Probabilistic Timing Verification and Timing Analysis
for Synthesis of Digital Interface Controllers

by
Marco Antonio Escalante
B.Sc., Universidad Iberoamericana, 1987
M.A.Sc., University of Victoria, 1991

A Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in the Department of
Electrical and Computer Engineering

We accept this thesis as conforming
to the required standard

Dr. Nikitas J. Dimopoulos, Supervisor
(Department of Electrical and Computer Engineering)

Dr. Kin F. Li, Departmental Member
(Department of Electrical and Computer Engineering)

Dr. Fayez El-Guibaly, Departmental Member
(Department of Electrical and Computer Engineering)

Dr. D. Michael Miller, Outside Member
(Department of Computer Science)

Dr. Robert D. McLeod, External Examiner
(Department of Electrical and Computer Engineering,
University of Manitoba)

© MARCO ANTONIO ESCALANTE, 1998
UNIVERSITY OF VICTORIA

All rights reserved. This thesis may not be reproduced
in whole or in part by photocopying or other means,
without the permission of the author.

Supervisor: Dr. N. J. Dimopoulos

ABSTRACT

In this dissertation we present two techniques on the topic of digital interface design: a
probabilistic timing verification and a timing analysis for synthesis, both rooted in a formal
specification. Interface design arises when two digital components (e.g., a processor and a
memory device) are to be interconnected to build up a system. We have extended a Petri
net specification to describe the temporal behavior of the interface protocols of digital com-
ponents. The specification describes circuit delays as random variables thus making it suit-
able to model process variations and timing correlation. Interface probabilistic timing ver-
ification checks that a subsystem, composed of components to be interconnected and the
associated interface logic, satisfies the timing constraints specified by the components’
specifications. Our verification technique not only yields tighter results than previous tech-
niques that do not take timing correlation into consideration but also, if the timing con-
straint is not satisfied, determines the probability that a constraint will be violated. The sec-
ond technique, timing analysis for synthesis, finds tight bounds on the delays of the inter-
face logic, which are unknown prior to synthesis, such that all the timing constraints given
in the component specifications are satisfied.

Examiners:

Dr. Nikitas J. Dimopoulos, Supervisor
(Department of Electrical and Computer Engineering)

Dr. Kin F. Li, Departmental Member
(Department of Electrical and Computer Engineering)

Dr. Fayez El-Guibaly, Departmental Member
(Department of Electrical and Computer Engineering)

Dr. D. Michael Miller, Outside Member
(Department of Computer Science)

Dr. Robert D. McLeod, External Examiner
(Department of Electrical and Computer Engineering,
University of Manitoba)

Table of Contents

Table of Contents ii
List of Figures Vi
List of Tables X
Acknowledgements Xi
Dedication Xil
Notation Xili
1. Introduction 1
1.1 Outline. . .. e 1
1.2 Hardware interface synthesis 2
1.3 Main contributions of this dissertation 4
1.4 Dissertation outline e 6
2. Representation of Interface Specifications 7
2.1 INtrodUCtioN e 7
2.2 Petrinetmodel 8
2.2.1 Petrinets. e 8
2.2.2 Timeextensionsof Petrinets. 11
2.2.3 Probabilistic timed Petrinetmodel 14
2.2.4 Examples of probabilistic timed Petrinets 17
2.3 Signaltransitiongraphs. 19
2.3.1 Previous work on timed signal transition graphs. 19
2.3.2 Components, ports, signals and signal states. 21
2.3.3 Timed signal transition graphs. 25
2.3.4 Signal transition graphs and signal transition sequences. 26

2.4 SUbClass Of STGS. . . .ot e 28

241 AW andoRrcausality. 28
2.4.2 The Acclass of timed signal transitiongraphs 31
2.5 Interface specifications 33
25.1 Constraintrules 34
25.2 QRecausalityrevisited. 36
2.5.3 Interface specifications 37
254 ProJecCtionsot 38
2.5.5 Examples of interface specifications 50
2551 ®amreadcycle..... 51
2552 DPreadcycle 57
2.6 SUMMAIY . . .o e e e e e e e e e 61
. Timing and the Interface Desjn 62
3.1 INtrodUCHioN. 62
3.2 Interface design problem. 63
3.2.1 System integration and interfacedesign 63
3.2.2 Completegraphs 71
3.3 Time-consistency of completegraphs. 75
3.3.1 Scunfolding. 77
3.3.2 TIME-CONSIStENCYttt 82
3.3.3 Forktransitions e 85
3.3.4 Computing constraintequations., 88
3.3.5 Procedure to find fork transitions. 92
3.4 SUMMAIY . . oot e e e e e e e e e e e 102
Probabilistic interface timing verification 103
4.1 Introduction. 103
4.2 Verification problem formulation. 104
4.3 Probability distribution of functions of random variables 109
4.3.1 One function of two randomvariables. 110
4.3.2 Statistics of linear/max/minfunctions 111

