfig

tion.

Free-space optical interconnects use free-space (vacuum, air or glass) for optic

nal propagation. In free-space optical interconnects, optical signals can propagate

close to each other and pass each other without interaction. It can easily exploit the

spatial dimension which dramatically increases the available communication bandw

Free-space reconfigurable optical interconnects result in much denser interconnectio

works than metal-based and guided-wave interconnections [28, 83], and have the po

to solve the problems associated with implementing complete networks due to their a

to reconfigure.

I introduce an abstract model [1] for a complete interconnection network using f

space reconfigurable optical interconnects for massively parallel computers, and d

its characteristics.

Definition A reconfigurable optical network, RON(k, N), consists ofN computing

nodes with their own local memory. A node is capable of connecting directly to any o

node. A node can establishk simultaneous connections. These connections are establi

dynamically by reconfiguring the optical interconnect. The links remain established

they are explicitly destroyed.
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Messages are sent usingcircuit switching.That is, a connection must be establishe

between the source and destination pair before the message is sent. Each node has

ity to simultaneously send and receivek messages on itsk links (the k-port model), or

exactly one message on one of its links (thesingle-portmodel). Full-duplex communica-

tion where a node can send and receive messages at the same time is supported. A

fied block diagram of the network is shown in Figure 3.1 where each node uses onl

of its links.

Various implementation technologies exist to embody the above abstract model.

technologies includevertical-cavity surface-emitting lasers(VCSELs) for photon genera-

tion, self-electro-optic effect devices(SEEDs) for modulation, frequency hoping for cod

ing, wavelength tuning for transmitters and receivers,computer generated hologram

(CGH), and deformable mirrors(DM) for switching and optical beam routing. The

switching in the case of CGH can be achieved by recording the desired source-desti

communication patterns. As stated in Chapter 1, deformable mirrors, such asLucent’s

WaveStar LambdaRouter[86], are also reaching maturity. Optical beam routing in a fre

space optical interconnection network often employs other external optical elements

as mirrors, prisms, lenses.

 …

…

0 1 2 N-1

Beam routers

Nodes

Potential links

Effective links

Figure 3.1:RON (k, N), a massively parallel computer interconnected by a
complete free-space optical interconnection network
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Each node has a fixed number of tunable transmitters for sending optical beams t

its beam router, such as a computer generated hologram or a deformable mirror, to b

rected to the receivers of the other nodes. Also, each node has a large number o

receivers at its input ports. Some of these input ports may be used only for collective

munications operations while others may be used for pair-wise communications.

Path setup phase can be done by sending an encoded light beam to the beam ro

reprogram the computer generated hologram, or to deform the mirror such that the

message can be delivered to the destination(s) directly. It can be done in two diff

ways. First, the router (CGH or DM) upon receiving the message (which includes the

load) stores the message in a buffer and then configures its output links so that it ca

ward the message to the destination node(s). This approach needs a buffer for the

message at each beam router which is of high cost. It also involves an extra copy. Th

ter approach is to send an optical beam having only the destination address to the

router for the path setup phase. Then, after some time, to be calledreconfiguration delay,

the second beam containing the actual message can be sent through the configured

to its destination.

Collision can happen at the receiving nodes considering the fact that several b

may arrive at a destination node at the same time. Hence, a destination node may

able to complete the path setup phase, or accept the message. However, I assume

to the availability of a large number of fixed receivers at the destinations, connection

established immediately after some time (reconfiguration delay).

I assume an unbounded number of available wavelengths for the system. Howev

case of a limited number of available wavelengths, one can utilize spread-spectrum

niques where each transmitter sends its information changing the wavelength in a ps

random fashion. The receiver can reconstruct the transmitted message if it is aware

pseudo-random code used for encoding the sequence of wavelengths used duri

transmission.
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I am not interested in the technology itself, and implementation concerns are ou

the scope of this dissertation. Instead, I am particularly interested in the abstract mo

this network. I shall assume that one or more of the technologies outlined above w

used to implement the proposed interconnect. Under such an implementation, the v

overheads associated with the reconfiguration of the network (such as beam steerin

ting up the computer-generated holograms, tuning the transmitters, or sending th

quency code in a frequency hoping implementation etc.) are lumped together a

reconfiguration delayd. I assume that the reconfiguration delay,d, most of the time is con-

stant but occasionally may be unbounded due to hot spots in applications.

3.1.2.1 Communication Modeling

An important concern is to model the communication timeT required to send a mes

sage from one node to another. I use the communication modeling of Hockney [66]. H

ney’s model characterizes the communication time for a point-to-point communica

operation as: , where is the start-up time which is equal to the time nee

to send a zero byte message, and includes the time required to prepare the messag

as adding a header, and a trailer. is the length of message to be transmitted, and

the asymptotic bandwidthin Mbytes per second and is the maximum bandwidth achi

able when the message length approaches infinity. The communication time can be w

as: where is the per unit transmission time and is equal to the reciproc

. For theRON (k, N), I amend the model by explicitly including the reconfiguratio

delayd that is necessary for a node to configure a link that would connect directly t

target node(s). The transmission time then becomes .

The time on the fly,lm , for small messages is negligible compared to the setup ti

ts, and the reconfiguration delay,d. In the current generation of parallel computer system

the setup time,ts, is several tens of microseconds [43]. Several researchers are worki

minimize the setup time by using user-level messaging techniques such asActive Mes-

sages(AM) [125] andFast Messages(FM) [102]. In Chapter 6, I discuss issues regardin

T ts
lm
r ∞
-----+= ts

lm r∞

T ts lmτ+= τ

r ∞

T d t+ s lmτ+=

τ
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the software overhead component of the communication latency. I utilize the predi

techniques proposed in this chapter to reduce the communication latency by avo

unnecessary memory copying operations at the receiver side of communications.

In this chapter, I am particularly interested in the techniques that hide the reconfig

tion delay,d. For this, and for the first time as far the author is aware, I propose and ev

ate different communication latency hiding predictors at the send side of communica

in message-passing systems using reconfigurable networks so that the reconfigu

delay can be hidden. In essence, by utilizing such predictors, the hardware communi

latency in reconfigurable interconnects can be effectively hidden by reconfiguring

communication networks concurrent to the computations.

3.2 Communication Frequency and Message Destination Distribution

Several researchers have investigated the communication behavior of parallel ap

tions [30, 75, 68, 72, 37]. Chodnekar and his colleagues [30] have developed a traffic

acterization methodology for parallel applications. They have considered the inter-a

time distribution of messages (send calls), spatial message distribution, and the me

volume in message-passing and shared-memory applications. Kim and Lilja [75] e

ined the communication patterns of message-passing parallel scientific programs in

of message size, message destination, and generation distributions for the send

receive time, and computation time. Hsu and Banerjee [68] analyzed the communic

characteristics of parallel CAD applications on a hypercube. Karlsson and Brorsson

have compared the communication properties of parallel applications in message-p

applications using MPI, and shared memory applications using TreadMarks [10

Lahaut and Germain [37] have shown that in scientific applications written in High Pe

mance Fortran (HPF) [85] a large part of communications can be known from the ana

of the code. This is calledstatic communications, communications that can be known a

compile-time, in contrast todynamic communicationswhere communications can be

determined only at run-time.
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Essentially, communication properties of parallel applications can be categorize

thespatial, temporal, andvolumeattributes of the communications [30, 75, 68]. The tem

poral attribute of communications in parallel applications characterizes the rate of

sage generations, and the rate of computations. I present the cumulative distrib

function of the inter-send computation times of the applications studied in this thes

Chapter 4.

The volume of communications is characterized by the number of messages, an

distribution of message sizes in the applications. In this chapter, I am particularly i

ested in the number of messages . In Chapter 4, I show the distribution of message s

the parallel applications.

One of the communication volume characteristics of parallel applications is the

quency of send messages. I use a number of parallel benchmarks, as introduced in C

2, and extract their communication traces. The processes in these applications use

ing and nonblocking standard MPI send primitives, namelyMPI_Send, MPI_Isend, and

MPI_Sendrecv_replace[92]. Figure 3.2 illustrates the number of send communicati

calls per process in the applications under different system sizes. I executed all ap

tions once for each different system size and counted the number of send calls for

process of the applications. Hence, in Figure 3.2, by average, minimum, and maxim

mean the average, minimum, and maximum number of send calls taken over all proc

of each application. It is evident that processes in the BT, SP, CG, and QCDMPI app

tions have the same number of send communication calls for each different system

This is also true for LU, MG, and PSTSWM when the number of processes is four,

and eight, and a power of two, respectively.

The Spatial attribute of communications in parallel applications is characterized b

distribution of message destinations. It is commonly assumed that the message d

tions are evenly distributed among all of the processes although an individual proces

not see a uniform message destination distribution [75, 30].
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Figure 3.2:Number of send calls per process in the
applications under different system sizes
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In MPI, the send operation (MPI_Send, MPI_Isend,andMPI_Sendrecv_replacecom-

munication calls in the parallel applications studied in this thesis), associates anenvelope

with a message. Messages in addition to the data part carry information that can be u

distinguish messages and selectively receive them. This information consists of a

number of fields, which is collectively called themessage envelope. These fields are the

source process of a message,source, the destination process of a message,dest, the mes-

sage tag,tag, and the message communicator,comm. The message source is implicitly

determined by the identity of the message sender and need not be explicitly carri

messages. The other fields are specified by arguments in the send operation. The d

tion process is specified by thedestargument. The integer-valued message tag is speci

by thetagargument. This integer can be used by the program to distinguish different t

of messages. A communicator specifies the communication context for a communic

operation. It also specifies the set of processes that share this communication co

Each communication context provides a separate communication universe. Messag

always received within the context they were sent, and messages sent in different co

do not interfere. The BT, SP, and PSTSWM applications use a number of different

municators including the predefined communicator,MPI_COMM_WORLD, provided by

MPI while other parallel applications, CG, MG, LU, and QCDMPI use only the p

defined communicator.

As stated above, a message envelop consists ofsource, dest, tag, and comm. The

sourceandtag of a message envelop do not affect the link establishment phase for a

sage transmission to a destination process. Thus, I assigned a different identifier,

unique message destination identifier,for each <dest, comm> tuple found in the communi-

cation traces of the applications. For simpilicity, from now on, I use the term “mess

destination” instead of unique message destination identifier. Figure 3.3, shows the

mum, average, and maximum number of message destinations per process in the a

tions under different system sizes. It is evident that processes in all applica

communicate with only a favorite subset of all other processes. Note that processes

BT, and SP applications, in contrast to the other applications, have the same num

message destinations under different system sizes (except whenN is four). This is also
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Figure 3.3:Number of message destinations per process in
the applications under different system sizes
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true for CG when the number of processes is 8 and 16, and for MG when it is 4 an

Meanwhile, in all applications, except BT and SP, the number of message destina

increases when the number of processes increases (note the exception cases in PS

and QCDMPI when the number of processes increases from 32 to 36).

Figure 3.4, illustrates the distribution of message destinations in the applications

the number of processes is 64. The BT, SP, CG, PSTSWM, and QCDMPI applica

verify the assumption that the message destinations are uniformly distributed among

the processes. MG shows an almost uniform message destination. However, LU pr

three different peaks for message destinations.

Figure 3.5, shows the distribution of message destinations for one of the proce

process zero, of the applications when the number of processes is 64. I choose p

zero because it is a favorite destination of all processes and is usually responsible fo

tributing data and verifying the results of the computation. It is clear that this process t

to communicate with only a favorite subset of all other processes in the applicatio

have found similar results for all other processes in each application as it can be se

Figure 3.4.

3.3 Communication Locality and Caching

I define the termsmessage destination communication locality, andcaching in con-

junction with this work as follows. By message destination communication locality I m

that if a certain source-destination pair has been used it will be re-used with high prob

ity by a portion of code that is “near” the place that was used earlier, and that it will be

used in the near future. If communication locality exists in parallel applications, then

possible tocachethe configuration that a previous communication request has made

reuse it at a later stage. Caching in the context of this discussion will mean that wh

communication channel is established it will remain established until it is explic

destroyed. As already mentioned, in the context of free-space optical interconnect

taining an established communication channel does not interfere with communica

that are in progress in other parts of the network.
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Figure 3.4:Distribution of message destinations in the applications whenN = 64
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Figure 3.5:Distribution of message destinations in the
applications for process zero, whenN = 64
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In the message-passing programming paradigm, many parallel algorithms are

from loops consisting of computation and communication phases. Therefore, commu

tion patterns may be repetitive. This has motivated researchers to find thecommunication

locality properties of parallel applications [75, 68]. Kim and Lilja [75] have recen

shown that there is a locality in message destination, message sizes, and consecuti

of send and receive primitives in parallel algorithms. They have proposed and expa

the concept of memory access locality based on theLeast Recently Used(LRU) [68] stack

model to determine these localities.

In the following subsection, I expand on the work by Kim and Lilja [75] by utilizin

the FIFO and LFU heuristics on the applications to see the existence of message de

tion communication locality or repetitive message destinations. I use the termhit ratio to

establish and compare the performance of these heuristics. If the next message des

is already in the set of message destinations maintained by the LRU, LFU, and FIFO

ristics, I count ahit, otherwise, I count amiss. It is clear that the hit ratio is equal to the

number of hits divided by the total number of hits and misses.

3.3.1 The LRU, FIFO and LFU Heuristics

The Least Recently Used(LRU), First-In-First-Out (FIFO), andLeast Frequently

Used(LFU) heuristics, all maintain a set ofk (k is thewindow size) message destinations

If the next message destination is not in the set, then it replaces one of the destinati

the set according to which of the LRU, FIFO or LFU strategies is adopted. The win

size,k, corresponds to the number of input, output ports used inRON (k, N). Figure 3.6

shows the results of the LRU, FIFO, and LFU heuristics on the applications when

number of processes is 64. Figure 3.7, Figure 3.8 and Figure 3.9 illustrate the size

biltiy of the these heuristics on the applications. It is clear that the hit ratios in all app

tions approach 1 as the window size increases. The performance of the FIFO algorit

almost the same as the LRU for all benchmarks. However, the LFU algorithm has a b

performance than the LRU and FIFO heuristics, the exception is for the LU benchm

whenk = 2 andN = 16, 32, and 64.
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Figure 3.6:Comparison of the LRU, FIFO, and LFU heuristics whenN = 64
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Figure 3.7:Effects of the scalibilty of the LRU, FIFO,
and LFU heuristics on the BT, SP and CG applications
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Figure 3.8:Effects of the scalibilty of the LRU, FIFO,
and LFU heuristics on the MG and LU applications
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Figure 3.9:Effects of the scalibilty of the LRU, FIFO, and LFU
heuristics on the PSTSWM and QCDMPI applications
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Basically, the LRU, FIFO and LFU heuristics do not predict exactly the next mess

destination but show the probability that the next message destination is in the me

destination set of the LRU, FIFO and LFU heuristics, respectively. For instance,

PSTSWM application shows nearly 70% hit ratio for a window size of seven under

LRU heuristic when the number of processes is 64. This means that 70% of the tim

of the seven most recent message destination will be used in the next message. The

FIFO, and the LFU heuristics perform better whenk is sufficiently large. However, this

adds to the hardware complexity ask links should be setup and remain active before t

next message is ready to be sent.

I am interested in having predictors that can predict the next message destination

a high probability, and work under single-port modeling to minimize the cost of hardw

implementation. In the following section, I propose a number of novel message des

tion predictors.

3.4 Message Destination Predictors

As noted earlier, a node sends a message to another node by first establishing a

the target (hence the reconfiguration delayd) and then sending the actual message over

established link. It is obvious that if the link is already in place, then the configura

phase does not enter the picture with a commensurate saving in the message transm

time. I would like to establish efficient algorithms where the link establishment costs

minimized. The stated objective can be accomplished, if the target of the communic

operation can bepredictedbefore the message itself is available. In this way, the comm

nication pathway can be established and be ready to be used as soon as the messa

sent becomes available.

There are several ways of accomplishing this. If the communication operation is r

lar and known, then it is possible that one can determine the destinations and the ins

that these shall be used. I have developed such algorithms for broadcasting/multib

casting [1] and discuss them in Chapter 5. However, if the algorithm is not known,

usually the case for point-to-point communications, the approach mentioned above c

be used.
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Prediction techniques have been proposed in the past to predict the future acces

sharing patterns and coherence activities in distributed shared memory (DSM) by loo

at their observed behavior [96, 77, 73, 133, 34, 107]. These techniques assume that

ory accesses and coherence activities in the near future will follow past patterns. Sak

his colleagues have used time series and neural networks for the prediction of the

memory sharing requests [107]. Dahlgren and his colleagues devised hardware r

stride techniques to prefetch several blocks ahead of the current data block [34].

elaborate hardware-based irregular stride prefetching approaches have been propo

Zhang and Torrellas [133]. Kaxiras and Goodman have recently proposed an instru

based approach which maintains the history of load and store instructions in relati

cache misses and predicting their future behavior [73]. This is in contrast to address-

techniques that keep data-access history for the predictions. Mukherjee and Hill pro

a general pattern-based predictor,cosmos, to learn and predict the coherence activity for

memory block in a DSM [96]. Cosmos makes a prediction in two steps. First, it us

cache block address to index into a message history table to obtain the <process

message-type> tuples of the last few coherence messages received for that cache

Then it uses these <processor, message-type> tuples to index a pattern history ta

obtain a <processor, message-type> tuple prediction. In a recent paper, Lai and F

proposed a new class of pattern-based predictors,memory sharing predictors, to eliminate

the coherence overhead on a remote access latency by just predicting the memory r

messages, those primary messages that invoke a sequence of protocol actions

improves prediction accuracy over cosmos by eliminating the acknowledgments mes

from the pattern tables. It also reduces memory overhead and perturbation in the

due to message re-ordering. Both works in [96, 77] are adaptations of Yeh and Patt’s

level PAp branch predictor [131].PAp is a two-level adaptive branch predictor based

the past behavior of the same branch.