4.3.3 Point conditional probability 115

4.4 Reliability analysis 118
45 EXamples. 120
45.1 Example with independent randomvariables 120
4.5.2 Example with correlated random variables 124
45.3 Memoryread interface example 128
454 Special Cases 135
4.6 SUMMAIY . . .ttt et e e e e e e e e e e e e e e e 140
. Timing Analysis for Synthesis 142
5.1 INtroduCtion. 142
5.2 Timing analysis for synthesis problem formulation 143
5.3 SOIVINGTARS . . o 148
5.3.1 TAFSProCedUIe.ttt 148
5.3.2 Linearization of the constraintequations. 154
5.3.3 Anillustrative example 161
5.3.4 Reduction of the feasibleregion 164
5.4 Bus arbitration interface example 172
5.5 SUMMaArY 176
. Conclusions 177
6.1 Overview of the main contributions 177
6.2 Future Work. 179
Bibliography 181
Appendix A. Performance analysis of an arbiter 193
Al INtroduCtion. 193
A.2 Model of the Seitz’ arbiter 196
A3 ANAlYSIS. . . 198

A4 SUMMAIY . . . e 201

Vi

List of Figures

Figure 1.2.1
Figure 1.2.2
Figure 2.2.1
Figure 2.2.2
Figure 2.2.3
Figure 2.2.4
Figure 2.3.1
Figure 2.3.2
Figure 2.3.3
Figure 2.4.1
Figure 2.4.2
Figure 2.5.1
Figure 2.5.2
Figure 2.5.3
Figure 2.5.4
Figure 2.5.5
Figure 2.5.6
Figure 2.5.7
Figure 2.5.8
Figure 2.5.9
Figure 2.5.10
Figure 2.5.11
Figure 2.5.12
Figure 2.5.13
Figure 2.5.14
Figure 2.5.15
Figure 2.5.16

Data transfer read interface example.. L 2
Interface synthesistask. i 3
(a) Petri net, and (b) its reachability graph. 10
Probability density function of the firing time of a transition. 15
Petri net with a free choice place labeled with random vaxiable . 17

A probabilistic timed petri net that does not present deadlock. 18
Signal states. 22
Signal transition graph.. 26
SIMPISTG. . . . 27
Causality Classes. i 29
(a) Amoc di-graph; (b) equivalent timesfiG.. 32
Constraint rule for transitiomandb. 35
@causalityconstraints.. 36
Asimple timing diagram. 39
Interface specification corresponding to the timing diagram. 40
Probability density function of an independentdelay. 42
Timing relationship betweaddandas 42
Signal transition graph.. 43
Generation of the address lines and address strobe signals........... 44
Joint probability density function. o L. 45
Projection and linear projection of a probability density function.46
Timing diagram of an SRAM read cycle from address.............. 52
Timing diagram of an SRAM read cycle fromenable.. 53
Partial interface specification of the SRAM read protocol. 54
Interface specification of the SRAMreadcycle. 55
Projection of the probability density funcfiep(ty, 1o).. 57
Timing diagram of the SHARC readcycle. 58

Figure 2.5.17
Figure 2.5.18
Figure 3.2.1
Figure 3.2.2
Figure 3.2.3
Figure 3.2.4
Figure 3.2.5
Figure 3.2.6
Figure 3.2.7
Figure 3.2.8
Figure 3.2.9
Figure 3.3.1
Figure 3.3.2
Figure 3.3.3
Figure 3.3.4
Figure 3.3.5
Figure 3.3.6
Figure 3.3.7
Figure 3.3.8

Vii

Interface specification of the SHARC read cycle. 59
Construction of a linear projection of ajointpdf.. 60

Multi-master system. 64
Master bus arbitration protocol. 65
Interface specification of a bus arbitration protocol. 66
A bus arbitration protocol variant. 67
Bus arbitration interface: (a) structural view; (b) behavioral view. 68

Bus busy status signal: (a) strobe relation; (b) actual relation.. 69
Bus arbitration semantic specification.. 72
Examples of nets that do not satisfy condition 3 of Definition 3.2.4. . .74

Bus arbitration interface design.. 76
A poset (a) and its relationsl{(band (c)co. 79
Signal transition graph and a partial view of its acyclic unfolding. 81
Constraint rule for transitiomandb. 82
Time separation between transitoaadb.. 84
Fork transitionof transitionsaandb. 85
Unfolding for transitiorssandb from their fork transition. 88
(apnND causality; (bporcausality. 89
Fork transition f&e=M. 91

Figure 3.3.9 sTGwhose transitions do not have a cycle-invariant fork transition. . . . 92