In software-controlled prefetching, the programmer or compiler decides when

what to prefetch by analyzing the code and insertingprefetchinstructions. Mowry and

Gupta [95] have used software-controlled prefetching, and multithreading to hide

reduce the latency in shared memory multiprocessors.
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As stated above, many prediction techniques have been proposed to reduce or h

latency of a remote memory access in shared memory systems. However, to the bes

knowledge, no prediction technique has been proposed to predict the next message

nation for message-passing systems to hide the latency of reconfiguration delay in r

figurable networks.

I explore the effect that a number of heuristics have in predicting the target of a c

munication request. The set of predictors proposed in this section [2, 3] predict the

sage destination of a subsequent communication request based on a past hist

communication patterns on a per source process basis. These predictors can b

dynamically at the communication assist or network interface with or without the hel

the programmer or a compiler.

Actually, I propose two sets of predictors in this thesis:Cycle-basedpredictors, which

are pure dynamic predictors, andTag-basedpredictors, which are static/dynamic predic

tors. In Cycle-based predictors,Single-cycle, Single-cycle2, Better-cycle,and Better-

cycle2, predictions are done dynamically at the network interface without any help f

the programmer or compiler. In Tag-based predictors,Tagging, Tag-cycle, Tag-cycle2

Tag-bettercycle,and Tag-bettercycle2, predictions are done dynamically at the netwo

interface as well, but they require some information to be passed from the program

network interface. This can be done with the help of the programmer and/or the com

through inserting instructions such aspre-connect (tag)in the program. The Tag-base

predictors can be pure dynamic predictors if another level of prediction is done on th

themselves at the network interface. This way, there is no need for the program to

pre-connect (tag) information to the network interface. I leave this approach for the fu

research.

It is worth mentioning that these predictors can be used in any circuit-switched

works including the works proposed in [36, 132]. Dao and his colleagues [36] exploi

communication locality to improve the performance of parallel computers usingwave

switching,a hybrid switching technique for high performance routers in electronic in

connection networks. Wave switching combines wormhole switching and circuit sw
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ing in the same router architecture to reduce the fixed overhead of communication la

by exploiting communication locality. Thus, it is possible to reduce latency for comm

cations that display locality and use pre-established physical circuits. Yuan and o

[132] use the communication locality in circuit-switched time-multiplexed optical int

connection networks. They rely upon existing techniques for identifying communica

patterns such that their compiled communication algorithms compute the minimal m

plexing degree required for establishing all-optical paths from sources to destinatio

such networks.

The predictors can even be useful in reducing the latency in current commercia

works. For example, Myrinet networks [23] have a relatively long routing time compa

with link transmission time. Predictors would allow sending the routing header in adv

for the predicted message destination. When the message becomes available, it

directly transmitted through the network if the prediction was correct, thus redu

latency significantly. In case of a mis-prediction, a message tail is forwarded to tea

path down. Obviously, null messages must be discarded at the destination.

As in the LRU, LFU, and FIFO heuristics, I use thehit ratio to establish and compare

the performance of these predictors. As a hit ratio, I define the percentage of times th

predicted message destination was correct out of all communication requests. T

ratios presented for the performance of the predictors are either the minimum, the av

or the maximum of the hit ratios taken over all nodes of each application.

3.4.1 The Single-cycle Predictor

TheSingle-cyclepredictor is based on the fact that if a group of message destinat

are requested repeatedly in a cyclical fashion, then a single port can accommodate

requests by ensuring that the connection to the subsequent message destination

cycle can be established as soon as the current request terminates. This predictor

ments a simple cycle discovery algorithm. Starting with acycle-headmessage destination

(this is the first message destination that is requested at start-up, or the one that ca

miss), I log the sequence of requests until the cycle-head is requested again. This

sequence constitutes a cycle, and can be used to predict the subsequent requests. If
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dicted message destination coincides with the subsequent requested message des

then I record a hit. Otherwise, I record a miss and the cycle formation stage comme

with the cycle-head being the message destination that caused the miss.

Figure 3.10 illustrates an example for the operation of the Single-cycle predictor.

top trace represents the sequence of requested message destinations, while the

trace represents the predicted message destinations according to the Single-cycle

tor. The arrows with the cross represent misses, while the ones with the circle repr

hits. The “dash” in place of a predicted message destination indicates that a cycle is

formed, and therefore no predicted message destination is offered (note that this i

added to the misses).

Figure 3.11, shows the behavior of this algorithm. The performance of the Sin

cycle predictor is very good on the CG, LU, MG (except whenN = 4, 8), BT and SP

(except whenN = 4). The Single-cycle predictor behaves poorly on the PSTSWM (exc

whenN = 36, 49) and QCDMPI applications.

The performance of the Single-cycle predictor is much better than the LRU, FIFO

LFU heuristics under the single-port modeling for the LU and CG benchmarks, for

MG, PSTSWM applications (except whenN = 4, 8), and for BT and SP (except whenN =

4). However, the performance for QCDMPI is almost the same. Note that I compar

performance of the predictors with the LRU, LFU, and FIFO heuristics under single-

modeling for the same optical interconnect implementation cost although the prop

1 3 5 5 1 3 5 5 7 7 1 3 5 6 1 7 7 1 3 2 1

- - - - 3 5 5 1 - 7 - - - - 3 - 7 - - -

Request sequence

Predicted sequence

formation                          formation      formation     formation    formation
Cycle                                Cycle             Cycle           Cycle          Cycle

Figure 3.10:Operation of the Single-cycle predictor on a sample request sequen
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predictors have higher memory requirements (refer to Section 3.5.1). Figure 3.12

pares the performance of the Single-cycle predictor with the LRU, LFU, and FIFO u

single-port modeling whenN = 64.

3.4.2 The Single-cycle2 Predictor

In the communication traces of some of the applications, there exist cycles of le

one (such as the one composed of the requested message destination 7 in Figure 3.1

these situations, there will always be two misses until the predictor determines that th

a cycle of length one. TheSingle-cycle2predictor is identical to the single-cycle predicto

with the addition that during cycle formation, the previously requested message de

tion is offered as the predicted message destination. If a miss occurs during cycle fo
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Figure 3.11:Effect of the Single-cycle predictor on the applications
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Figure 3.12:Comparison of the performance of the Single-cycle predictor with the LR
LFU, and FIFO heuristics on the applications under single-port modeling whenN = 64



49

isses

o the

ed, the

ne.

ictor

nation

stina-

ssage

erfor-

nce
tion, the formation phase continues until a cycle is formed. Then and only then m

cause a new cycle formation phase to begin. I applied the Single-cycle2 predictor t

request sequence of the previous example as shown in Figure 3.13. As was expect

Single-cycle2 predictor reacts better to cycles of length o

Figure 3.14 illustrates the performance of the Single-cycle2 predictor. This pred

has a better performance than the single-cycle algorithm.

3.4.3 The Better-cycle and Better-cycle2 Predictors

In the Single-cycle and Single-cycle2 algorithms, as soon as a message desti

breaks a cycle I discard the cycle and start forming a new cycle with this message de

tion as the new cycle-head. Then I just rely upon the new cycle to predict the next me

destination. The Single-cycle and Single-cycle2 predictors could achieve a better p

mance if the previous cycle information was not discarded as new cycle is formed.

1 3 5 5 1 3 5 5 7 7 1 3 5 5 1 7 7 1 3 2 1

1 3 5 5 3 5 5 1 7 7 1 3 5 5 3 7 7 1 3 2

Request sequence

Predicted sequence
Cycle                                Cycle             Cycle           Cycle          Cycle

formation                          formation      formation     formation    formation

Figure 3.13:Operation of the Single-cycle2 predictor on the sample request seque

Figure 3.14:Effect of the Single-cycle2 predictor on the applications

  BT    SP    LU    MG    CG  PSTSWM  QCD 
0

0.2

0.4

0.6

0.8

1
Single−cycle2 (64 processes)

A
ve

ra
ge

 H
it 

R
at

io

Minimum
Average
Maximum

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Processes

A
ve

ra
ge

 H
it 

R
at

io

Single−cycle2

BT    
SP    
LU    
MG    
CG    
PSTSWM
QCDMPI



50

last

f each

orre-

seen

stina-

m the

quent

revise

.15.
In theBetter-cyclepredictor, each cycle-head has its own cycle. For this, I keep the

cycle associated with each cycle-head encountered in the communication pattern o

process. This means that when a cycle breaks I keep this cycle in memory for the c

sponding cycle-head for later references. When a cycle breaks, if I haven’t already

the new cycle-head then I form a cycle for it, otherwise I predict the next message de

tion based on the member of the cycle associated with this cycle-head that I have fro

past in memory. If the predicted message destination coincides with the subse

requested message destination, then I record a hit. If not, then I record a miss and

the cycle for this cycle-head. The state diagram of this predictor is shown in Figure 3

formation
phase

Cycle
prediction

phase

Cycle
prediction

phase
 (new cycle-head)

Cycle
revision

phase

Cycle-head

HitMiss ∧ Cycle (new cycle-head)

Miss

Hit ∧ One-cycle-complete

O
ne-cycle-com

plete

M
iss∧

cycle (new
 cycle-head)

Figure 3.15:State diagram of the Better-cycle predictor

Cycle
One-cycle-complete

One-cy
cle

-co
mplete
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The top left state is the “cycle formation phase” initiated with a cycle-head. This is

same as the cycle formation phase in the Single-cycle predictor. Upon a cycle compl

I enter the “cycle prediction phase”. In case of a mis-prediction in the “cycle predic

phase”, I move back to the “cycle formation phase” if the new cycle-head has not bee

ited so far (that is, there is no cycle associated with this new cycle-head in the mem

Otherwise, I move forward to the “cycle prediction phase for the new cycle-head”. I m

back to “cycle prediction phase” after one complete cycle to continue the prediction

this new cycle-head. In case of a mis-prediction during the first cycle of predictions in

“cycle prediction phase for the new cycle-head”, I move to the “cycle-revision phase

revise the cycle for this new cycle-head. It is clear that after the revision phase, I mo

the “cycle prediction phase” for the next cycles of predictions.

Figure 3.16 illustrates the operation of the Better-cycle predictor on the sample re

sequence. It is clear that the first cycle associated with cycle-head 1 consists of me

destinations 1, 3, 5, and 6. However, in the fourth appearance of this cycle-head a re

cycle forms which contains message destinations 1, 3, and

The performance of the Better-cycle predictor on the benchmarks is shown in F

3.17. It is evident that its performance is exceptionally better for all benchmarks comp

to the Single-cycle predictor except for the QCDMPI benchmark whenN = 25, 32, 36 and

49.

1 3 5 5 1 3 5 5 7 7 1 3 5 5 1 7 7 1 3 2 1

- - - - 3 5 5 1 - 7 3 5 5 1 3 7 7 3 5 -
Predicted sequence

Request sequence

Cycle                                Cycle                                             Cycle
formation                          formation                                      formation

Figure 3.16:Operation of the Better-cycle predictor on the sample request sequen
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TheBetter-cycle2predictor is identical to the Better-cycle predictor with the additio

that during cycle formation and cycle revision phases the previously requested me

destination is offered as the predicted message destination. Figure 3.18 illustrate

operation of the Better-cycle2 predictor on the same sample request sequ

The Better-cycle2 predictor has a better performance than the Single-cycle, Si

cycle2, and the Better-cycle predictor for the QCDMPI benchmark. The performanc

this predictor is shown in Figure 3.19. It is worth mentioning that I found that the appl

tions have a very small number of cycle-heads (at most 9) under the Better-cycle and

ter-cycle2 predictors and different system sizes. Section 3.5.1 discusses the m

requirement of all predictors proposed in this thesis.

Figure 3.17:Effect of the Better-cycle predictor on the applications
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3.4.4 The Tagging Predictor

TheTaggingpredictor assumes a static communication environment in the sense t

particular communication request (send) in a section of code, will be to the same me

destination with a large probability. Therefore, as the execution trace nears the sect

code in question, it can cause the communication subsystem to establish the connec

the target node before the actual communications request is issued. This can be

mented with the help of the compiler or by the programmer through apre-connect (tag)

operation which will force the communication system to establish the communica

connection before the actual communication request is issued. As noted earlier, fo

predictor and other Tag-based predictors, I can avoid the help from the compiler o

programmer by predicting the tag itself at the network interface. This way, there is no

for the program to pass pre-connect (tag) information to the network interface. How

the performance of these2-level Tag-basedprediction techniques has not been evaluat

yet.

I attach a differenttag (this is different than the tag in an MPI communication call;

may be a unique identifier or the program counter at the address of the communic

call) to each of the communication requests found in the applications. This tag is pas

the communication subsystem by the pre-connect (tag) operation. To this tag and

communication assist, I assign the requested message destination the first time a

Figure 3.19:Effect of the Better-cycle2 predictor on the applications
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established. A hit is recorded if in subsequent encounters of the tag, the requested m

destination is the same as the one already associated with the tag. Otherwise, a m

recorded and the tag is assigned the newly requested message destination.

The performance of the Tagging predictor is presented in Figure 3.20. As can be

the Tagging predictor results in excellent performance (hit ratios in the upper 90%) fo

the application benchmarks except the CG, PSTSWM, and QCDMPI. The reason i

these benchmarks include send operations with message destinations calculated ba

loop variables. Thus, the same section of code cycles through a number of different

sage destinations. As we have seen earlier, the Better-cycle and Better-cycle2 pred

are excellent in discovering such cyclic occurrences for the CG and PSTSWM be

marks. Meanwhile, the Better-cycle2 predictor has better performance for the QCD

benchmark compared to the Tagging predictor.

3.4.5 The Tag-cycle and Tag-cycle2 Predictors

The Tagging predictor does not have a good performance on the CG, PSTSWM

the QCDMPI benchmarks while the Single-cycle and Single-cycle2 predictors sho

good results for the CG benchmark. I combine the Tagging algorithm with the Sin

cycle algorithm and call it theTag-cycle algorithm.
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Figure 3.20:Effects of the Tagging predictor on the applications
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In the Tag-cycle predictor, I attach a different tag to each of the communica

requests found in the application benchmarks and do a Single-cycle discovery algo

on each tag. To this tag and at the communication assist, I assign the requested m

destination, to be calledtagcycle-headmessage destination (this is the first message de

nation that is requested at this tag, or the one that causes a miss). I log the sequence

requests at this tag until the tagcycle-head is requested again. This stored sequence

tutes a cycle at each tag, and can be used to predict the subsequent requests. A

recorded if in subsequent encounter of the tag, the requested message destination

same as the predicted one in the cycle. If not, then I record a miss and the cycle form

stage begins with the tagcycle-head being the message destination that caused th

The Tag-cycle predictor performs exceptionally well across all the benchmarks exce

the QCDMPI benchmark as shown in Figure 3.21.

TheTag-cycle2predictor is identical to the Tag-cycle predictor with the addition th

during cycle formation, similar to the Single-cycle2 predictor, the previously reque

message destination is offered as the predicted one. The performance of the Tag-

predictor, as shown in Figure 3.22, is better than the Tagging and Tag-cycle predicto

all benchmarks.

Figure 3.21:Effects of the Tag-cycle predictor on the applications
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3.4.6 The Tag-bettercycle and Tag-bettercycle2 Predictors

The Better-cycle and Better-cycle2 algorithms have better performance on the pa

applications than the Single-cycle and Single-cycle2 algorithms. Therefore, I combin

Better-cycle and Better-cycle2 algorithms with the Tagging algorithm to get better pe

mance than the Tag-cycle and Tag-cycle2 algorithms. I call theseTag-bettercycle andTag-

bettercycle2predictors. The performance of these two predictors are shown in Figure 3

and Figure 3.24.

In Tag-bettercycle predictor, I attach a different tag to each of the communica

requests found in the benchmarks and do a Better-cycle discovery algorithm on eac

To this tag and at the communication assist, I assign the requested target node, to be

Figure 3.22:Effects of the Tag-cycle2 predictor on the applications
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Figure 3.23:Effects of the Tag-bettercycle predictor on the applications
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LRU,
tagbettercycle-headnode. The Tag-bettercycle2 predictor is identical to the Tag-bette

cle predictor with the addition that during cycle formation, similar to the Better-cyc

predictor, the previously requested message destination is offered as the predicted

sage destination. The performance of Tag-bettercycle for the QCDMPI benchmark is

ter than the Tag-cycle algorithm, but not better than the Tag-cycle2 predictor. Howeve

Tag-bettercycle2 predictor is superior to all other predictors for all parallel benchma

Moreover, I found that the applications have very small number of tagbettercycle-hea

most 3) under the Tag-bettercycle and Tag-bettercycle2 predictors and different sy

sizes.

3.5 Predictors’ Comparison

Figure 3.25, presents a comparison of the performance of the predictors presen

this chapter when the number of processors is 64, 32 and 36, and 16, respectively. It

dent that the Tag-bettercycle2 predictor has the best overall performance for all ap

tions (except for QCDMPI when the number of processes is 16, and 64 where B

cycle2 has a better performance) and its hit ratio is consistently very high. It is also

that under single-port modeling, the proposed predictors outperform the classical

LFU, FIFO heuristics.

Figure 3.24:Effects of the Tag-bettercycle2 predictor on the applications
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Figure 3.25:Comparison of the performance of the predictors proposed in this chap
when number of processes is 64, 32 (36 for BT and SP), and 16
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3.5.1 Predictor’s Memory Requirements

Table 3.1 compares the maximum memory requirement of the proposed messag

tination predictors on the application benchmarks when the number of processors is

have found that the memory requirement of the predictors decrease gradually whe

number of processes decreases. The numbers in the table are the multiplication fac

the amount of storage needed to maintain the message destination and its commun

Having 64 processes in this case study and at most 4 different communicators in the

cations, one needs to have only one byte of storage per each message destination

communicator.

It is quite clear that the memory requirements of the predictors is very low. That m

them very attractive for implementation on the communication assist or network inter

Comparatively, the Better-cycle, and Tag-bettercycle predictors have a little higher m

ory requirements than the other predictors. Although, the classical LRU, LFU, and F

heuristics need less memory, as stated earlier, the beauty of the proposed predictors

the fact that they operate under single-port modeling. That is, only one communic

channel is available at any time, and this is reconfigured on demand. This brings the

of optical interconnect implementation to the minimum. The storage requirement o

predictors have been found using the following formulae:

Table 3.1:Memory requirements (in bytes) of the predictors whenN = 64

BT SP CG MG LU QCD PSTSWM

Single-cycle(2) 49 49 9 7 4 8 33

Better-cycle(2) 49 49 18 28 12 32 297

Tagging 12 12 10 12 10 2 8

Tag-cycle(2) 24 24 40 24 20 10 48

Tag-bettercycle(2) 24 24 40 36 20 30 48



60

d and

ation

nnect.

iction

tions

each

ations

tions.

le2),

d ear-

Tag-

gram

n be

s

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

3.6 Using Message Predictors

In this section, I briefly discuss how a message destination predictor can be use

integrated into the network interface. Predictors would reside beside the communic

assist or network interface and accelerate the reconfiguration phase of the interco

They monitor the message destination patterns of their host node and make a pred

according to their prediction algorithms. Then, the network interface uses the predic

to establish the links to its final message destinations.

As stated above, the predictors would execute on the communication assist of

node of the parallel machine, and predict the message destinations for communic

originating at the node on which they reside based on the past history of communica

In Cycle-based predictors (Single-cycle, Single-cycle2, Better-cycle, and Better-cyc

predictors do not need any help from the compiler or programmer. However, as state

lier, in Tag-based predictors (Tagging, Tag-cycle, Tag-cycle2, Tag-bettercycle, and

bettercycle2), predictors require an interface to pass some information from the pro

to the network interface. With a simple help from the programmer or compiler, this ca

MemSingle cycle2( )– Maximum cycle length=

MemBetter cycle2( )– MemSingle cycle2( )– Maximum number of cycle-heads×=

MemTagging Maximum number of tags=

MemTag cycle2( )– MemTagging Maximum cycle length of each tags×=

MemTag bettercycle2( )– MemTag cycle2( )– Maximum number of tagbettercycle-head×=
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done through insertingpre-connect (tag)instructions in the program well above each sp

cific send communication operation but evidently after the previous send communic

operation.

Determining when to perform the path setup action (reconfiguration phase) is

simple. Basically, predictors should map the prediction into the path setup action whe

previous communication has terminated. Thus, as soon as the previous message tra

sion is complete, the communication assist reconfigures the link to the next message

nation. It is clear that upon a mis-prediction, the on-going reconfiguration which is

correct and may or may not be completed by the time of the mis-prediction due

shorter inter-send computation time (to be discussed in Chapter 4) immediately stop

a new reconfiguration takes place.

3.7 Summary

Interconnection networks are still a source of bottleneck for high performance c

munications in massively parallel environments. In this chapter, I introduced a reco

urable interconnection network that could alleviate the communication problems in

environments.

In order to benefit from such interconnects effectively, reconfiguration delay shou

hidden. For this, I analyzed the communication properties of some parallel applicatio

terms of communication frequency and message destination distributions. Using cla

memory hierarchy heuristics, I found that message destinations display a form of loc

Having message destination locality in parallel applications, I proposed a numb

predictors that can be used to accurately predict the message destination of the subs

communication request. The proposed predictors would execute on the communic

assist of each node of the parallel machine. The performance of the proposed pred

especially Better-cycle2 and Tag-bettercycle2, are very good and they could effec

hide the hardware communication latency by reconfiguring the communications net

concurrently to the computation.
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For these predictors to be used efficiently, I shall argue, in Chapter 4, that at least

application benchmarks studied, there is enough computation preceding a communi

request such that the predictors could effectively hide the reconfiguration cost [4,3].
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Chapter 4

Reconfiguration Time Enhancements Using Predictors

To reconfigure the optical interconnect concurrently to the computation, or to spec

tively setup the path in electronic interconnects, two conditions are necessary: (1

accurate prediction of the destination; (2) Enough lead time so that the reconfigurati

the interconnect (or the path setup phase) be completed before the communication r

arrives.

In Chapter 3, I utilized the message destination locality property of parallel app

tions to devise a number of heuristics that can be used to “predict” the target of subse

communication requests. This technique, can be applied directly to reconfigurable

connects to hide the communications latency by reconfiguring the communication

work concurrently to the computation.

I present the pure execution times of the computation phases of the parallel b

marks on the IBM Deep Blue machine at the IBM T. J. Watson Research Center usin

high-performance switch under the user space mode. This chapter contributes by a

that by comparing the inter-communication computation times of these parallel be

marks with some specific reconfiguration times, most of the time, we are able to fully

lize these computation times for the concurrent reconfiguration of the interconnect w

we know, in advance, the next target using one of the proposed high hit-ratio target p

tion algorithms introduced in Chapter 3.

In this chapter, I first show the distribution of message sizes of the applications in

tion 4.1. In Section 4.2, the pure inter-send computation times of the parallel applica

on an IBM SP2 machine is presented. I present the performance enhancements of th

posed predictors on the application benchmarks for the total reconfiguration time in

tion 4.3. In Section 4.4, I discuss how the predictors at the send side affect the receiv

of communications. Finally, I conclude this chapter in Section 4.5.
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4.1 Distribution of Message Sizes

The volume of communications is characterized by the number of messages, an

distribution of message sizes in the applications. I presented the number of messa

Chapter 3. In this chapter, I am particularly interested in the distribution of message

in the applications. In Section 4.3, I use the size of messages in the applications to

late the message transfer delay time. Figure 4.1 through Figure 4.4 illustrate the dis

tion of message sizes of all applications under different systems sizes. The

PSTSWM, SP, and BT applications use more distinct message sizes in their commu

tion calls than the other applications. The CG, LU, and QCDMPI use a few number of

tinct message sizes.

4.2 Inter-send Computation Times

In Section 4.3, I shall examine the effectiveness of the proposed predictors. I

quantify the ability of the proposed predictors in hiding the reconfiguration delays.

this, I need to know the pure computation times between any two send communic

operations.

I did experiments on a fast machine to establish the inter-send computation time

the effects of the heuristics on the total reconfiguration delay. I used the IBM SP2 D

Blue machine at IBM T. J. Watson Research Center, a 30 node machine with 160

P2SC thin nodes, 256MB RAM and a second generation high performance switch an

the suite of applications, one process on each node under the user space mode, whe

the only user of this machine. This avoided any task switching that might have affecte

measurements. My measurements determined a lower bound on theinter-sendcomputa-

tion times (i.e. the time devoted to computation between any two send communic

call).

I excluded all timing overheads in the profiling codes to compute the execution ti

of the computation and communication phases of the parallel application benchmarks

inter-send computation measurements excluded any overhead associated with an
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Figure 4.1:Distribution of message sizes of the applications whenN = 4
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Figure 4.2:Distribution of message sizes of the applications whenN = 9 for BT and SP,
and 8 for CG, MG, LU, PSTSWM, and QCDMPI
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Figure 4.3:Distribution of message sizes of the applications whenN = 16
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Thus it can be considered as a lower bound on the pure computation time. In Append

I explain how the pure inter-send computation times have been computed.

The temporal attribute of inter-send computations in parallel applications characte

the rate of computations. The inter-arrival times of the computation time can be us

obtain the cumulative distribution function(CDF) of the computation times. The CDF o

the computation times can then be used for curve fitting to generate the inter-arrival

of computation times for simulation purposes. Figure 4.5 presents the cumulative dis

tion function of the inter-send computation times for node zero of the applications

nodes for CG, MG, and LU; 25 nodes for BT, SP, PSTSWM, and QCDMPI). Note th

have found similar cumulative distribution function plots for other system sizes.
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and QCDMPI applications whenN = 25
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Table 4.1 shows the minimum pure inter-send computation times of the applica

under different system sizes. Note that LU, MG, and CG run only on a power-of-two n

ber of processors. The inter-send computation times for the CG (4 nodes) and QCD

application benchmarks are quite large while all other applications have a minimu

less than 23 microseconds pure computation times.

IBM Deep Blue uses a state-of-the-art high performance CPU, Power2-Super (P

microprocessor, in its nodes. The nodes are interconnected via an adapter to a high

mance, multistage, packet-switched network for interprocessor communications.

interested in having a rough comparison between the pure inter-send computation tim

the applications running on such powerful machines and the current state-of-the-art r

figuration delay associated with optical interconnects. Researchers in optical engine

are using different approaches to design reconfigurable interconnects [103, 81]. In [

the authors report a 25 microseconds reconfiguration delay for their experimental r

Table 4.1:Minimum inter-send computation times (microseconds) in NAS
Parallel Benchmarks, PSTSWM, and QCDMPI whenN = 4, 8, 9, 16, and 25

4 nodes
8 nodes

(9 for BT, SP)
16 nodes 25 nodes

BT (W) 4.161 4.161 4.161 4.161

BT (A) 4.576 4.472 4.472 4.889

SP (W) 4.161 4.161 4.161 4.161

SP (A) 4.784 4.472 4.472 4.576

LU (W) 9.568 8.216 8.112 ---

LU (A) 22.568 12.688 13.519 ---

MG (W) 6.344 5.720 5.928 ---

MG (A) 7.592 7.176 6.760 ---

CG (W) 407.99 6.864 7.384 ---

CG (A) 829.92 7.176 6.657 ---

PSTSWM 7.176 6.240 6.032 16.639

QCDMPI 1392.352 695.344 353.080 193.127
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figurable interconnects. Based on these reports, I compare the pure computation tim

the application benchmarks with 25 microseconds reconfiguration time, and with reco

uration times of 10, 5, and 1 microseconds as a measure of future advancements

area of reconfigurable interconnects. Figure 4.6 presents the distribution of the inter

computation times on different applications when the computation times are more th

10, 25 microseconds and the number of processors is 4, 8 or 9, 16, and 25.

Examining the distribution of the inter-send times, revealed that they are quite wi

distributed. All applications have nearly 100% inter-send computation times that

greater than 5 microseconds. For the BT, SP, LU, MG, and CG (except 4 nodes) ap

tion benchmarks, between 60% to 80% of the computation times are above 25 micr

onds. The PSTSWM and QCDMPI application benchmarks have nearly 100% inter-

computation times that are greater than 25 microseconds. It is evident that the majo

the reconfigurations can proceed in parallel with the computation and be readied b

the end of the computation. For the cases where the computation time is not suffic

long to completely hide the reconfiguration it effectively reduces the reconfiguration

by the corresponding length of time.

4.3 Total Reconfiguration Time Enhancement

I assume a multicomputer with nodes similar to the thin nodes of an IBM SP2 sys

but with a reconfigurable optical interconnect which has a reconfiguration delayd (d = 1,

5, 10, 25 microseconds). It is interesting to see the effectiveness of the proposed pred

on such a multicomputer system. Specifically, I shall quantify the ability of the propo

predictors in hiding the reconfiguration delays. For the calculations used to quantif

reconfiguration hiding capabilities of the predictors, I use the lower bound of the in

send computation times.

Figure 4.7 illustrates different scenarios for message transmission in the multi

puter with the reconfigurable optical interconnect. Note that as soon as a send c

issued, the message can be sent to the destination if the link is already established. R

figuration is started as soon as the message is delivered to the destination. Thu

message_transfer_delay(the delay associated with the transfer of a message) reduce



72
   51025    51025    51025    51025    51025    51025    51025   
0

20

40

60

80

100
P

er
ce

nt
ag

e 
of

 C
om

pu
ta

tio
n 

T
im

es

4 Nodes (W class for NAS)

BT          SP          LU           MG         CG       PSTSWM      QCD

More than

   51025    51025    51025    51025    51025    51025    51025   
0

20

40

60

80

100

P
er

ce
nt

ag
e 

of
 C

om
pu

ta
tio

n 
T

im
es

4 Nodes (A class for NAS)

BT          SP          LU           MG         CG       PSTSWM      QCD

More than

   51025    51025    51025    51025    51025    51025    51025   
0

20

40

60

80

100

P
er

ce
nt

ag
e 

of
 C

om
pu

ta
tio

n 
T

im
es

8 Nodes (9 nodes for BT, SP; W class for NAS)

BT          SP          LU           MG         CG       PSTSWM      QCD

More than

   51025    51025    51025    51025    51025    51025    51025   
0

20

40

60

80

100

P
er

ce
nt

ag
e 

of
 C

om
pu

ta
tio

n 
T

im
es

8 Nodes (9 nodes for BT, SP; A class for NAS)

BT          SP          LU           MG         CG       PSTSWM      QCD

More than

   51025    51025    51025    51025    51025    51025    51025   
0

20

40

60

80

100

P
er

ce
nt

ag
e 

of
 C

om
pu

ta
tio

n 
T

im
es

16 Nodes (W class for NAS)

BT          SP          LU           MG         CG       PSTSWM      QCD

More than

   51025    51025    51025    51025    51025    51025    51025   
0

20

40

60

80

100

P
er

ce
nt

ag
e 

of
 C

om
pu

ta
tio

n 
T

im
es

16 Nodes (A class for NAS)

BT          SP          LU           MG         CG       PSTSWM      QCD

More than

Figure 4.6:Percentage of the inter-send computation times for different benchmarks
that are more than 5, 10, and 25 microseconds whenN = 4, 8 or 9, 16, and 25.
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amount of time available before the next send call is issued. For this, I subtrac

message_transfer_delay(for the specific message size) from the correspondinginter-send

timeand call the remaining time, theavailable_time. This allows me to compute the lowe

bound of the times that can be hidden. For eachmessage_transfer_delaycalculation, I use

the corresponding message size and a one Gigabyte per second communication ch

If the available_time is greater than zero as in Figure 4.7(a) (that is t

message_transfer_delayis less than the correspondinginter-send time), and it is more

than thereconfiguration_delaythen a correct prediction would help completely hide th

reconfiguration_delay. If the available_timeis greater than zero as in Figure 4.7(b) but

is less than thereconfiguration_delaythen part of thereconfiguration_delayequal to the

available_timecan be hidden. However, if theavailable_timeis less than zero as in

Figure 4.7(c) (that is themessage_transfer_delayis greater than the correspondinginter-

send time), then prediction would not help.