Figure 3.3.10
Figure 3.3.11
Figure 3.3.12
Figure 4.2.1
Figure 4.3.1
Figure 4.3.2
Figure 4.3.3
Figure 4.3.4
Figure 4.3.5
Figure 4.4.1

Acsignal transitiongraph. 94
2-unfolding of thercof Figure 3.3.10.. 95
Construction for Theorem 3.3.7.. o e 99
Checking #= 1, — 1, satisfies the constraifk 106
Probability regions fa=x+y.. 112
Probability regions fa=x—-y.. 112
Probability regions faF max,y). 113
Probability regions faE min(x, y). 114
Partial unfoldings (a)andb independent; (k& andb correlated. . . . 116

Reliability factor. 119

Figure 4.5.1

Figure 4.5.2

Figure 4.5.3

Figure 4.5.4

Figure 4.5.5

Figure 4.5.6

Figure 4.5.7

Figure 4.5.8

Figure 4.5.9

Figure 4.5.10
Figure 4.5.11
Figure 4.5.12
Figure 4.5.13
Figure 4.5.14
Figure 4.5.15
Figure 4.5.16
Figure 4.5.17
Figure 4.5.18
Figure 4.5.19
Figure 4.5.20
Figure 4.5.21
Figure 4.5.22
Figure 4.5.23
Figure 4.5.24
Figure 4.5.25
Figure 4.5.26
Figure 4.5.27
Figure 4.5.28
Figure 4.5.29
Figure 4.5.30

Constraint satisfaction by a netunfolding. 121
Probability density functida(ty) of to. Ll 122
Probability density functionfQfi(X, To), X=maxTty, 1o+ T3). 122
Probability density distributionofuniform pdf's.. 123
Probability density distributionofGaussian pdf's.. 123
Reliability figure. 124
Partial unfolded graph with correlation between transhiansdc.. . 125

Joint probability density function of delaysindt,.. 125
Probability density distributionofwith and without correlation. . . . 126

Two linear projections of pdf's of two random variables. 127
Interface read design. 128
Complete graph representing the interface read design.. 129
Back-to-back cycleconstralnt. 130
Projection &fiogd02, 07). « « o v i 131
Projection Gfjioia(T1, T2, Ta) oo v oo e 132
Joint pdfyat tdat(Tdat+ Tdat) Without correlation. 133
Joint pdfyar tdat(Tgat+ Tdat) With correlation.. 133
Probability density function of the time separation.. 134
SEUENCING. . « o e e et e 135
CoNVoIULION.o 136
Sequencing pdf. 136
Time separation. 136
Time separation construction.. 137
Time separation pdf.. 137
ADcausality.. 138
AD causality construction. 138
ADcausality pdf. 139
@causality.. 139
@ causality construction. 139
@causality pdf.. 140

Figure 5.2.1
Figure 5.2.2
Figure 5.2.3
Figure 5.3.1
Figure 5.3.2
Figure 5.3.3
Figure 5.3.4
Figure 5.3.5
Figure 5.3.6
Figure 5.3.7
Figure 5.3.8
Figure 5.3.9
Figure 5.4.1
Figure 5.4.2
Figure A.1.1
Figure A.1.2
Figure A.2.1
Figure A.2.2
Figure A.3.1
Figure A.3.2
Figure A.3.3

Structural view of a bus arbitration interface.. 144
Interface specifications of bus arbitration protocols. 144
Bus arbitration interface design.. L 145
Set oft(d) values that satisfyaconstralat. 150

Set db values that satisfy a constralhnfor all values oft. 151
Region of the linearization of a constraint equation. 159
Computing the projectionfgf£01,00)., 162

The feasibleregi®. 163
ProjectioRy of fy1gA01,02). - -« oo oo 164
ProjectioRy of fy1qd01,02). -+« oo 167
Afeasibleregion. 171
Thé-reduction of the feasible region shown in Figure 5.3.8.. 171
AFs solution forA; = [30,0) andA, =[90,0). 175

AFs solution forA; = [30, 100] and\, = [90, 200].. 176
Seitz’ arbiter.. 194
N 11 195
Modeling metastability. 197
Probability distributions of the r.v. of aPetrinet.. 197
Probability distributions of the random variables of a Petri net. 198
Probability of the time occurrence of requesédr,. 199

Probability density function of the occurrence timgof. 202

List of Tables

Table 2.3.1.
Table 2.5.1.
Table 2.5.2.
Table 2.5.3.
Table 3.3.1.