The algorithm used to obtain the time spent in reconfiguring the interconnect with

without applying the predictors is given by the following pseudocode. T

total_original_reconfigurationis the sum of the reconfiguration delays encountered in

applications’ run-time. Thetotal_new_reconfigurationis the sum of the reconfiguration
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Figure 4.7:Different scenarios for message transmission in a multicomputer with 
reconfigurable optical interconnect (a) when the message_transfer_delay is less th
inter_send time, and the available time is larger than the reconfiguration_delay (b) 
the message_transfer_delay is less than the inter_send time, and the available time

than the reconfiguration_delay (c) when the message_transfer_delay is larger tha
inter-send time
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delays encountered in the applications’ run-time when predictions are used to hide

with the inter-send computation times. Thereconfiguration-ratio is the ratio of

total_new_reconfigurationover total_original_reconfiguration. It is clear that the less this

ratio, the better is the predictor’s capability to hide the reconfiguration delay.

total_new_reconfiguration = 0.0;

total_original_reconfiguration = 0.0;

for each inter_send_computation {

      available_time = inter_send_computation - message_transfer_delay;

      if (available_time < 0) {

            total_new_reconfiguration += reconfiguration_delay;

            total_original_reconfiguration += reconfiguration_delay;

      }

      else {

            if (hit) then

                  if (available_time < reconfiguration_delay) then

                        total_new_reconfiguration += reconfiguration_delay - available_time;

                  else;

            else total_new_reconfiguration += reconfiguration_delay;

            total_original_reconfiguration += reconfiguration_delay;

      }

}

reconfiguration-ratio = total_new_reconfiguration / total_original_reconfiguration

Figure 4.8 through Figure 4.11 illustrate thereconfiguration-ratio, the average ratio of

the total new reconfiguration delay (after applying predictions) over the total orig

reconfiguration delay for each application benchmark under two different CPU speed

four different reconfiguration delays. I present the results for two different CPU spe

one for the current P2SC thin nodes, and one for a 10 times faster CPU as a meas

future CPUs. The results are shown for the best predictors, Better-cycle2 and

bettercycle2. In these figures, shorter bars are better. For the sake of completeness

included the results for LRU, LFU, and FIFO heuristics under single-port modeling (re
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Figure 4.8:Average ratio of the total reconfiguration time after hiding over the tota
original reconfiguration time for different benchmarks with the current generation an
10 times faster CPU whend = 1, 5, 10, and 25 microseconds; A class for NPB, 4 nod

(shorter bars are better)

  BT    SP    LU    MG    CG  PSTSWM   QCD 
0

0.2

0.4

0.6

0.8

1
LRU, LFU, FIFO (4 nodes, A class for NAS)

R
at

io
 o

f t
he

 R
ec

on
fig

ur
at

io
n 

T
im

es

d = 1 us 
d = 5 us 
d = 10 us
d = 25 us

  BT    SP    LU    MG    CG  PSTSWM   QCD 
0

0.2

0.4

0.6

0.8

1
LRU, LFU, FIFO (4 nodes, A class for NAS, CPU 10 times faster)

R
at

io
 o

f t
he

 R
ec

on
fig

ur
at

io
n 

T
im

es

d = 1 us 
d = 5 us 
d = 10 us
d = 25 us



76

l
d

  BT    SP    LU    MG    CG  PSTSWM   QCD 
0

0.2

0.4

0.6

0.8

1
LRU, LFU, FIFO (9 nodes (BT, SP), A class for NAS)

R
at

io
 o

f t
he

 R
ec

on
fig

ur
at

io
n 

T
im

es

d = 1 us 
d = 5 us 
d = 10 us
d = 25 us

  BT    SP    LU    MG    CG  PSTSWM   QCD 
0

0.2

0.4

0.6

0.8

1
LRU, LFU, FIFO (9 nodes (BT, SP), A class for NAS, CPU 10 times faster)

R
at

io
 o

f t
he

 R
ec

on
fig

ur
at

io
n 

T
im

es

d = 1 us 
d = 5 us 
d = 10 us
d = 25 us

  BT    SP    LU    MG    CG  PSTSWM   QCD 
0

0.2

0.4

0.6

0.8

1
Better−cycle2 (9 nodes (BT, SP), A class for NAS)

R
at

io
 o

f t
he

 R
ec

on
fig

ur
at

io
n 

T
im

es

d = 1 us 
d = 5 us 
d = 10 us
d = 25 us

  BT    SP    LU    MG    CG  PSTSWM   QCD 
0

0.2

0.4

0.6

0.8

1
Better−cycle2 (9 nodes (BT, SP), A class for NAS, CPU 10 times faster)

R
at

io
 o

f t
he

 R
ec

on
fig

ur
at

io
n 

T
im

es

d = 1 us 
d = 5 us 
d = 10 us
d = 25 us

  BT    SP    LU    MG    CG  PSTSWM   QCD 
0

0.2

0.4

0.6

0.8

1
Tag−bettercycle2 (9 nodes (BT, SP), A class for NAS)

R
at

io
 o

f t
he

 R
ec

on
fig

ur
at

io
n 

T
im

es

d = 1 us 
d = 5 us 
d = 10 us
d = 25 us

  BT    SP    LU    MG    CG  PSTSWM   QCD 
0

0.2

0.4

0.6

0.8

1
Tag−bettercycle2 (9 nodes (BT, SP), A class for NAS, CPU 10 times faster)

R
at

io
 o

f t
he

 R
ec

on
fig

ur
at

io
n 

T
im

es

d = 1 us 
d = 5 us 
d = 10 us
d = 25 us

Figure 4.9:Average ratio of the total reconfiguration time after hiding over the tota
original reconfiguration time for different benchmarks with the current generation an

a 10 times faster CPU whend = 1, 5, 10, and 25 microseconds; A class for NPB, 9
nodes for BT and SP, 8 nodes for other applications (shorter bars are better)
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Figure 4.10:Average ratio of the total reconfiguration time after hiding over the tota
original reconfiguration time for different benchmarks with the current generation an
10 times faster CPU whend = 1, 5, 10, and 25 microseconds; A class for NPB, 16nod

(shorter bars are better)
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Figure 4.11:Average ratio of the total reconfiguration time after hiding over the tota
original reconfiguration time for different benchmarks with the current generation a
10 times faster CPU whend = 1, 5, 10, and 25 microseconds, A class for NPB, 25 no

(shorter bars are better)
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that the LRU, LFU, and FIFO heuristics under single-port modeling predict the next d

nation to be the same as the previous message destination). It is clear that the B

cycle2, and Tag-bettercycle2 predictors outperform the LRU/LFU/FIFOF heuristics.

Tag-bettercycle2 predictor improves the total reconfiguration delay better than the B

cycle2 predictor, especially when the number of processors is 4, or 9. Under the

bettercycle2 predictor, the majority of reconfiguration delays in the CG, MG, and

benchmarks can be hidden. Meanwhile, the reconfiguration-ratio for BT and SP decr

from 0.4 to 0.18 when the number of nodes increases from 4 to 25. The QCDMPI h

reconfiguration-ratio between 0.3 and 0.5. However, the PSTSWM application sho

consistent reconfiguration-ratio of near 0.6 (except whenN = 4). It is also evident that the

ratios increase with a faster CPU for the same reconfiguration delay. However, the r

figuration delay time may also decrease in the future. In this respect, it is informativ

compare the bar graphs under different reconfiguration delays and processor speeds

the plots for BT, SP, QCDMPI, and PSTSWM, it seems that the reconfiguration del

not a factor. It means that either the inter-send computation times are so short tha

cannot hide the reconfiguration delays or they are long enough that they can hide

reconfiguration delays.

In general, the results are consistent with the fact that we can hide most of the r

figuration delays using one of the proposed high hit-ratio predictors. Figure 4.12 sho

summary of the average ratio of the total new reconfiguration delay over the total ori

reconfiguration delay with the current generation and a 10 times faster CPU when a

ing the Tag-bettercycle2 predictor on the benchmarks ford = 25 microseconds, A class fo

NPB, and under different system sizes.

4.4 Predictors' Effect on the Receive Side

It is interesting to discover the effect of applying the heuristics at the send side of c

munications on the receiving sides and hence on the total execution time. Using one

high hit-ratio predictors reduces the total reconfiguration delay. When this happens

sender sides, most of the time the messages are delivered sooner at the receiver s
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the receive calls have been issued after the message has arrived, there would be n

However, if they are issued earlier, then there would be performance enhancement

receiving side and therefore on the whole execution time. This is shown in the Figure 4

I have used the following strategy for discovering the number of times that the rec

calls are issued earlier than their corresponding send calls. I synchronized the t

traces of each node of these applications. I have considered the times just before th

and receive calls are issued. In case of blocking and non-blocking send calls, the tim

before the calls (MPI_SendandMPI_Isend) have been taken into account. That is the tim

that the message is ready to be sent over. For the blocking receive call (MPI_Recv), I did

the same. That is the time that the receiver is ready to get the message. However,

non-blocking receive call (MPI_Irecv), I consider the time when the wait call (MPI_Wait)

is issued for the corresponding receive call (MPI_Irecv). This gives us the worst case sce

nario for the number of times the receive calls are issued before their corresponding

calls.
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Figure 4.12:Summary of the average ratio of the total reconfiguration time after hid
over the total original reconfiguration time with the current generation and a 10 tim

faster CPU when applying the Tag-bettercycle2 predictor on the benchmarks withd = 25
microseconds, A class for NPB, and under different system sizes
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I present the average percentage of the times that the receive calls are issued

than their corresponding send calls for the CG, SP, and PSTSWM benchmarks in F

4.14. The results are true ford = 1, 5, 10, and 25 microseconds. LU and MG benchma

are usingMPI_ANY_SOURCE[92] for some of their receive calls and hence one cann

identify the sources of messages to compare with. What I have calculated is a lower b

of the improvement. A trace-driven simulator should be written for the exact calculatio

the improvement.

4.5 Summary

In order to efficiently use the proposed predictors in Chapter 3 to hide the hard

latency of the reconfigurable interconnects, enough lead time should exist such th

reconfiguration of the interconnect be completed before the communication req

arrives. For this, I presented the distribution of execution times of the computation ph

of the parallel application benchmarks on an IBM SP2 machine. The results showed

most of the time, we are able to fully utilize these computation times for the concur

reconfiguration of the interconnect when we know, in advance, the next target using o

the proposed high hit-ratio target prediction algorithms.

Figure 4.13:Heuristics effects on the receiving side

Process 1 Process 2 Process 1 Process 2

Send-call
Send-call

Receive-call

Receive-call
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d d
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I also presented the performance enhancements of the best predictors, Better-c

and Tag-bettercycle2, on the application benchmarks for the total reconfiguration tim

Finally, I considered the effects that using message destination predictors have o

receiving sides of communications. I showed that up to 50% of the time applicat

might benefit from the situations where they post early receive calls. However, A tr

driven simulator should be written for the calculation of the improvement.

I did not evaluate the application speedup when using the predictors on the ap

tions. Rough estimates point to minimal speedup gains. This is because the parallel

cations studied are very coarse-grained and hence the ratio is s

Table 4.2 shows the communication to computation ratios for the applications unde

ferent system sizes. These applications have been written to avoid a lot of communic

between pair-wise nodes mostly because of the high communication latency in the c

generation of parallel systems [43], and partly because of the algorithms, themselve

shown in Table 4.2, the communication to computation ratio is increasing when the n

Figure 4.14:Average percentage of the times the receive calls are
issued before the corresponding send calls
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ber of nodes increases. This means that we might have better speedup for these a

tions for larger system sizes. However, the inter-send computation times may decrea

thus reconfiguration delays cannot be hidden.

In this chapter, and Chapter 3 of this dissertation, I am particularly interested in

point-to-point communications in parallel applications. In Chapter 5, I discuss effic

collective communication algorithms for such reconfigurable interconnects.

Table 4.2:Communication to computation ratio of the applications

4 nodes
8 nodes

(9 for BT, SP)
16 nodes 25 nodes

BT (W) 0.015 0.098 0.210 0.260

BT (A) 0.003 0.037 0.061 0.099

SP (W) 0.015 0.074 0.167 0.280

SP (A) 0.009 0.034 0.053 0.115

LU (W) 0.033 0.072 0.143 ---

LU (A) 0.012 0.033 0.126 ---

MG (W) 0.096 0.088 0.171 ---

MG (A) 0.009 0.013 0.028 ---

CG (W) 0.105 0.189 0.772 ---

CG (A) 0.052 0.089 0.264 ---

PSTSWM 0.055 0.114 0.277 0.5

QCDMPI 0.082 0.79 0.333 4.42
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Chapter 5

Collective Communications on a Reconfigurable
Interconnection Network

Collective communicationsare basic patterns of interprocessor communication t

are frequently used as building blocks in a variety of parallel algorithms. Proper im

mentation of collective communication algorithms is a key to the overall performanc

parallel computers.

Free-space optical interconnection is used to fashion a reconfigurable network.

network reconfiguration is expensive compared to message transmission in such net

latency hiding techniquescan be used to increase the performance of collective comm

cations operations.

I present and analyze a broadcasting/multi-broadcasting algorithm [20] that uti

latency hiding and reconfiguration in the network,RON(k, N), to speed these operations

As the first contribution of this chapter, the analysis of the broadcasting algorithm incl

a closed formulation that yields the termination time. Secondly, I contribute by propo

acombined total exchange algorithmbased on a combination of thedirect [109, 120], and

standard exchange[71, 24] algorithms. This ensures a better termination time than w

can be achieved by either of the two algorithms. Meanwhile, known algorithms for sca

ing and all-to-all broadcasting from the literature [40, 21] have been adapted to the

work.

5.1 Introduction

Communication operations may be eitherpoint-to-point, as discussed so far, orcollec-

tive, in which more than two processes participate. The study of classical algorit

brings up some generic communication patterns, collective communications, that a

very often in parallel algorithms [70, 76]. Collective communications are common b
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patterns of interprocessor communication that are frequently used as building block

variety of parallel algorithms. Proper implementation of these basic communication o

ations on various parallel architectures is a key to the efficient execution of the pa

algorithms that use them, and hence, on the overall performance of the parallel comp

Whether communication operations are programmed by the user (low-level routi

contained in a library such as MPI [92, 93], andParallel Virtual Machine(PVM) [115], or

generated by a compiler to translate high-level data parallel language such asHigh Perfor-

mance Fortran(HPF) [85], their latency directly affects the total computation time of t

parallel application. The growing interest in collective communication operations is

dent by their inclusion in the MPI.

Collective communication operations can be used for data movement, process

chronization, or global operations, as shown in Figure 5.1. Data movement opera

include,broadcasting, multi-broadcasting, muticasting, scattering, gathering, multin

broadcasting,andtotal exchange. In broadcasting, a node sends its unique message to

other nodes. Broadcasting is used in a variety of linear algebra algorithms [76], su

matrix-vector multiplication, matrix-matrix multiplication, LU-factorization, and Hous

holder transformations. It is also used in database queries and transitive closure

rithms. In multi-broadcasting, a node broadcasts a number of messages to all other

In multicasting, a special case of broadcasting, a node sends its unique message to a

of all the other nodes. In scattering, a node sends a different message to all other no

is basically used for distribution of data among the processors. Gathering is the

reverse of scattering. That is, a node receives a different message from all other no

will not discuss it here as a separate operation. In multinode broadcasting, all nodes

their unique messages to all other nodes. In total exchange, all nodes send their di

messages to all other nodes.Personalized communications (scattering, gathering, and tota

exchange) are used, for instance, in transposing a matrix, and the conversion betwe

ferent data structures, or in neural network simulations. It is worth mentioning that the

minology is not yet standard. For example, broadcasting is referred asone-to-all,
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multinode broadcasting is referred asall-to-all or gossiping, scattering is referred asper-

sonalized one-to-all, and total exchange is referred asmulti-scatteringor personalized all-

to-all.

Barrier synchronization, is a type of process synchronization. It defines a logical po

in the control flow of an algorithm at which all members of the group must arrive be

any of the processes in the subset is allowed to proceed further. Therefore, one of th

cesses plays the role of a barrier process. This process gathers messages of all oth

cesses, and then broadcasts a message to them indicating that they can continue.

Global operations includereduction, andscan. In reduction, an operation such assum,

max, min, is applied across data items received from each member of the group. In aN/1

reductionoperation, the resultant data resides at the root node. Therefore, it conta

gathering operation. In anN/N reductionoperation, every node or process involved in th

operation obtains a copy of the reduced data. Hence, it is a combination of gatherin

broadcasting. In scan operation, given processesp0, p1, , pn, and data itemsd0, d1, ,

dn, an operation⊗ is applied such that the result is available at the pr

cesspi.

Collective operations have been usually proposed and designed for systems tha

port only point-to-point, orunicast, communication in hardware. In these environmen

collective operations are implemented by sending multiple unicast messages. Such

mentations are calledunicast-based. An alternative approach is to provide more dire

support for collective communication in the hardware. Two main approaches have

studied. The first approach uses a network other than the primary data network to im

ment collective communications [80]. In the second approach, the data netwo

enhanced to better support some collective communications. To improve collective

munication performance and reduce software overhead, two such enhancements to

have been proposed:message replicationandintermediate reception. Message replication

refers to the ability to duplicate incoming messages onto more than one outgoing

… …

d0 d1 … di⊗ ⊗ ⊗
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nels, while intermediate reception is the ability to simultaneously deliver an incom

message to the local processor, and to an outgoing channel. Ni has proposed how s

parallel computers should support efficient hardware multicast [99].

Numerous works have been reported on collective communications. Excellent su

on collective communication algorithms instore-and-forwardsystems can be found in

[53]. Another survey of broadcasting and multinode broadcasting in store-and-for

systems can be found in [61]. Dimakopoulos and Dimopoulos have shown how

exchange can be done in cayley graphs [41]. They have also presented collective co

nication algorithms on binary fat trees [42]. McKinley and his colleagues have surve

collective communications on hypercubes, meshes, and tori inwormhole-routednetworks

[90]. Recently, Banikazemi and others, have proposed efficient broadcasting and m

casting algorithms using communication capabilities of heterogeneous networks of w

stations [15]. In the context of optical interconnection networks, Berthome and Fer

[20, 21] have presented broadcasting and multicasting algorithms for networks usingopti-

cal passive stars(OPS). Comparative Study of one-to-many wavelength division mu

Broadcast                  Scatter                        Gather              Multinode broadcast

abc def ghi

adg beh c f i

Total exchange                        Barrier               Reduction                    Scan

a      b      c

a+b+c

a         b        c

a       a+b     a+b+c

Figure 5.1:Some collective communication operations
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plexing (WDM) lightwave interconnection networks, based on hypergragh theory [

have been studied by Bourdin and his colleagues [25]. Gravenstreter and Melhem

presented some communication algorithms inpartitioned optical passive stars(POPS)

networks [59].

In this chapter, I present and analyze some collective communication algorithm

the reconfigurable network,RON (k, N), defined in Chapter 3. In Section 5.2, I describe t

communication modeling. I present and analyze broadcasting [20], and multi-broad

ing algorithms that utilize the reconfiguration capabilities of the network in Section

Later on in Section 5.5 and Section 5.6, known algorithms from literature for scatte

and multinode broadcasting [20, 40] are adapted to the network. Then, I propose a

algorithm for total exchange operation, to be calledcombined total exchange algorithm, in

Section 5.7. Finally, I summarize this chapter in Section 5.8.

5.2 Communication Modeling for Broadcasting/Multi-broadcasting

As discussed in Chapter 3, I use a modified Hockney’s communication model [6

modify the Hockney’s model into two models. In this section, I define the first mode

used for hiding the reconfiguration delays in broadcasting and multi-broadcasting

rithms. In Section 5.4, I define the second model for other collective communication a

rithms. The second model supports combining messages into a single message as

scattering, multinode broadcasting, and total exchange algorithms, to be discussed

Note that these algorithms are efficient but they do not hide the reconfiguration del

the network.

The communication time to send a unit length message, , from one node to an

in the network is equal to . I incorporate both and into a sing

message delay . Thus, a unit length message transmission t

. For the remaining of the discussion, and without loss of generality, I s

assume that for a message of fixed length used in broadcasting/multi-broad

ing.

lm

T d t+ s lmτ+= ts lmτ

tm ts lmτ+=

T d tm+=

tm 1=
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Culler and his colleagues have proposed theLogPmodel [33] which uses another ter

minology for communication modeling. LogP models sequences of point-to-point c

munications of short messages.L is the network hardware latency for one-word messa

transfer.O is the combined overhead in processing the message at the sender (os) and

receiver (or). P is the number of processors. The gap,g, is the minimum time interval

between two consecutive message transmission from a processor. Alexandrov and

have proposed theLogGP model [8] which incorporates long messages into the Lo

model. The Gap per byte for long messages,G, is defined as the time per byte for a lon

message. Bar-Noy and Kipnis have developed thepostal model[16], a special case of

LogP model, whereg is one. However, they don’t consider the parameterso andG.

A node in LogP, LogGP, and postal models can send another message immediag

time after the previous message has been sent without waiting for the previous mess

be delivered at the destination. These models are more suitable for the current state-

art wormhole-routed networks where messages can be pipelined through the ne

However, a node in my communication modeling can send another message only af

previous message has been delivered and its link has been reconfigured (if needed).

because my model is atelephone-like modelbased on the circuit-switching techniqu

which is suitable for reconfigurable optical networks.

The model that I have used is slightly different from the model that is offered in [

21, 40]. The difference lies in the fact that in the network,RON (k, N), only the sender is

allowed to reconfigure, and hence the delay penalties occur there. The receiver, in co

to the models in [21, 40], and in [20] is entirely passive.

I use the notationsBm, MBm, Sm, Gm, TEm, for broadcasting time, multi-broadcastin

time, scattering time, multinode broadcasting time, and total exchange time, respect

I derive time complexities of collective communication algorithms in the netwo

RON (k, N), under the modelm, where .F1 stands for full-duplex, single-

port communication. While,Fk stands for full-duplex,k-port communication.

m F1 Fk,{ }∈
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5.3 Broadcasting and Multi-broadcasting

In this section, I shall concentrate in techniques that could effectively hide the re

figuration delayd in the network. By reconfiguration latency hiding, I mean the proces

which while some nodes are in their reconfiguration phase, other nodes are in their

sage transmission phase. Hence, the reconfiguration phase is overlapped with the m

transmission phase which ultimately reduces the broadcasting and multi-broadca

times.

5.3.1 Broadcasting

In broadcasting, a node, assuming noden0 without loss of generality, sends its uniqu

message to all other nodes. I assume an unbounded number of available waveleng

the system. As noted earlier in Chapter 3, techniques such as spread-spectrum can

in case of limited number of available wavelengths. In the following, I first discuss

broadcasting algorithm underk-port modeling, and then present the results for the sing

port modeling.

K-port: The naive algorithm is to let the broadcasting noden0 inform k new nodes at a

step. Clearly, it takes time units. In a more efficient algorithm,B1Fk, node

n0 sends the message tok other nodes and thesek nodes, upon receiving the message, se

it to k other nodes each, which are distinct from the nodes that have received the me

thus far. Continuing this way, the algorithm will terminate after

steps, while in terms of elapsed time, the algorithm will ta

 time units.

Obviously, one can do better than this if one allows the nodes that have already

informed, to re-send the same message to a different group of nodes. Thus, startin

noden0, it sends the message tok nodes. At the end of this step,k + 1 nodes possess the

message which they now send tok other nodes each. Proceeding this way, this algorith

B2Fk, will terminate after steps and will require time

units.

d 1+( ) N 1–
k

-------------

N k 1–( ) 1+( )klog 1–

d 1+( ) N k 1–( ) 1+( )klog 1–( )

Nk 1+log d 1+( ) Nk 1+log
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The above algorithms,B1Fk andB2Fk, are logarithmic in time, but they suffer becaus

of the large reconfiguration delay,d, that each node incurs. I am interested in devisi

algorithms that will overcome the existence of the large reconfiguration delays by e

tially hiding it. The algorithmB1Fk can be improved if the configuration of all the link

forming the tree proceed in parallel. Hence, in this new algorithm,B3Fk, the broadcasting

message would reach the leaves of the tree in time .

The algorithmB2Fk can be improved if the configurations can take place concurren

the message transmissions. I adopt a greedy algorithm,B4Fk, where a node reconfigure

its links to reachk children which lead to apre-configuredtree of an appropriate

O( ) depth. As soon as the broadcasting node has finished sending its mess

reconfigures its links to reach another predefined tree. It is understood that while this

is reconfiguring (this takesd steps time units), nodes that have already been configu

and are in possession of the message send it tok neighbors each. This process repeats

each node every time it sends the message. Potentially, the message, starting at nnx

will reach nodes before nodenx be able to reconfigure.

Figure 5.2 depicts theB4Fk algorithm for a 2-port network with 41 nodes and a reconfig

ration delay of 1. This algorithm is optimal since a node after sending/receiving the

sage immediately reconfigures to send the message to a new node. This algorit

similar to the broadcasting algorithm by Berthome and Ferreira for their loosely-cou

optically reconfigurable parallel computer, ORPC (k),using optical passive stars (OPS

[20].

It is clear that either this broadcasting network is a dedicated network, or there ex

global control where nodes understand that a broadcasting is going to take place and

they reconfigure their links correspondingly. In the latter case, an early reconfigur

delay should be added to the broadcasting time.

d N k 1–( ) 1+( )klog 1–+

Nklog

1 k k
2 … k

d
+ + + + k

d 1+
1–

k 1–
---------------------=
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5.3.1.1 Analysis of the Greedy Algorithm

Before presenting the analysis of the greedy algorithm, it is worth noting that it ca

shown that the total number of nodes,N(S), informed up to stepS follows the recurrence

relations:

(5.1)

It can also be shown that the number of nodes,r(S), that receive the message at ea

step,S, follows the recurrence relations:

(5.2)

These recurrence relations are a kind of generalization of the Fibonacci func

defined by Bar-Noy and Kipnis for the postal model [16], and are similar to the recurre

relations of the broadcasting algorithms by Berthome and Ferreira [20]. The above

tions and those in [16, 20] cannot be solved for a generald. They should be computed ste

       0

1                                            2

3                  4                       5                  6                                0

7          8   9          10           11         12 13         14            15                      16          1            2

17                               24     25                                32   33            34 35          36 37       38 39    40

Figure 5.2: Latency hiding broadcasting algorithm forRON (k, N), N= 41,k = 2,d = 1

N S( )
1 for S = 0

kN S 1–( ) 1+ for S d 1+≤
kN S 1–( ) N S d– 1–( )+ for S d 1+>






=

r S( ) kN S 1–( ) for S d 1+≤
kN S 1–( ) N S d– 1–( )+ for S d 1+>



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by step or be given in a table in order to find the termination time of the algorithms. H

ever, as will be shown in the following, the analysis of the broadcasting algorithm inclu

a closed formulation that yields the termination time.

I present another approach to find a closed formula for the total number of nodes,N(S),

up to the stepS. The problem I shall endeavor to solve is to find the time required for

greedy algorithm to complete. I shall approach the analysis constructively, that is, I

find the number of nodes that will be informed as time progresses, and I shall stop

all nodesN have been informed.

Denote byS the termination time (in units oftm). Then starting from an arbitrary node

n0, the nodes that will be informed and assuming no reconfiguration, belong to ak-ary tree

rooted at noden0 and of depthS. There are nodes in this tree, and I sha

reference them as belonging to the first generation. Each of the nodes in this tree, o

has broadcast the message to its own children, will reconfigure and will become the r

a new tree over which a new wave of broadcasting will commence and proceed co

rently with the broadcasting in the first generation tree. This can only happen if

ensuring that the first node to be reconfigured (noden0) will have enough time to reconfig-

ure and broadcast to itsk children.

I shall refer to the nodes belonging to the trees rooted at nodes which were includ

the first generation tree and reconfigured, as the second generation nodes. Thus, nn0

can send its message again at timed + 1 after its router has been reconfigured to connec

a set ofk new nodes. By sending this new message,n0 actually embeds a newk-ary tree at

depthd + 1. The nextk nodes at depth 1 of the first generation of trees embedk differentk-

ary trees at depthd + 2. Using this concept, thekS- d - 2 nodes at depthS- d - 2 of the first

generation embed the lastkS - d - 2 different trees at depthS - 1 in the second generation

Figure 5.3 depicts the embedding of the first two generations of the nodes.

Denote byN2 the total number of new nodes in the second generation, and byMi the

total number of new nodes in the trees of the second generation rooted at depthi.

N1
k

S 1+
1–

k 1–
---------------------=

S d 2+≥
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Therefore,

(5.3)

(5.4)

(5.5)

This continues until depthS - 1 where:

(5.6)

Therefore, the total number of new nodes in the second generation,N2, will be:

(5.7)

0
1

d+1
d+2
d+3

S-1
S

n0

n0

1 1 k k2 kS-d-2

Figure 5.3: First and second generation trees. The numbers underneath
each tree denote the number of trees having the same height. These trees are

rooted at nodes that were at the same level in the first generation tree.
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The process of reconfiguring the optical interconnects continues by the nodes as

as they have broadcast the message to their children. Each generation of trees em

new generation that commences at depthd + 1 from its parent generation. It is clear tha

the total number of generations is .

Let us now count the total number of nodesN3 in the third generation. The first tree o

the third generation is embedded at depth 2(d + 1) by n0. I begin with those trees of this

generation which are embedded by the nodes of the first tree in the second generatio

 denotes the total number of nodes in these trees rooted at depthi.

Therefore,

(5.8)

(5.9)

(5.10)

This continues until the depthS -1 where:

(5.11)

S
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Now, consider trees embedded in the third generation by the nodes of the nextk trees

at depthS- d - 2 in the second generation, and let denotes the total number of nod

these trees rooted at depthi. Therefore,

(5.12)

(5.13)

(5.14)

This continues until the depthS - 1 where:

(5.15)

I continue with the trees embedded in the third generation by the nodes of the nek2

trees of depthS - d - 3 in the second generation, and let denotes the total numbe

nodes in these trees rooted at depthi. Therefore,

(5.16)

(5.17)

(5.18)
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This continues until the depthS - 1 where:

(5.19)

The process of generating trees in the third generation continues up to the trees e

ded at depthS - 1, by the nodes of the trees in the second generation, rooted at d

S - d - 2. Let  denotes the total number of nodes in these trees. Therefore

(5.20)

Now, I am at the stage to sum the number of nodes at each depth in the third ge

tion. Let denotes the total number of nodes of the trees in the third generation roo

depthi.

Therefore,

(5.21)

(5.22)

, (5.23)

(5.24)
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Hence, the total number of the new nodes in the third generation,N3, will be:

(5.25)

In a similar manner, I can compute the number of nodes for the fourth and fifth ge

ations as:

(5.26)

. (5.27)

This process implies lemma 1.

Lemma 1 The number of new nodes in generationi + 1,  can be found as:

(5.28)

Proof. I give a combinatorial argument for its validity. Assume a tree belonging

generationi -1 and rooted at depth (i -1)(d + 1). This tree will produce a number of tree

belonging to generationi and rooted at depthi(d + 1). The term repre-

sents the number of new nodes in the first tree of generationi rooted at depthi(d + 1). Sub-

sequent trees in this generation, have a decreasing (by one) number of levels, bu

they were produced by nodes that are at lower levels in the parent generation, their

bers grow with the power ofk. Therefore, the number of nodes within all the trees at ea

level, remains the same and equal to .
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I have however accounted for the number of trees produced by a single tree in a p

generation. There is more than one tree of identical depth in the parent generation, a

multiplicative term accounts for this number based on the Pascal’s tria

[27].

The total number of nodes in all generations,N(S), informed up to stepS,is equal to:

, or (5.29)

(5.30)

Note that Equation 5.30 is a closed formula and easier to compute (less compu

and memory requirements) than the recurrence Equation 5.1, and Equation 5.2. To

mine the termination timeS one has to solve Equation 5.30 forS. This equation can be

solved numerically. Table 5.1 and Table 5.2 provide a comparison of some nume

examples for the broadcasting time under different broadcasting algorithms,B1Fk, B2Fk,

B3Fk, B4Fk, and for the best case when there is no reconfiguration delay (i.d

= 0), for a particular number of nodes,N, reconfiguration delay,d, and port modeling,k. It

is quite clear that the latency hiding algorithm,B4Fk, performs better than the other algo

rithms.

Table 5.1:Broadcasting time,k = 2,d = 1

N B1Fk B2Fk B3Fk B4Fk

99 12 10 7 5 5

1393 20 14 11 8 7

19601 28 18 15 11 9

114243 32 22 17 13 11
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Single-port: In this case, a node can only use one of its links. Therefore, insteadk-

ary trees, linear arrays are embedded. Hence, using the same concept as in thek-port mod-

eling, the total number of nodes for generations 1, 2, 3, 4 are:

(5.31)

(5.32)

(5.33)

. (5.34)

If I continue in a similar manner to thek-port modeling, then the total number of node

in all generations,N(S), would be:

(5.35)

Table 5.2:Broadcasting time,k = 4,d = 3

N B1Fk B2Fk B3Fk B4F

85 12 12 6 3 3

1369 24 20 9 5 5

22703 32 28 11 7 7

88633 36 32 12 8 8
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N1 S 1+=

N2 S d– j–
j 1=

S d– 1–

∑=

N3 j S 2d– 1– j–( )
j 1=

S 2 d 1+( )–

∑=

N4
j j 1+( )

2!
------------------- S 3d– 2– j–( )

j 1=

S 3 d 1+( )–

∑=

N S( ) S 1 j i 2–+
i 1– 

  S i d 1+( )– 1 j–+( )
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∑
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S
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Table 5.3 provides a comparison of some numerical examples for the broadca

time of the latency hiding algorithm,BF1, of the spanning binomial algorithm[114],

, and for the best case when there is no reconfiguration delay

d = 0), for a particular number of nodes,N, and reconfiguration delay,d. It is clear that the

algorithm,BF1, performs better than the spanning binomial algorithm.

5.3.1.2 Grouping schema

The total number of nodes,N(S), informed up to stepSis given as Equation 5.1. Mean

while, the number of nodes,r(S), that receive the message at each stepS is defined as

Equation 5.2. The nodes are divided into two groups. The group that has already rec

the message and the one that has not. The nodes that know the message at any g

can be grouped into those nodes that have already received the message and tho

receive at this time step. The nodes that receive at each step, is proportional (k times) to

the number of nodes that have received the message at the last step and those th

sent the message  steps ago.

The same grouping schema as in [20] can be used to find the set of nodes that tra

the message, and the set of the nodes that receive the message at any given step.

T(S)consists of the nodes transmitting the message at step S. While, the setR(S)consists

of the nodes that receive the message at step S. These two sets can be found by E

5.36. Note that the same grouping schema can be applied to the multi-broadcasting c

be discussed in the next section.

Table 5.3:Broadcasting time,d = 3

N BF1

69 28 12 7

1252 44 21 11

8657 56 27 14

82629 68 34 17

d 1+( ) log2N N2log

d 1+( ) log2N N2log

d 1+
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5.3.2 Multi-broadcasting

If there areM messages to be broadcast by a node to all other nodes, the simplest

rithm is to use the above latency hiding broadcasting algorithms (B4Fk, or BF1) M times in

sequence. This algorithm, denote it byMB1, gives an upper bound for multi-broadcastin

and takes , and time units underk-port and single-port

modeling, respectively. A lower bound for multi-broadcasting, (MBm is the

broadcasting time for an optimal algorithm), can be achieved by pipelining the mess

through the network. That is, noden0 sends its M messages in sequence in an optim

broadcasting algorithm.

One may think of another algorithm,MB2FK, where the first message embeds a broa

casting tree (first generation tree) rooted at noden0; Each of the subsequent messages u

this embedded tree to broadcast thus bypassing the reconfiguration costs that the firs

sage incurred. Hence, the first message will incur a delay of

time units to broadcast over allN nodes and to embed the broadcast tree, while the sec

and subsequent messages would only incur a broadcast delay of

each. Therefore, the total cost is

(5.37)

Table 5.4 compares the two algorithmsMB1FK andMB2FK. Note that an optimal algo-

rithm for multi-broadcasting is to be devised such that messages are pipelined throu

embedded trees using the latency hiding broadcasting algorithms (B4Fk, or BF1).