Notable transitionson pprt 25
Timing specifications (Motorola MC68030) 43
Timing parameters for the 25 ns version ofrlas device. 54
Timing parameters for the 40 MHz version ofHrRCDSP. 58

Topological sort of the 2-unfolding of Figure 3.3.11. 96

Xi

Acknowledgments

The author of this dissertation would like to thank to all the people that contributed,
either academically or otherwise, to the successful completion of this thesis, with spe-
cial consideration to the following people: My thesis advisor, Dr. Nikitas Dimopoulos,
for his guidance in asking interesting questions, for the freedom he gave me to pursue
my own directions, and for his thoughtful suggestions that always improved my ideas.
The examiners for their versed comments on this dissertation: Dr. Kin Li, who is one
of the founder members olaME, the UVic’s project that motivated the techniques
developed in this dissertation; Dr. Fayez El-Guibaly, who shared his enthusiasm about
affine sets and linear algebra with me in a memorable trip to Banff; Dr. Michael Miller,
who gave crucial encouragement to this research since the early phases and brought
about my first publication in the Canadian Conferenceian, the begininning of a
fruitful participation in other conferences; and Dr. Robert McLeod, who kindly
accepted to be the external examiner and whose suggestions have improved signifi-
cantly the accuracy of the contents of this dissertation. A very special mention goes to
Dr. Luciano Lavagno, who patiently read my manuscripts and always provided me
with his friendly feedback and with invaluable pointers that opened up new avenues.
Mr. Allan Silburt, who gave me the opportunity to work with his group at the Bell-
Northern Labs (currently Nortel), a wonderful experience that was enriched by an
exchange of ideas with Prof. Eduard Cerny and Dr. Karim Khordoc. Dr. Komei
Fukuda, who graciously made his work and code on polytopes available to me. Dr.
Mantis Cheng, who introduced me to the fascinating world of process algebras. The
ECE team of secretaries, Maureen Denning, Lynne Barrett, and Vicky Smith, for mak-
ing my days at UVic so enjoyable. And finally my parents whose immense love initi-
ated this wonderful experience, and my wife Dongni Li whose indefatigable support

brought it to a successful end.

Xii

Amo al tzentzontle, pajaro de cuatrocientas voces,
amo al color de jade, y al enervante perfume de las flores,

pero amo mas a mi hermano el hombre.

Nezahualcoyotl

Notation

W=[3, Cy
Q= D-Q, PQ, MQO’ FQ, CtQ, Y,)\QD

Qu = Oug Pua Mua Clug Y Augd

>=M,Y, AL
Cv={cj}
Gj = (i, tj’ Aij’ eld

N=[T,F M, IO

P

T

F O (PxT) O (TxP)
M:P - O

Mo

MmP-t

U

AT S AY) O{e)

Y

t={p0OP:(p,) OF}
te={p0OP:(t p) OF}
pdf

fu Ty ooy Ty) =

T

Ty

interface specification
Aoc di-graph
unfolding ofaoc di-graphQ
timedsTG
set of constraint rules
constraint rule associated with et
probabilistic timed Petri net
set of places
set of transitions
flow relation
marking function
initial marking
time labeling function
set of non-negative integers
signal transition labeling function
set of ports
preset of transition
postset of transitior
probability density function
joint pdf of random variables, ... Ty
time (random) variable

firing time of transitiort;

tick)

T =, 4, pjj, T

@; = [, 4,050
S={s}
s = [, t, 4y, €]

Xiv
k-th occurrence of transitidh
timing parameter
correlation rule
semantic specification
set of semantic rules

complete graph

Chapter 1

Introduction

1.1 Outline

This dissertation presents results on the topics of timing verification and timing analysis
for the synthesis of digital interface circuits. This introductory chapter aims to show the
driving ideas that motivated our work and the main contributions in a rather informal fash-
ion. Other chapters will deal with the task of explaining in more detail the framework and

techniques that support the results outlined in this chapter.

We have developed a formal framework that can be the basis for the a better mod-
eling of the timing aspects that play an important role during the synthesis of high-perfor-
mance hardware systems. This will lead, we believe, to the creation of computer-aided
design €AD) tools that will relieve hardware designers from time-consuming, error-prone
tasks, thus allowing them to focus on more creative steps of the design process. This is
important in view of the fact that there is a clear trend towards very large and complex
hardware designs, either general-purpose or application-specific chips, while there is con-
stant pressure to reduce the time to market. A viable solution is to increase the design

abstraction, and our effort is in that direction.

In the following section we present some basic ideas behind the design and synthe-

sis of hardware interface logic.

1.2 Hardware interface synthesis

Increasingly more complex hardware systems are designed every day that must outper-
form (in speed, power consumption, etc.) the previous generation of hardware devices.
This force creates new challenges to the hardware design flow. An attractive design option
is to construct systems using already developed and tested modules. Such modules can be
as simple as macrocells, or as complex as microprocessors. An important problem of this
approach is system integration, that is interconnecting the off-the-shelf components to
achieve the desired functionality. Integration of the modules may require designing inter-

facing logic which allows the modules to transfer information.

Processor

rd
ack

Interface
logic

dat

Figure 1.2.1 Data transfer read interface example.