T 0( ) 0=

R S( ) N S 1–( ) 1 … N S( ), ,+{ }=

T S( ) T S d– 1–( ) R S 1–( )∪=





M d B4+ Fk( )× M d BF1+( )×

M 1– MBm+

d N k 1–( ) 1+klog 1–( )+

N k 1–( ) 1+klog 1–

MB2FK d M N k 1–( ) 1+klog 1–( )+=



103

ult-

mes-

ms for

o not

from

ral-

age

ing a

nd the

ge

rallel

r nodes
5.4 Communication Modeling for other Collective Communications

In this section, I define the second communication modeling used for scattering, m

inode broadcasting, and total exchange algorithms. This model supports combining

sages into a single larger message as used in these algorithms. Note that the algorith

scattering, multinode broadcasting, and total exchange are quite efficient but they d

hide the reconfiguration delay in the network.

As stated in Section 5.2, the communication time to send a unit length message

one node to another in the network is equal to . Without loss of gene

ity, I normalize the timeT with respect to . Thus, a representative length mess

transmission takes . The communication time to send anM representative

length message from one node to another would be . Note that, send

combined message (that is a larger message) does not affect the start-up time, , a

reconfiguration delay,d. For simplicity, I incorporate both and into a single messa

delay .

5.5 Scattering

The scattering operation, is used basically to distribute data to the nodes of a pa

computer. The easiest algorithm for the scattering operation is based on thesequential tree

[101]. In this case, the source node sends its different messages to each of the othe

Table 5.4:Multi-broadcasting time,k = 4,d =3,M = 10

N MB1Fk MB2Fk

85 60 33

1369 80 63

22703 100 83

88633 110 93

T d t+ s lmτ+=

lmτ

T d t+ s 1+=

T d t+ s M+=

ts

ts d

d̃ d ts+=
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sequentially, as shown in Figure 5.4 for single-port modeling. As the source of comm

cation is the same for the whole scattering operation, this node should reconfigure its

after each step. Therefore, the scattering time,S1F1, is (N - 1)(  + 1) time units.

Thespanning binomial tree algorithm[91] used for broadcasting/multicasting opera

tions can also be used for scattering operation. In this algorithm, the number of info

nodes doubles at each step, and each node stores its own message and forwards th

the messages it received, if necessary, to its children. As illustrated in Figure 5.5

source node sends its messages for the upper half of the nodes to the node 4. In the

step, nodes 0 and 4 are responsible for sending messages to the nodes in their halve

is, to the node 2 (messages for nodes 2, and 3), and node 6 (messages for nodes 6,

respectively. In the third step, all nodes send the remaining messages to the rem

nodes. These three steps (actually steps) takes each ( + 4), ( +2), and (

time units, respectively. Generally, this algorithm has a scattering time:

(5.38)

Note that I have neglected the data permutation time at each node. It should be

that he spanning binomial algorithm has a much better termination time than the se

tial algorithm for theRON (k, N)(except for the trivial case,N = 2, where they have the

same termination time).

k-port: The sequential tree algorithm can be extended fork-port modeling. That is, at

each step the source node sends itsk different messages tok other different nodes. There

fore, .

d̃

 . . .

0

1            2                       7

1
2

7

Figure 5.4:Sequential tree algorithm

N2log d̃ d̃ d̃

S2F1 N 1– d̃ N2log+=

S1Fk d̃ 1+( ) N 1–
k

------------- 
 =
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Desprez and his colleagues have extended the spanning binomial algorithm fork-

port modeling [40]. In this algorithm, the scattering noden0, sendsk messages of

length each, to itsk children. Therefore, there are (k + 1) nodes having different

messages. These nodes, at step 2, communicate each with theirk children and send one

(k + 1)-th of their initial message to each one. This process continues and all node

informed after  communication steps. Thus the scattering time is equal to

(5.39)

5.6 Multinode Broadcasting

In multinode broadcasting, also called gossiping [53], all nodes send their unique

sages to all other nodes, and this is basically used in parallel algorithms when all n

need to exchange their data. The simplest algorithm for multinode broadcasting is t

the latency hiding broadcasting algorithmN times, one for each node. Another algorithm

is to consider the multinode broadcasting as a degenerate case of total exchange, to

cussed in the next section. However, better algorithms exist.

0
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7

5
2

3

1

(m1)                   (m4,m5,m6,m7)

(m6,m7)
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[1]
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[3]

[3][3]
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Figure 5.5:  Spanning binomial tree algorithm

N
k 1+
------------

N
k 1+
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Nk 1+log

S2FK d̃
N
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Single-port: In the direct algorithms [109, 120], at any stepi, a nodep sends its mes-

sage to node (p + i) mod N. Clearly, the cost of this algorithm,G1F1, is (N -1)(  + 1).

One may use a better algorithm, just like thestandard exchangealgorithms for the

total exchange operation [71, 24], where during each step, the complete network is

sively divided into halves, and messages are exchanged across new divisions at eac

This algorithm combines messages into larger messages to be transmitted as a sing

Actually, each node sends its message along with the other messages it received at t

vious steps. Hence, the multinode broadcasting has  steps, and a cost of

(5.40)

Figure 5.6 shows pairwise communications and the length of messages at each s

multinode broadcasting on an 8 node message-passing multicomputer. Unfortun

latency hiding cannot improve this cost.

k-port: A simple algorithm is based on the extension of the direct algorithm fork-port

modeling. That is, at stepi, nodep sends its message to the nodes (p + (i - 1)k + 1) mod N,

(p + (i - 1)k + 2) mod N, , (p + ik) mod N. This algorithm has a cost of:

.

d̃

N2log

G2F1 N 1– d̃ N2log+=
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Figure 5.6:Multinode broadcasting on an 8-nodeRON (k, N) under single-port modeling
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Desprez and his colleagues [40] extended theG2F1 algorithm fork-port modeling by

letting the nodes combine the messages to reduce the effect of reconfiguration dela

ure 5.7 illustrates this algorithm whenN =9 andk = 2. I divide the nodes into groups

of (k + 1) nodes each. Nodes are grouped as (0, 1, ,k), (k + 1, k + 2, , 2(k +1) - 1),

, (N - (k + 1), N - (k + 1) + 1, ,N - 1). At step 1, all nodes within a group exchang

their messages. At the end of this step, each node has (k + 1) messages. At step 2, nodep

exchanges all its messages with nodes (p + (k + 1)) mod N, (p + 2(k +1)) mod N, , (p +

k(k + 1)) mod N. At the end of this step, each node has messages.

. This process continues to steps, where nodep exchanges its message

with nodes (p + ) mod N, (p + 2 ) mod N, , (p + k )

mod N. It is clear that at each stepi of this algorithm, each node sends me

sages tok other nodes. Hence, this algorithm has a multinode broadcasting time:

(5.41)

N
k 1+
------------

… …

… …

…

k 1+( )2

S Nk 1+log=

k 1+( )S 1–
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k 1+( )i 1–

G2FK d̃ k 1+( )i 1–
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Nk 1+log
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Figure 5.7: Multinode broadcasting on an 9-nodeRON (k, N)under2-port modeling
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5.7 Total Exchange

In total exchange, all nodes send their different messages to all other nodes. A

algorithm for total exchange is to perform a scattering operationN times in sequence.

However, better algorithms exist.

Single-port: In the direct algorithms [109, 120], at any stepi, a nodep sends the mes-

sage to destined node (p + i) mod N. Clearly, the cost of this algorithm,TE1F1, is equal to

(N - 1)(  + 1).

One may also use the standard exchange algorithm for total exchange similar

ones used in hypercubes, and meshes [71, 24], where during each step, the comple

work is recursively divided into halves, and messages are exchanged across new div

at each step. Nodes combine messages into larger messages to be transmitted as

unit. Consider this algorithm for an 8-node multicomputer, as shown in Figure 5.8. T

are messages to be sent by each node at any step in this algorithm. I only de

this for node 0. Node 0 sends all its messages for the nodes at the upper half (that is,

4, 5, 6, and 7) to node 4 at step 1. At the same time, it receives the messages for i

from node 4. At the second step, node 0 sends its message, along with the message

node 4, destined to nodes 2 and 3, to node 2. At the same time, it receives the me

from the nodes 2, and 6 for itself and node 1. At the third step (actually, ste

node 0 sends its message along with the other messages from nodes 2, 4, and 6 to

It is clear that at the end of this step all nodes have exchanged all their messages.

this algorithm,TE2F1, has a cost of .

d̃

N 2⁄

N2log

d̃
N
2
----+ 

  N2log
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Figure 5.8:Total exchange on an 8-nodeRON (k, N) under single-port modeling
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Which algorithm,TE1F1 or TE2F1, is faster depends on the number of nodesN, and

the term, . I propose another algorithm, calledcombined total exchange algorithm,

TE3F1, which is a combination of these two algorithms.

I begin this algorithm by doing some of (or even none of) the steps involved in

standard total exchange algorithm, and then continue with the direct algorithm. Tha

divide the nodes in the complete network in half and do the steps involved in the stan

total exchange algorithm up to a point(s) that there is no gain in continuing to do so. F

that step(s) on, the direct algorithm is used for all the nodes in each of the created

groups at the same time. Actually, the goal is to find the number of steps, or a boun

the number of steps, before switching to the direct algorithm such that the time asso

with this algorithm is less than (or at least equal to) the other two (direct, and stan

exchange) algorithms.

Let me explain this algorithm withi = 1 (number of doing the standard exchange alg

rithm) for the example shown in Figure 5.8. At the step 1, the nodes in the complete

work are divided in halves. Each node exchanges 4 messages with its correspondin

at the other half. This takes + 4, and at this point, each of the network halves co

messages destined to the half itself. As a matter of fact, each node now has two me

for each of the nodes in its half. These messages can be distributed to their destin

using a direct algorithm. There are 4 nodes in each half and 2 messages to be excha

a time for a cost of (4 - 1)( + 2) = 3 + 6. Hence, this algorithm has a total cost of 4

10.

Lemma 2 The combined total exchange algorithmunder single-port modeling on

RON (K, N)has a cost of

(5.42)

wherei is the number of steps to do the standard exchange algorithm before switchi

the direct algorithm.

d̃

d̃

d̃ d̃ d̃

TE3F1 i d̃
N
2
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  N

2
i
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Proof. In the combined total exchange algorithm, each time a standard exchange

rithm step is done a cost of is added. This brings up the term . The

part of the second term, , is for the number of nodes in the groups doing the d

algorithms simultaneously. The second part, , stands for the delay associated

the transfer of messages which is doubled at each steps.

It is clear that this algorithm is exactly the same as the direct algorithm wheni = 0, and

the standard exchange algorithm when .

k-port: The direct algorithm for thek-port modeling requires nodep at stepi to send

its message to the nodes (p + (i - 1)k + 1) mod N, (p + (i - 1)k + 2) mod N, , (p + ik) mod

N. This algorithm has a cost of, .

The same grouping and algorithm asG2Fk can be used for total exchange with th

exception that this time each node sends messages at a time. Therefore, the

this algorithm,TE2Fk, is . Figure 5.9 illustrates

the above algorithm whenN =9 andk = 2.
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Figure 5.9:Total exchange on an 9-nodeRON (k, N) under2-port modeling
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Which algorithm,TE1Fk or TE2Fk, is faster depends on the number of nodesN, num-

ber of input/output channels,k, and the term, . Just like the single-port modeling, acom-

bined total exchange algorithm, TE3Fk, is proposed which is a combination of the abov

two algorithms.

Lemma 3 The combined total exchange algorithmunder k-port modeling on

RON (k, N)has a cost of

(5.43)

wherei is the number of steps to do the standard exchange algorithm before switchi

the direct algorithm.

Proof. In the combined total exchange algorithm and underk-port modeling, each time

a standard exchange algorithm step is done a cost of is added. This brings u

term . The first part of the second term, , is for the number

nodes in the groups doing the direct algorithms simultaneously. The second

, stands for the delay associated with the transfer of messages.

It is clear that this algorithm is exactly the same as the direct algorithm wheni = 0, and

the standard exchange algorithm when . I haven’t found any mathema

proof that this algorithm is better than the known algorithms. However, in all the num

cal examples (more than one hundred thousand examples) that I have performed

comparison of these algorithms, I have always found a step,i, for which, the combined

total exchange algorithm had a shorter or equal exchange time than both the direct

rithm, , and the standard exchange algorithm, . T
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above statement is also true for single-port modeling. Therefore, It is conjectured tha

proposed algorithm is better than (or at least equal to) both known algorithms. Tabl

and Table 5.6 summarize some typical examples with optimal costs forTE3F1, andTE3Fk.

5.8 Summary

In this chapter, I presented and analyzed a broadcasting algorithm [20] that c

effectively hide the reconfiguration delayd in the network,RON (k, N). Essentially, in this

algorithm, the reconfiguration phase of some of the nodes is overlapped with the me

transmission phase of the other nodes which ultimately reduces the broadcasting tim

analysis of the broadcasting algorithm includes a closed formulation that yields the te

nation time.

The solution for the total exchange problem combines two known algorithms,direct

[109, 120], andstandard exchange[71, 24], and it includes an optimization phase th

determines the number of steps after which the first algorithm terminates and the s

Table 5.5:Total exchange time,N = 1024, single-port

TE1F1 TE2F1 TE3F1

2 3069 5140 2558 (i = 1, 2)

5 6138 5170 3202 (i = 3)

20 21483 5320 4272 (i = 5)

50 52173 5620 5082 (i = 6)

Table 5.6:Total exchange time,N = 1024,k = 3

TE1Fk TE2Fk TE3Fk

2 1023 1290 768 (i = 1)

5 2046 1305 963 (i = 2)

20 7161 1380 1248 (i = 3)

50 17391 1530 1466 (i = 3)

d̃

d̃
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one is engaged. This ensures a termination time that is better than what can be a

plished by either of the two algorithms. Meanwhile, known algorithms for scattering

all-to-all broadcasting from literature [40, 21] have been adapted to the netw

RON (k, N).

The scattering, multinode broadcasting, and total exchange algorithms discuss

this chapter assumed that the number of nodes in theRON (k, N) is a power of 2, or a

power of (k + 1) under single-port andk-port modeling, respectively. However, when th

number of processors is not a power of 2, or a power of (k + 1), dummy nodes can be

assumed to exist until the next power of 2 or (k +1) with a little performance loss.

So far, in this thesis, I have been concerned about efficient communications in

sage-passing parallel computer systems using reconfigurable interconnects. I hav

knowledge of the next destination (either by prediction or algorithmically) to hide

reconfiguration latency of the interconnect. In Chapter 6, regardless of the type o

interconnection network, I utilize prediction techniques in general, and more specifi

the proposed predictors in Chapter 3, to remove the redundant message copying

receiving side of communications in message-passing systems.
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Chapter 6

Efficient Communication Using Message Prediction for
Clusters of Multiprocessors

A significant portion of the software communication overhead belongs to a numb

message copying operations. Ideally, it is desirable to have a true zero-copy pro

where the message moves directly from the send buffer in its user space to the re

buffer in the destination without any intermediate buffering. However, due to the fact

message-passing applications at the send side do not know the final receive

addresses, early arriving messages have to be buffered in a temporary area.

I explain the motivation behind this work and discuss related work in Section 6.2

Section 6.3, I elaborate on how prediction would help eliminate message copying a

receiving side of communications. I explain the experimental methodologies to ga

communication traces of the parallel applications in Section 6.4. I characterize some

munication properties of the parallel application benchmarks by presenting the frequ

and distributions of receive communication calls in Section 6.5. I show that there is a

sage reception communication locality in message-passing parallel applications [5].

ing this communication locality at the receiver sides, I use the proposed predi

introduced in Chapter 3 to predict the next consumable message. This chapter contr

by arguing that these message predictors can be efficiently used to drain the netwo

cache the incoming messages even if the corresponding receive calls have not been

yet. This way, there is no need to unnecessarily copy the early arriving messages

temporary buffer. As shown in Section 6.6, the performance of these predictors, in t

of hit ratio, on some parallel applications is quite promising [5] and suggest that predi

has the potential to eliminate most of the remaining message copies. I compare the p

mance and storage requirements of the predictors in Section 6.7. Finally, I summariz

chapter in Section 6.8.
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6.1 Introduction

With the increasing uniprocessor and SMP computation power available today, i

processor communication has become an important factor that limits the performan

workstations clusters. Essentially, communication overhead is one of the most impo

factors affecting the performance of parallel computers. Many factors affect the pe

mance of communication subsystems in parallel systems. Specifically, communic

hardware and its services, communication software, and the user environment (mu

gramming, multiuser) are the major sources of the communication overhead.

The communication hardware aspect includes the architecture and placement

network interface, and the interconnection network and its services. Many architec

have been proposed for the network interfaces. They are classified as (1) direct [52,

80, 97, 88] and (2) memory-based [48, 112, 126, 23]. Direct network interfaces allo

processor to directly access the network queue. However, they mostly ignore the iss

multiprogramming. That is, a single thread can only use the network interface at a

Memory-based interfaces provide protection but have high latency. Interconnection

works themselves are another source of communication hardware latency. Communi

services including flow control, and message delivery also add to this latency.

Communication software overhead currently dominates the communication tim

clusters of workstations. In the current generation of parallel computer systems, the

ware overheads are tens of microseconds [43]. This is worse in clusters of worksta

Even with high performance networks [23, 67, 111] available today, there is still a

between what the network can offer and what the user application can see. The com

cation software overhead cost comes mainly from three different sources; crossing p

tion boundaries several times between the user space and the kernel space, passing

protocol layers, and involving a number of memory copying operations.