Let us present a simple example to give a glimpse of the interface design problem.
We present some terms rather informally but later in Chapters 2 and 3 we shall discuss

them more thoroughly. Figure 1.2.1 shows a system composed of two components: a pro-
cessor and a memory device. A typiogkerationbetween the two components is called
data transfer, according to which the processorread or write, data from, or to, the
memory device. To accomplish this, each component has external linegpoaitashich

carry signals which without loss of generality we assume to be electrical in nature. Ports
can accept signals (called input ports), or emit signals (called output ports), or both (called

bidirectional port). A binary signal can have two values, usually called high and low

3

respectively. (Of course an electrical signal actually has a continuous value, either voltage

or current, but a binary signal is a convenient abstraction in a digital system).

Figure 1.2.1 shows the ports involved in the read operation. On the processor side,
therd andack ports are used to produce a sequence of eversigral transitionsto tell
the memory device when the processor expects to have the data ready (we use overlining/
underlining of the names of ports to identify them as output/input ports). For example by
settingrd to high, the processor indicates that it wants to request a piece of data from the
memory, and it will keepd high until it detects a high iack when the memory detects a
high incs it places a piece of datadat A sequence of signal transitions that a compo-

nent uses to exercise an interface operation is cafpeat@col

Both components are available in different flavors from different manufacturers.
Thus it is likely that the components use different protocols to exchange information. In
our simple example the memory device does not have a port to tell the processor that a

piece of data is available for reading. For example the interface circuit shown in

Figure 1.2.1 must generate a signal to be fed inadkpthis is called protocol conversion.

Interface desig

Synthesis or
Implementatio

Verification

Figure 1.2.2 Interface synthesis task.

Figure 1.2.2 shows the typical steps in the interface synthesis task. This design task
occurs during the integration phase of system design once the modules that comprise the

system have been chosen, interface circuits must be designed to achieve inter-module

4

communication. The result of the interface synthesis task is a complete implementation of
the system. The system implementation is then checked to meet design constraints, either
by the use of extensive simulation or by the application of formal verification techniques.

If no violations are found, the process successfully terminates, otherwise some steps are

repeated.

An important contribution of this dissertation is to offer an alternative strategy to
the above iterative process. We suggest that before interface synthesis, a timing analysis
for synthesis{aFs) be performed on the interface design which determines tight bounds
on the interface delays. After such analysis it is possible to decide on the feasibility of the
design (if the design is implementable) and if that is the case, time-driven synthesis tech-
niques can be used to complete the implementation. The main problem is that the delays of

the interface circuitry are not known.

In the following section we shall discuss where the techniques developed in this

dissertation fit in this picture.

1.3 Main contributions of this dissertation

The general direction of our work is to address the timing aspects particular to the inter-
face synthesis task. In particular, we propose a formal framework suitable for the specifi-
cation of systems composed of components and interface circuits, and two techniques to

analyze and verify timing properties of such systems.

As mentioned at the beginning of the chapter, timing plays an important role dur-
ing interface synthesis, and thus timing verification techniques, which can prove that the
system timing behavior is correct, promise to be effective tools to facilitate the design pro-

cess. As a matter of fact, interface timing verification research has attracted considerable

attention recently [16, 17, 20, 48, 49, 67, 72, 114].

5

It is our tenet that in order to verify a hardware interface between two modules, one
does not need to know all the details of the implementation of the modules. What is
needed is the specification of each module’s interface behavior. This specification is usu-
ally given in textual form describing the sequence of events that define the protocol,
accompanied with timing diagrams that show explicitly the temporal relationships
between the protocol events. One of our goals is to establish a formal specification ade-

quate for describing interface behaviors of hardware modules. In the literature, various
approaches have been proposed for describing hardware: modal logics [15, 35, 88, 94],
process algebras [92, 63, 86, 72], and nets [115, 29, 79, 124, 114, 93, 66]. Our proposed

representation is an extension and generalization of signal transition graphs [115, 29],

which belongs to the net approach.

Once the formal specification framework was set, we developed two techniques
aimed at supporting the interface synthesis task. Both techniques are rooted in formal ver-
ification which, in contrast to simulation, tries to determine that a system satisfies certain

timing properties (i.e., timing constraints) under all circumstances.

The first technique, interface timing verification, is able to verify that a subsystem,
comprising two components to be interconnected and the associated interface logic, satis-
fies the timing constraints specified by the components’ interfaces. In this dissertation we
present a novel probabilistic model which not only yields tighter results than previous
models that do not take timing correlation into consideration but also provides more infor-
mation to the designer by returning qualitative and quantitative information about the
probability that a constraint will be violated rather than just a fail/pass result as is the case

with traditional interval-based timing verification techniques.

The second technique, timing analysis for synthesis, is a powerful tool during syn-
thesis because it treats the interface as a module to be designed, whose timing parameters
are unknown, and finds the delay boundaries that the interface timing parameters must sat-

isfy to comply with the timing constraints given in the components’ specifications. If the

6

solution space is empty, the interface design is infeasible. Otherwise, bounds can be
known about the interface delays that can be used advantageously during synthesis. The
difference of this preliminary analysis from formal verification is that actual temporal

information about the interface is not completely known in advance of synthesis.

1.4 Dissertation outline

In this chapter we have introduced informally the motivation and goals of this dissertation.
We address the timing aspects of the interface synthesis task that must be carried out dur-
ing the construction of modular systems. A fundamental problem in interface synthesis is
to verify that an interface implementation satisfies the timing constraints imposed by the
components that the interface interconnects. High-performance systems and sub-micron
technologies are pushing the timing of system modules and silicon to the limit. It is of par-
amount importance fotAD tools to support verification techniques that help hardware

designers in coping with shorter times to market new products.

In Chapters 2 and 3, we develop a suitable formal representation framework that

makes explicit the various timing relationships that are present in the module protocols. In

Chapter 4, we formulate the timing verification problem as a constraint satisfaction prob-
lem that determines if a set of timing constraints are satisfied and, if that is not the case, it

produces a probability distribution that a constraint will be violated, which can be used to

assess the reliability of the system. Finally in Chapter 5, we present a technique called tim-
ing analysis for synthesis which allows designers to assess the feasibility of an interface

design prior to synthesis.

Chapter 2

Representation of Interface Specifications

2.1 Introduction

In this dissertation we aim to study temporal properties of interface logic. As we men-
tioned earlier, hardware systems can be constructed using readily available building
blocks, which we call system components, such as processors, memories and I/O devices.

Interface logic has the important function of providing the necessary paths to facilitate the

transfer of information between components. As we shall discuss in Chapter 3, a compo-
nent expects certain events, whose partial ordering is defined by a protocol, for proper

operation.

In this chapter, we present a formal model that we use to represent component pro-
tocols and component interconnection. Two of the main features of our formalism are: that
it represents distinctly the two different timing information present in timing diagrams,
propagation delays, and timing constraints; and that it can handle correlation information

that is present in timing diagrams.

2.2 Petri net model

2.2.1 Petri nets

Petri nets are widely used to model concurrent systems because they have simple and intu-

itive semantics.

A Petri net [107] is a tuplBl = [P, T, HJwhereP is a non-empty set of placésis
a non-empty set of transitions, aRd] (PxT) O (TxP) is the flow relation. The marking
of a Petri net is a functiod : P - [J that assigns to each place of the net a (non-negative)
number oftokens(] is the set of non-negative integers). A marked Petri net is a tuple

N =[P, T, FM,LlwhereM, is the initial marking. The state of a Petri net can be described
by its marking.

A Petri net is usually represented as a directed bi-partite graph with transition

nodes (bars) and place nodes (circles) and links from transitions to places and from places

to transitions as defined by the flow relation (refer to Figure 2.2.1a).

For any transitiont T, the set of all its incoming places is denoted as
t={pUOP: (p,t) OF}. Likewise, the set of all its outgoing places is written as
te ={p O P: (t, p) O F}. Analogous definitions exist for the set of incoming transitions
and outgoing transitions of a plapél P, denotec p andpe respectively. The number of

tokens assigned to a plagéy a marking\ is written asVi(p).

The firing rule determines the dynamics of a Petri ne&t, how the tokens are
propagated through the net. A transition T is enabled at a markingl iff M(et) > 1.
Every enabled transition mdye. The effect of the firing of a transition is as follows:

After a transition fires, a new markimg is obtained fronM as follows:M' = M — et + te.

The firing of an enabled transitiarin markingM is writenM & M’ whereM' is

the new marking after firing The pair {; M') is called an immediatederivative ofM. In

generalM’ is an € ... v)-derivative (or just derivative) ofl if M L ... % M'. The double

sequenceES={(Mq),Mg)), (ti1y, ---. ty)} is called an execution sequence if for all

i=1,...,]J, Mg o, M) The set of all execution sequences starting fiyms denoted

by S(M,). Note that the sequence of transitions and the first marking uniquely determine

the sequence of markings. A markiMgis said to be reachable fravhif and only if there

exists an execution sequerte8in which, for some<j, M = M andM’ = M.

A labelled transition system is the tripiB, T{ L, t 0 T}[J whereS is a set of

statesT is a set of transition labels, and [0 Sx Sis a transition relation for eat¢Hl T.

We define the meaning of a Petri net in terms of the labelled transition system

BM, T.{ L, t O T} DwhereSM, is the set of reachable markings frivy.