Several researchers are working to minimize the cost of crossing protection bo

aries, and using simple protocol layers by utilizinguser-level messagingtechniques such

as Active Messages(AM) [125], Fast Messages(FM) [102], Virtual Memory-Mapped

Communications(VMMC-2) [48], U-Net [126], LAPI [110], Basic Interface for Parallel-
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ism (BIP) [105], Virtual Interface Architecture(VIA) [49], and PM [121]. A significant

portion of the software communication overhead belongs to a number of message

ing. Ideally, message protocols should transfer messages in a single copy (this is u

called a true zero-copy). In other words, the protocol should copy the message di

from the send buffer in its user space to the receive buffer in the destination withou

intermediate buffering. However, applications at the send side do not know the

receive buffer addresses and, hence, the communication subsystems at the receiv

still copy messages unnecessarily from the network interface to a system buffer, and

from the system buffer to the user buffer when the receiving application posts the re

call.

Some researchers have tried to avoid memory copying [48, 79, 106, 14, 119,

While they have been able to remove the memory copying between the application b

space and the network interface at the send side by using user-level messaging tech

they haven’t been able to remove the memory copying at the receiver sides comp

They may achieve a zero-copy messaging at the receiver sides only if the receive

already posted, a rendez-vous type communication is used for large messages, or th

nation buffer address is already known by a pre-communication. Note, however,

MPI-2 [93] supports a remote memory access (RMA) operation but this is mostly suit

for receiver-initiated communications arising from the shared-memory paradigm.

I am interested in bypassing the memory copying at the destination in the general

eager or rendez-vous and for sender-initiated communications as in MPI [92, 93]. In

chapter, I argue that it is possible to address the message copying problem at the rec

side by speculation. I support my claim by showing that messages display a form of l

ity at the receiving ends of communications.

I introduce here, for the first time, the notion of message prediction for the recei

side of message-passing systems. By predicting the next receive communication ca

hence the next destination buffer address, before the receiving call is posted one w

able to copy the message directly into the CPU cache speculatively before it is need

that in effect a zero-copy transfer can be achieved.
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I am interested in utilizing the proposed predictors in Chapter 3 [3, 2], but this tim

the receiver sides to predict the next consumable message and drain the network as

the message arrives. Upon a message arrival, a user-level thread is invoked. If the r

call has not been issued yet, the message will be cached, but efficient cache ma

mechanisms need to be devised to facilitate binding at the moment the receive c

issued. If the receive call has already been issued, then the message can be writte

final destination.

This chapter concentrates on message predictions at the destinations in messag

ing systems using MPI in isolation. This is analogous to branch prediction, and cohe

activity prediction [97] in isolation. Our tools are not ready for measuring the effect

ness of the predictors on the application run-time yet. My preliminary evaluation meas

the accuracy of the predictors in terms of hit ratio. The results are quite promising and

gest that prediction has the potential to eliminate most of the remaining message co

6.2 Motivation and Related Work

High performance computing is increasingly concerned with efficient communica

across the interconnect due to the availability of high-speed highly-advanced proce

Modern switched networks, calledSystem Area Networks(SAN), such as Myrinet [23]

and ServerNet [67], provide high communication bandwidth and low communica

latency. However, because of high processing overhead due to communication so

including network interface control, flow control, buffer management, memory copy

polling and interrupt handling, users cannot see much difference compared to tradi

local area networks.

Fortunately, several user-level messaging techniques have been developed to r

the operating system kernel and protocol stack from the critical path of communica

[125, 102, 48, 126, 49, 105, 110, 121]. This way, applications can send and receive

sages without operating system intervention which often greatly reduces the commu

tion latency.
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Data transfer mechanisms and message copying, control transfer mechanisms, a

translation mechanisms, protection mechanisms, and reliability issues are the key f

for the performance of a user-level communication system. In this chapter, I am pa

larly interested to avoid message copying at the receiver side of communications.

A significant portion of the software communication overhead belongs to a numb

message copying. With the traditional software messaging layers, there are usuall

message copying operations from the send buffer to the receive buffer, as shown in F

6.1. These copies are namely from the send buffer to the system buffer (1), from the

tem buffer to the network interface (NI) (2), and at the other end of communication f

the network interface to the system buffer (3), and from the system buffer to the re

buffer (4) when the receive call is posted. Note that, I haven’t considered data tra

from the network interface (NI) at the sending process to the network interface at

receiving process as a separate copy. Also, the network interface’s place can be eit

the I/O bus or on the memory bus.

At the send side, some user-level messaging layers use programmed I/O to avoi

tem buffer copying. FM uses programmed I/O while AM-II and BIP do so only for sm

messages. Some other user-messaging layers use DMA. VMMC-2, U-Net, and PM

DMA to bypass the system buffer copy while AM-II and BIP do so only for large m

sages. In systems that use DMA, applications or a library dynamically pins and un

pages in the user space that contain the send and the receive buffers. Address tran

can be done using a kernel module as in BIP, or by caching a limited number of ad

translations for the pinned pages as in VMMC-2, U-Net/MM [17], and PM. Some netw

interfaces also permit bypassing message copying at the network interface by di

writing into the network.

Contrary to the send side, bypassing the system buffer copying at the receiving

may not be achievable. Processes at the sending sides do not know the destination

addresses. Therefore, when a message arrives at the receiving side it has to be buf

the receive call has not been posted yet. VMMC [22] for the SHRIMP multicomputer

communication model that provides direct data transfer between the sender’s
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receiver’s virtual address space. However, it can achieve zero-copy transfer only

sender knows the destination buffer address. Therefore, the receiver exports its

address by scouting a message to the sender before the actual transmission can tak

This leads to a 2-phase rendez-vous protocol which adds to the network traffic, and

work latency especially for short messages.

VMMC-2 [48], uses atransfer redirectionmechanism instead. It uses a default, red

rectable receive buffer for a sender who does not know the address of the receive b

When a message arrives at the receiving network interface, the redirection mech

checks to see if the receiver has already posted its buffer address. If the receive buff

been posted earlier than the message arrival, the message will be directly transferred

user buffer. Thus it achieves a zero-copy transfer. If the buffer address is not poste

message must be buffered in the default buffer. It will then be transferred when the re

buffer is posted. Thus, it achieves a one-copy transfer. However, if the receiver pos

buffer address when the message arrives, part of the message is buffered at the

buffer and the rest is transferred to the user buffer.

Figure 6.1:Data transfers in a traditional messaging layer

Network

Send Process Receive Process
Send buffer Receive buffer

System buffer System buffer

NI NI
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Fast sockets [106] has been built using active messages. It uses a mechanism

receiver side calledreceive postingto avoid the message copy in the fast socket buffer

the message handler knows that the data’s final memory destination is already known

message arrival the message is directly moved to the application user space. Otherw

has to be copied into the fast socket buffer.

FM 2.x [79] uses a similar approach as fast sockets, namelylayer interleaving. FM

collaborates with the handler to direct the incoming messages into the destination bu

the receive call has already been posted.

MPI-LAPI [14] is an implementation of MPI on top of LAPI [110] for the IBM SP

machines. In the implementation of the eager protocol, the header handler of the

returns a buffer pointer to LAPI which tells LAPI where the packets of the message m

be reassembled. If a receive call has been posted, the address of the user buffer is r

to LAPI. If the header handler doesn’t find a matching receive, it will return the addres

an early arrival bufferand hence a one-copy transfer is accomplished. Meanwhile, m

sage sizes of larger than eager size is transferred using 2-phase rendez-vous proto

Some research projects have proposed solutions to multi-protocol message-p

interfaces onclusters of multiprocessors(Clumps) using both shared-memory for intra

node communications and message-passing for inter-node communications [118, 5

MPICH-PM/CLUMP [118] is an MPI library implemented on a cluster of SMPs.

uses a message-passing only model where each process runs on a processor of a

node. For inter-node communications, it useseagerandrendez-vousprotocols. For short

messages, it achieves one-copy using eager protocol as the message is copied into

porary buffer if the MPI receive primitive has not been issued. For large message, it

rendez-vous protocol to achieve zero-copy by using a remote write operation but it n

an extra communication. For intra-node communications, it achieves a one-copy us

kernel primitive that allows to copy messages from the sender to the receiver wit

involving the communication buffer.
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BIP-SMP [55], for intra-node communications, uses shared memory for small m

sages with two memory copy, and direct copy for large messages with a kernel over

For inter-node communications, it works like MPI-BIP which is a port of MPICH [57].

TOMPI [38] is a threaded implementation of MPI on a single SMP node. It copie

message only once by utilizing multiple threads on an SMP node. Unfortunately, it is

scalable to a cluster of SMP machines.

Other techniques to bypass extra copying are there-mapping, andcopy-on-writetech-

niques [31, 45]. Both techniques require switching to the supervisor mode, acquiring

essary locks to virtual memory data structure, and changing virtual memory mappi

several levels for each page, and then performingTranslation Lookaside Buffer(TLB)/

cache consistency actions, and finally returning to the user mode. This limits the pe

mance of the page re-mapping, and copy-on-write techniques. A zero-copy TCP st

implemented in Solaris by using copy-on-write pages and re-mapping to improve com

nication performance [31]. It achieves a relatively high throughput for large messa

However, it does not have a good performance for small messages. This work is

solely dedicated to the SUN Solaris virtual memory system.

fbufs[45] is also using the re-mapping technique to avoid the penalty of copying la

messages across different layers of protocol stack. However, fbufs allows re-mapping

for a limited range of user virtual memory.

It is quite clear that even user-level messaging techniques may not achieve a zero

communication all the time at the receiver side of communications. Meanwhile, the m

problem with all page re-mapping techniques is their poor performance for short mes

which is extremely important for parallel computing.

As stated in Chapter 3, many prediction techniques have been proposed in the p

predict the future accesses of sharing patterns and coherence activities in distr

shared memory (DSM) by looking at their observed behavior [96, 77, 73, 133, 34, 1

Recently, Afsahi and Dimopoulos proposed some heuristics to predict the destinatio

get of subsequent communication requests at the send side of communications in
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sage-passing systems [3, 4]. However, to the best of my knowledge, no predi

technique has been proposed for the receive side of communications in message-p

systems to reduce the latency of a message transfer.

This chapter of the thesis, reports on an innovative approach for removing mes

copying at the receiving ends of communications for message-passing systems. I

that it is possible to address the message copying problem at the receiving sides by

lation. I introduce message prediction techniques such that messages can be directly

ferred to the cache even if the receive calls have not been posted yet.

6.3 Using Message Predictions

In this section, I analyze the problem with the early arrival of messages at the des

tions in message-passing systems. In such systems, a number of messages arrive

trary order at the destinations. The consuming process or thread will consume

message at a time. If I know which message is going to be consumed next, then I can

the message upon its arrival to near the place that it is to be consumed (e.g. a s

cache), or I could schedule which thread to execute next preferably at the same pro

as the consuming thread to enhance the chances that the data will be in the processo

when it is accessed by the consumer.

For this, one has to consider three different issues. First, deciding which messa

going to be consumed next. This can be done by devising receive call predictors, his

based predictors that predict subsequent receive calls by a given process in a me

passing program, Second, deciding where and how this message is to be moved

cache. Third, efficient cache re-mapping and late binding mechanisms need to be d

for when the receive call is posted.

In this chapter, I am addressing the first problem. That is, utilizing message predi

and evaluating their performance. I am working on several methods to address the re

ing issues.
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6.4 Experimental Methodology

In exploring the effect that different heuristics have in predicting the next receive

I used a number of parallel benchmarks, and extracted their communication trac

which I applied the predictors. Specifically, I used BT, SP, and CG benchmarks from

suite [13], and PSTSWM application [128], introduced in Chapter 2. I didn’t use the

and LU benchmarks form the NPB suite because these benchmarks

MPI_ANY_SOURCEin some of their receive calls (MPI_Recv and MPI_Irecv). Th

means that the applications may receive a particular message from different so

depending on the order of arrival. I also didn’t use the QCDMPI application as this a

cation uses the synchronous communication primitive,MPI_Sendrecv_replace, where the

sender waits for the receive call to be posted. Then it transmits the message. In this

prediction wouldn’t help as the receive call is already posted.

I experimented with the workstation class “W”, and the larger class “A” of the N

suite, and the default problem size for the PSTSWM application. Note that becau

space and access limitations I did not experiment with the larger classes “B”, and “C”.

NPB results are almost the same for “W” and “A” classes. Hence, I report only for the

class here. Note that I also removed the initialization part from the communication tr

of the PSTSWM application.

6.5 Receiver-side Locality Estimation

The applications use blocking and nonblocking standard MPI receive primiti

namely MPI_Recvand MPI_Irecv [92]. MPI_Recv (buf, count, datatype, source, ta

comm, status)is a standard blocking receive call. When it returns, data is available a

destination buffer. The PSTSWM application uses this type of receive call.MPI_Irecv

(buf, count, datatype, source, tag, comm, request)is a standard nonblocking receive call.

immediately posts the call and returns. Hence, data is not available at the time of retu

needs another call to complete the call. All applications in this study use this typ

receive call.
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As noted earlier in Chapter 3, one of the communication characteristics of any pa

application is the frequency of communications. Figure 6.2 illustrates the minimum, a

age, and maximum number of receive communication calls in the applications unde

ferent system sizes. I executed the applications once for each different system siz

counted the number of receive calls for each process of the applications. Hence, in F

6.2, by average, minimum, and maximum, I mean the average, minimum, and maxi

number of receive calls taken over all processes of each application. It is clear that a

cesses in the BT, SP, and CG applications have the same number of receive comm

tion calls for each different system size. While processes in the PSTSWM application

different number of receive communication calls.
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Figure 6.2:Number of receive calls in the applications under different system size
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MPI_Recv and MPI_Irecv calls have a 7-tuple set consisting ofsource, tag, count,

datatype, buf, comm,andstatusor request.In order to choose precisely one of the receive

messages at the network interface and transfer it to the cache, the predictors need

sider all the details of a message envelop. That is,source, tag, count, datatype, buf, and

comm(I don’t considerstatusandrequestas they are just a handle when the calls retur

I did not rely only on the buffer address,buf, of a receive call as many processes may se

their messages to the same buffer address of a particular destination process. Nor

depend only on the sender,source, of a message, or on the length,count, of a message.

Therefore, I assigned a different identifier for each unique 6-tuple found in the comm

cation traces of the applications. Figure 6.3 shows the number ofunique message identifi-

ers in the applications under different system sizes. By average, minimum, and maxim

I mean the average, minimum, and maximum number of unique identifiers taken ov

processes of each application. It is evident that all processes in the BT, and CG ap

tions have the same number of unique message identifiers while processes in the S

PSTSWM applications have different number of unique message identifiers (except

the number of processes is four for the SP benchmark).

Figure 6.4 shows the distribution of each unique message identifier for process ze

the applications when the number of processes is 64 for CG and 49 for the other ap

tions. I chose process zero because this process almost always had the largest num

unique message identifiers among all processes in the applications and is also resp

for distributing data and verifying the results of the computation. As it is shown in Fig

6.4, the message identifiers are evenly distributed in BT. However, the distribution o

message identifiers in CG and PSTSWM are almost bimodal with two separated p

The SP benchmark shows four different peaks for the message identifiers. Similar dis

tions have been found for other system sizes [6].

6.5.1 Communication Locality

As noted in Chapter 3, some researchers have tried to find or use thecommunications

locality properties of parallel applications [3, 4, 75, 30, 36]. I define the termmessage

reception localityin conjunction with this work. By message reception locality I mean th
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if a certain message reception call has been used it will be re-used with high probabil

a portion of code that is “near” the place that was used earlier, and that it will be re-us

the near future.

In the following subsection, I present the performance of the classical LRU, LFU,

FIFO heuristics on the applications to see the existence of locality or repetitive rec

calls. I use thehit ratio to establish and compare the performance of these heuristics.

hit ratio, I define the percentage of the times that the predicted receive call was corre

of all receive communication requests.
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Figure 6.3:Number of unique message identifiers in the
applications under different system sizes



127

n-

wise,

the set

tion

tions.

ases.

WM

rithm
6.5.2 The LRU, FIFO and LFU Heuristics

The Least Recently Used(LRU), First-In-First-Out (FIFO), andLeast Frequently

Used(LFU) heuristics, all maintain a set ofk (k is the window size) unique message ide

tifiers. If the next message identifier is already in the set, then a hit is recorded. Other

a miss is recorded and the new message identifier replaces one of the identifiers in

according to which of the LRU, FIFO or LFU strategies is adopted.

Figure 6.5 shows the results of the LRU, FIFO, and LFU heuristics on the applica

benchmarks when the number of processes is 64 for CG and 49 for all other applica

It is clear that the hit-ratios in all benchmarks approach 1 as the window size incre

The performance of the FIFO algorithm is the same as the LRU for BT, and PSTS

benchmarks, and almost the same for the SP and CG benchmarks. The LFU algo
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consistently has a better performance than the LRU and FIFO heuristics on the BT

and PSTSWM applications. It also has a better performance than the LRU and FIFO

ristics on the SP benchmark for window sizes of greater than five. It is interesting to

that a real application like PSTSWM needs window sizes of greater than 150 to achi

good performance (hit ratios above 80%) under the LFU policy. Similar performa

results for the LRU, FIFO, and LFU heuristics on other system sizes can be found in

Essentially, the LRU, FIFO and LFU heuristics do not predict exactly the next rec

call but shows the probability that the next receive call might be in the set. For insta

the SP benchmark shows nearly a 60% hit ratio for a window size of five under the

heuristic. This means that 60% of the time one of the five most recently issued calls w

issued next. These heuristics perform better when the window sizek is sufficiently large.
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However, this large window adds to the hardware and software implementation com

ity as one needs to move all messages in the set to the cache in the likelihood that

them is going to be used next. This is prohibitive for large window sizes.