A derivation tree of the initial markiniyl, is a tree which collects all the deriva-
tives of M. The nodes of the tree are reachable markings KMgmAn edge of the tree

joining M andM' is labelled with the firing actionif M L M. Derivation trees are usu-

ally infinite. A reachability graph is drawn from a derivation tree by collapsing identical
markings, which have the same immediate derivatives, into a single node. Figure 2.2.1b

shows the reachability graph of the Petri net of Figure 2.2.1a.

A Petri net marking is live if for eadd 0 SM, and for each transitidrthere exists
a markingM' J SMthat enables A marked Petri net is live if its initial marking is live. A
marked Petri net ik-bounded (or simply bounded) if there exists an int&gerch that for
each place, for each reachable markimg, M(p) < k. A marked Petri net is safe if it is 1-

bounded.

10

t3 t6
{p1,p6}--{p5,p6}-—{p4,p5}
t4 5

w| {P2.p5} | {pP3,p6} |
to
13 t6

{pl,p2}<tl—{p0} —tz>{p3,p4}

(b)

Figure 2.2.1 (@) Petri net, and (b) its reachability graph.

A transitiont, disables another transitibpnat a markingvl O SM, if botht; andt,
are enabled a¥ andt, is not enabled in anyl’ 0 SM A marked Petri net is persistent if

no transition can ever be disabled at any reachable marking.

Two transitiond; andt, in a marked Petri net are concurrent if there exists a reach-
able markingvl [0 SM, where botlt; andt, are enabled and neithigrdisabled, nor vice-
versa. Two transitiong andt, of a marked Petri net are in direct conflict if there exists a
reachable markingyl 0 SM, where botht; andt, are enabled and eithgrdisables, or

viceversa (or both).

A Petri net is a marked graph if for every plazé P, jep|=1and pe|=1. A

marked graph is persistent for every initial markiig Furthermore every strongly con-
nected marked graph has at least one live and safe initial marking [96].
A Petri net is a state machine if for every transitiohT, [t| = 1land{e|=1. Every

strongly connected state machine has at least one live and safe initial marking. The Petri

net subclass of state machines is isomorphic to classical Finite State Machines if we label

11

each transition of the state machine with an input/output state pair and we interpret each

place as an internal state.

A choice place is a place for whidir| > 1. A choice place is said to be unique
choice if at most one of the successor transitjorjver becomes enabled. A Petri net is

free-choice if for any two transitiotgandt, that share a predecessor place, boémdt,

have only one predecessor. A Petri net is extended free-choice if any two transitions that

share one or more predecessor places have exactly the same set of predecessor places.

Classic Petri nets as discussed in this section do not have an explicit mechanism to
account for time. Time is of paramount importance in our application. In the following

section we survey some extensions of Petri nets that model time explicitly.

2.2.2 Time extensions of Petri nets

From Section 2.2.1 it is clear that classic Petri nets cannot model particular time values,
which is of paramount importance for performance evaluation and timing verification.

There exist in the literature different flavors of time extensions to Petri nets that overcome
that problem. In the following, we survey time extensions of Petri nets that have been pro-

posed in the literature that we consider relevant to our work.

Ramchandani [111] associates an execution tisvBose domain is the real num-
bers, with each transition of the Petri net. Ramchandani’'s time-extended Petri nets are
called Timed Petri nets. A transition is enabled according to the classic Petri net’s firing
rule. When a transition initiates its execution, it immediately consumes tokens in<he set
of its input places. The transition takesinits of time to complete its execution before
sending tokens to its output pladesThus Ramchandani Timed Petri nets are determinis-

tic.

12

Merlin [90, 91] increased the expressiveness of Ramchandani’s Timed Petri nets in
two ways. Firstly he assigned a compact non-negative non-empty int&ridltp each
transition of the Petri net. A transition can fire only if it has been enablettifoe units,
and it must fire if it has been enabled Ebtime units. Secondly Merlin modified the firing
rule as follows: the tokens in the input places of an enabled transitiat fires are
removed fromrt whent fires. Merlin’s time-extended Petri nets are called Time Petri nets.

In Merlin’s Time Petri nets, two or more transitions can be enabled by a common set of
tokens such that when one transition fires, it disables the firing of the others. Recall that in
Ramchandani’s Timed Petri nets, the tokens in the input places of an enabled transition are

committed when the transition starts execution.

A timed execution of a time-extended Petri net from the initial markipgs an
execution sequendeSof S(My) augmented with a non-decreasing sequence of real non-
negative values representing the instants of firing of each transition such that consecutive
transitions §;, t;,1} correspond to ordered firing times (or epochsy 1;,4. The interval
[1;, 1,,1) between consecutive epochs represents the period in which the net remains in

markingM;, wheret, = 0.

Berthomieu and Diaz [11] used an enumerative analysis technique related to the
reachability analysis method for classic Petri nets to analyze the timed behavior of Timed
Petri nets in which the infinite number of firing times possible from a certain mavking
are finitely represented by state classes. A state class is MgajihereM is a marking
andD is a domain which is described as a system of inequalities. We have also developed

a timing analysis for synthesis technique that uses the concept of system of inequalities

although for a different class of time-extended Petri nets as will be discussed in Chapter 5.