I am interested in having predictors that can predict the next receive call with a

probability. In Section 6.6, I utilize the novel message predictors proposed in Chap

employing different heuristics and evaluate their performance on the applications.

6.6 Message Predictors

The set of predictors used in this section predict the subsequent receive calls ba

the past history of communication patterns on a per process basis. These predictor

proposed in Chapter 3 to predict the destination target of subsequent communic

requests at the send side of communications. It is worth mentioning that the messa

ordering effect [77] (messages from different processes may arrive out-of-order ev

messages from the same processes may arrive in-order in most networks) has no ef

the predictions as the predictors predict the next receive calls based on the patterns

receive calls in the program that runs on the same process and not on the arriving

sages unless the order of receive calls depends on the order of message arrival. Note

the following figures, by average, minimum, and maximum, I mean the average, m

mum, and maximum hit ratio taken over all processes of each application.

6.6.1 The Tagging Predictor

As described earlier in Chapter 3, theTaggingpredictor assumes a static communic

tion environment in the sense that a particular communication receive call in a secti

code, will be the same one with a large probability. I attach a differenttag to each of the

receive calls found in the applications. This can be implemented with the help of a c

piler or by the programmer through apre-receive (tag)operation which will be passed to

the communication subsystem to predict the next receive call before the actual receiv

is issued.
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The performance of the Tagging predictor is shown in Figure 6.6. It is evident that

predictor doesn’t have a good performance for the applications studied. It cannot p

the communication patterns of PSTSWM at all, and has a degrading performance f

other applications when the number of processes increases.

6.6.2 The Single-cycle Predictor

TheSingle-cyclepredictor, proposed in Chapter 3, is based on the fact that if a gr

of receive calls are issued repeatedly in a cyclical fashion, then I can predict the

request one step ahead. The performance of the Single-cycle predictor is shown in F

6.7. It is evident that its performance is consistently very high (hit ratios of more than

Note that for the PSTSWM application, the Single-cycle predictor has a zero hit-ratio

one of the processes. However, it doesn’t affect the average hit-ratio over all the proc

It is worth mentioning that all Cycle-based predictors proposed in Chapter 3, (Sin

cycle, Single-cycle2, Better-cycle, and Better-cycle2) have the same performance fo

applications studied. Thus, I just reported the results for the Single-cycle predictor h

6.6.3 The Tag-cycle2 Predictor

The Tag predictor didn’t have a good performance on the applications while the

gle-cycle predictor had a very good performance. TheTag-cycle2predictor, proposed in

Chapter 3, is a combination of the Tag predictor and the Single-cycle2 predictor. In

Tag-cycle2 predictor, I attach a different tag to each of the communication requests f

N = 64 for CG, and 49 for others

Figure 6.6:Effects of the Tagging predictor on the applications
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in the benchmarks and do a Single-cycle2 discovery algorithm on each tag. The p

mance of the Tag-cycle2 predictor is shown in Figure 6.8. The Tag-cycle2 predictor

forms well on all benchmarks. Its performance is the same as the Single-cycle predic

BT and PSTSWM. However, it has a better performance on CG and a lower perform

on SP.

6.6.4 The Tag-bettercycle2 Predictor

In the Single-cycle and Tag-cycle2 predictors, as soon as a receive call breaks a c

remove the cycle and form a new cycle. In theTag-bettercycle2predictor, proposed in

Chapter 3, I keep the last cycle associated with each tagbettercycle-head encounte

  BT    SP    CG  PSTSWM
0

0.2

0.4

0.6

0.8

1
Single−cycle predictor

A
ve

ra
ge

 h
it−

ra
tio

Minimum
Average
Maximum

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

Number of processes

A
ve

ra
ge

 h
it−

ra
tio

Single−cycle predictor

BT    
SP    
CG    
PSTSWM

Figure 6.7:Effects of the Single-cycle predictor on the applications

N = 64 for CG, and 49 for others

Figure 6.8:Effects of the Tag-cycle2 predictor on the applications
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the communication patterns of each process. This means that when a cycle breaks I

tain the elements of this cycle in memory for later references. The performance of the

bettercycle2 predictor is shown in Figure 6.9. The Tag-bettercycle2 predictor perfo

well on all benchmarks. Its performance is the same as the Single-cycle and Tag-c

predictors on the BT and PSTSWM. However, it has a better performance on the CG

lower performance on the SP relative to the Single-cycle predictor. The Tag-betterc

predictor has a better performance on the SP application compared to the Tag-cycle

dictor. I also found that the applications have very small number of tagbettercycle-h

(at most 2) under the Tag-bettercycle2 predictor and different system sizes.

6.7 Message Predictors’ Comparison

Figure 6.10 presents a comparison of the performance of the predictors on the ap

tions under some typical system sizes. As we have seen so far, Single-cycle, Tag-c

and Tag-bettercycle2 all perform exceptionally well on the benchmarks. However, the

formance of the Single-cycle is better on the SP benchmark while Tag-cycle2 and

bettercycle2 have better performance on the CG benchmark.

6.7.1 Predictor’s Memory Requirements

Table 6.1 compares the maximum memory requirement of the message predicto

the application benchmarks when the number of processes is 64 for CG, and 49 for B

and PSTSWM. I have found that the memory requirement of the predictors decrease

Figure 6.9: Effects of the Tag-bettercycle2 predictor on the applications
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Figure 6.10:Comparison of the performance of the predictors on the application

N = 64 for CG, and 49 for others

N = 32 for CG and PSTSWM,
and 36 for BT and SP

N = 16



134

ultipli-

s. It is

very

Sin-

the

less

ct that

hould

the

sta-

ber

roto-

o the

not

onding

porary

com-

dic-

e of
ually when the number of processes decreases. The numbers in the table are the m

cation factor for the amount of storage needed to maintain the message 6-tuple set

quite clear that the memory requirements of the predictors is low. That makes them

attractive for the implementation at the network interface. Comparatively, predictors (

gle-cycle, Tag-cycle, and Tag-bettercycle) need higher memory requirement for

PSTSWM application. Although, the classical LRU, LFU, and FIFO heuristics need

memory requirements, but as stated earlier, the beauty of the predictors lies on the fa

they predict with high accuracy and transfer only one message to the cache which s

dramatically reduce the cache pollution effect, if any. This should also bring down

software cost of the implementation.

6.8 Summary

Communication latency adversely affects the performance of networks of work

tions. A significant portion of the software communication overhead belongs to a num

of message copying operations. Ideally, it is very desirable to have a true zero-copy p

col where the message is moved directly from the send buffer in its user space t

receive buffer in the destination without any intermediate buffering. However, this is

always possible as a message may arrive at the destination where the corresp

receive call has not been issued yet. Hence, the message has to be buffered in a tem

buffer.

In this chapter of the dissertation, I have shown that there is a message reception

munication locality in message-passing applications. I have utilized the different pre

tors proposed in Chapter 3 to predict the next receive call at the receiver sid

Table 6.1:Memory requirements (in 6-tuple sets) for the predictors whenN = 64
for CG, andN = 49 for BT, SP, and PSTSWM

BT SP CG PSTSWM

Tagging 12 12 10 7

Single-cycle 43 43 138 204

Tag-cycle2 60 72 40 693

Tag-bettercycle2 60 108 40 693
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communications. By predicting receive calls early, a process can perform the nece

data placement upon message reception and move the message directly into the c

presented the performance of these predictors on some parallel applications. The p

mance results are quite promising and justify more work in this area.

I envision these predictors to be used to drain the network and place the incoming

sages in the cache in such a way so as to increase the probability that the messag

still be in cache when the consuming thread needs to access them.
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Chapter 7

Conclusions and Directions for Future Research

Parallel processing is the key to the design of high performance computers. How

with the availability of fast microprocessors and small-scale multiprocessors, inter

communication has become an increasingly important factor that limits the perform

of parallel computers. In essence, parallel computers require extremely short commu

tion latency such that network transactions have minimal impact on the overall com

tion time. This thesis uses a number of techniques to achieve efficient communicatio

message-passing systems. This thesis makes five contributions.

The first contribution of this thesis is the design and evaluation of two different cat

ries of prediction techniques for message-passing systems. I present evidence tha

sage destinations display a form of locality. This thesis utilizes the message destin

locality property of message-passing parallel applications to devise a number of heu

that can be used to predict the target of subsequent communication requests.

Specifically, I propose two sets of message destination predictors: Cycle-basedpredic-

tors, which are purely dynamic predictors, andTag-basedpredictors, which are static/

dynamic predictors. In cycle-based predictors,Single-cycle, Single-cycle2, Better-cycl

andBetter-cycle2, predictions are done dynamically at the network interface without a

help from the programmer or compiler. In Tag-based predictors,Tagging, Tag-cycle, Tag-

cycle2, Tag-bettercycle,andTag-bettercycle2, predictions are done dynamically at the ne

work interface as well, but they require an interface to pass some information from

program to the network interface. This can be done with the help of programmer or

piler through inserting instructions in the program such aspre-connect (tag).The perfor-

mance of the proposed predictors, specially Better-cycle2 and Tag-bettercycle2, are
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well on all application benchmarks. Meanwhile, the memory requirements of the pre

tors is very low. The proposed predictors should be easily implemented on the net

interface due to their simple algorithms and low memory requirements.

The heuristics proposed are only possible because of the existence of communic

locality that can be used in establishing a communication pathway between a source

destination in reconfigurable interconnects before this pathway is to be used. This is a

desirable property since it allows us to effectively hide the cost of establishing such

munications links, providing thus the application with the raw power of the underly

hardware (e.g. a reconfigurable optical interconnect).

As the second contribution of this thesis, I show that the majority of reconfigura

delays in single-hop reconfigurable networks can be hidden by using one of the pro

high hit ratio predictors. In other words, by comparing the inter-send computation time

some parallel benchmarks with some specific reconfiguration times, most of the tim

are able to fully utilize these computation times for the concurrent reconfiguration o

interconnect when we know, in advance, the next target using one of the proposed hi

ratio target prediction algorithms. This thesis also states that by utilizing the predicto

the send side of communications, applications at the receiver sides would also ben

messages arrive earlier than before.

As the third contribution of this thesis, I analyze a broadcasting algorithm that util

latency hiding and reconfiguration in the network to speed the broadcasting oper

under single-port andk-port modeling. In this algorithm, the reconfiguration phase

some of the nodes is overlapped with the message transmission phase of the other

which ultimately reduces the broadcasting time. The analysis brings up closed form

tions that yield the termination time of the algorithms.

The fourth contribution of this thesis is a new total exchange algorithm in single-

reconfigurable networks under single-port andk-port modeling. I conjecture that this algo

rithm ensures a better termination time than what can be achieved by either of the d

and standard exchange algorithms.
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Ideally, message protocols should copy the message directly from the send buffer

user space to the receive buffer in the destination without any intermediate buffe

However, Applications at the send side do not know the final receive buffer addresse

hence, the communication subsystems at the receiving end still copy messages un

sarily at a temporary buffer.

This thesis presents evidence that there exists message reception communic

locality in message-passing parallel applications. Having message reception comm

tions locality, the fifth contribution of this thesis is the use and evaluation of the propo

predictors to predict the next consumable message at the receiving ends of comm

tions. This thesis contributes by claiming that these message predictors can be effic

used to drain the network and cache the incoming messages even if the correspo

receive calls have not been posted yet. This way, there is no need to unnecessarily co

early arriving messages into a temporary buffer. The performance of the proposed p

tors, Single-cycle, Tag-cycle2 and Tag-bettercycle2, on the parallel applications are

promising and suggest that prediction has the potential to eliminate most of the rema

message copies.

7.1 Future Research

The proposed predictors in Chapter 3 of this thesis such as Tag-bettercycle2 an

ter-cycle2 perform exceptionally well on all applications except QCDMPI, under differ

system sizes. It seems that this application repeatedly changes its message destina

different cycles that even the best proposed predictors cannot always capture them.

it might be helpful to devise other predictors, calledAll-cycleandTag-allcycle,that could

maintain all cycles associated with each cycle-head and tagbettercycle-head found

communication traces of the applications. In case that these two predictors, All-cycle

Tag-allcycle, have high memory requirements, it might be better to devise predictors

fall somewhere between the extreme cases. That is, predictors that can maintain mo

one cycle but less than all of the cycles associated with each cycle-head and tagbe

cle-head. Not to mention that searching in different cycles may add to the perform

penalty.
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The Tag-based predictors proposed in Chapter 3 can be pure dynamic predic

another level of prediction is done on the tag themselves at the network interface.

way, there is no need for the program to passpre-connect (tag)(or pre-receive (tag)as in

Chapter 6) information to the network interface. It is interesting to see what would be

performance of such2-level Tag-based predictors.

In Chapter 4, I roughly showed that up to 50% of the times applications at the rec

ing end might benefit when the predictors are applied at the send side of communica

However, a trace-driven simulator should be written to precisely evaluate the effec

applying the predictors at the send side has on the receive side, and on the total appl

run-time.

This thesis in Chapter 5 analyzes efficient broadcasting/multi-broadcasting algori

that utilizes latency hiding to speed these operations. An optimal algorithm for m

broadcasting is to be devised such that messages are pipelined in the embedded tree

the latency hiding broadcasting algorithms (B4Fk, or BF1). In this thesis, although algo-

rithms for scattering, all-to-all broadcasting, and total exchange are very efficient but

do not use latency hiding technique. Although very challenging, efficient algorithms

multicasting, scattering, all-to-all broadcasting, and total exchange should be devised

that they use latency hiding technique to hide the reconfiguration delay in the netwo

As stated in Chapter 6, by predicting receive calls early, a node can perform the n

sary data placement upon message reception and move the message directly into th

in such a way so as to increase the probability that the messages will still be in cache

the consuming thread needs to access them. Further issues that should be investiga

deciding where and how this message is to be moved in the cache. Would this cach

first-level cache, a second-level cache, a third-level cache or even a network-cache?

mechanism should be used to transfer the message into the cache? User-level me

and/or multithreaded MPI environment. Meanwhile, efficient cache re-mapping and

binding mechanisms need to be devised for when the receive call is posted. Also,

pollution and inaccurate timing are the other issues that should be addressed.
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The performance of the predictors proposed in this thesis were evaluated under s

port modeling. That is the predictors predict one step ahead. However, Cycle-base

dictors, Single-cycle, Single-cycle2, Better-cycle, and Better-cycle2, and Tagcycle-b

predictors, Tag-cycle, Tag-cycle2, Tag-bettercycle, and Tag-bettercycle2 maintain

message destinations of a cycle. Therefore, it is possible to predict more than on

ahead. It is interesting to find the performance of the predictors under such modeli

terms of hit ratio, and for the total reconfiguration delays, and the application run tim

Finally, all the applications studied in this dissertation are scientific and enginee

ones. It is interesting to discover the impact of the predictors on the performance of

mercial applications.
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Appendix A

Removing Timing Disturbances

I wrote my own profiling codes using the wrapper facility of the MPI to gather t

communication traces, and the timing profiles of our application benchmarks. In

appendix, I explain how I removed the timing disturbances from the timing profiles of

applications.

Each inter-send computation time is the computation time between two succe

communication operations (send operations). In the following example,t3 - t2 is the com-

putation time between two successiveMPI_Sendoperations wheret3 is the time just

before the second call is issued whilet2 is the time just after the first send call finishes.

t1   MPI_Send (buf, count, datatype, dest, tag, comm);   t2

     computation

t3   MPI_Send (buf, count, datatype, dest, tag, comm);   t4

The example above has no other MPI calls between the two send primitives. In

that other MPI calls exist between successive send calls, we have to take out these

times to obtain the pure inter_send computation times. In the following example,

other MPI calls,MPI_Irecvand MPI_Wait, exist.

…

…

…
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t1   MPI_Send (buf, count, datatype, dest, tag, comm);   t2

    computation

t3 MPI_Irecv (buf, count, datatype, source, tag, comm, request);   t4

     computation

t5   MPI_Wait (request, status);   t6

     computation

t7   MPI_Send (buf, count, datatype, dest, tag, comm);   t8

Therefore, the pure computation time is equal tot7 - t2 - ((t4 - t3) + (t6 - t5)). To com-

pute the pure inter-send computation times, I need to know the exact times befor

after each MPI call. For these, I did not insert theMPI_Wtimecall in the source codes of

the applications, but instead I wrote my own profiling codes to gather the timing tra

Thus, each MPI call in the applications calls its own profiling code, as shown in the

lowing example for theMPI_Send.

…

…

…

…

…

…

…

…

…
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ta   MPI_Send (buf, count, datatype, dest, tag, comm);   tb

Profiling code:

                                            start_time [index] = MPI_Wtime();   tc

                                                 PMPI_Send (buf, count, datatype, dest, tag, comm

                                           end_time [index] = MPI_Wtime();   td

                                          (i)   index++;

                                          (ii)  label = k;

                                                return;

The MPI_Wtimecalls give the times,tc and td, before and after the profiling call,

PMPI_Send, respectively, while what I really need are the timesta and tb. It is clear that

there are overheads entering and exiting the profiling code in addition to the overhe

the instructionsi and ii . I computed these extra overheads for each type of the MPI c

used in the applications and took them out to find the pure inter-send computation ti
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