In Generalized Stochastic Petri nets (GSPN) [1] a random variable with a known

probability density function is associated to each transition of the net. Because of the

memoryless property of the negative exponential density furfé¢ipn a €°*, most of the

research on GSPN has assumed exponential random variables. It has been shown that a

13

GSPN with exponential random variables can be transformed to a discrete Markov

chain [1]. However because potentially a transition can take arbitrarily long time to fire, it
is difficult to place upper bounds on a timed execution, and thus the performance analysis

using GSPN has focused on producing probabilistic averages.

To overcome that limitation, Juanole and Atamna [71] have proposed the stochas-
tic timed Petri net (STPN) model in which the probability density functions of the random

variables associated with the transitions of the net are of thefforh+ fi(X;) + f4i(X),

wheref(x) is the continuous component, afjdx;) is the discrete component tx;).

In [71] the authors only considered uniform probability density functions for the continu-

ous component.

In the aforementioned time-extended Petri net models, time was associated with
the transitions. Alternatively time can be associated with the places. We have chosen this
alternative due to the intuitive interpretation in the realm of digital hardware that a mark-
ing of the net has a direct correspondence to the state of the system, and the firing of a

transition indicates a change of state which is idealized to be instantaneous. Thus to us it

seems more natural to associate time with places. Sifakis [117] first defined Timed Petri

nets in which fixed time values were associated with the places.

Van der Aalst [126] introduced an extension to Sifakis Timed Petri nets in which

intervals are associated with the places of the net. The firing rule is analogous to the one

presented in Section 2.2.3. Our model is a natural extension of van der Aalst’s in the sense
that in it random variables are associated with the places of the net rather than just inter-

vals.

Although Ramchandani also used the term Timed Petri nets to refer to his time
extensions, in the sequel we shall differentiate between the Petri net models that assign
time to transitions from the Petri net models that assign time to places by using the term

Time for the former and Timed for the latter; and time-extended Petri nets shall refer in

14

general to Petri nets with timing extensions. In the following section we present the time-

extended Petri net model that we have developed in this dissertation.

2.2.3 Probabilistic timed Petri net model

The classic Petri net does not include an explicit representation of time. As discussed in
the previous section, Petri nets have been extended to model time, by assigning arbitrary

time values, time intervals, or random variables to transitions, or places, of the net. Other

time extensions of Petri nets were discussed in Section 2.2.2. In this work we have devel-

oped a more general Petri net model in order to be able to handle correlation information

which shall be further discussed in Sections 2.2.3 and 2.5.4, that we have called probabi-

listic timed Petri nets.

Definition 2.2.1.- A probabilistic timed Petri net is a quintuple= [P, T, F, M, '
where P is a non-empty set of placeg, is a non-empty set of transitions,
FOPxT)O(TxP)is the flow relationM: P - [is the marking function anill, is

the initial marking [is the set of the non-negative integers), BnB - 1 is the time

labeling function that assigns to each plpde P a random variable (r.vi(p,) [105].

The preset (postset) of a transitibis the set of incoming places to (outgoing
places from} and is denotecdt {te). Similarly the preset (postset) of a plgcis the set of

incoming transitions to (outgoing transitions fropgnd is denotedoe(pe).

The random variables's are used to represent circuit delays as defined by the fol-

lowing firing rule:
Firing rule

1. Atransitiont I T is enabled when every plapé] ¢t contains a visible token.

15

2. An enabled transition must fire immediately (unless the firing of another
enabled transition disables the transition instantaneously). When it fires, an
enabled transition consumes a visible token in each placet and sends a

token to each plage[te.

3. A placep; upon receiving a token at timemakes it visible to transitiorid] pe
at timet + 1;, wheret, is the random variable associated with placé place

holds a visible token until it is consumed by the firing of an enable transition.

To illustrate the firing rule, consider the partial Petri net shown in Figure 2.2.2.
Three transitions, b, andc are connected to transition d through places labgled and
T3 respectively. Let us assume that the transiters andc fire at timest,, 1, andt,
respectively. Then a token is placed in the firing transition’s output place at the firing time.
To represent a circuit delay, the place holds the token invisible to its output transition for
certain time controlled by a random variable associated with the place. Let us assume that

the three random variableg 1, andt. are independent and that their probability density

functions are as shown in Figure 2.2.2. According to the firing rule transditiat fire as

soon as there is a visible token in each of its input places.

a b c fry _
Ta time

Figure 2.2.2 Probability density function of the firing time of a transition.

The firing of transitiord, denoted by, is a probabilistic event. Our approach to

the analysis of probabilistic timed Petri nets is to find the probability density function of

16

the firing (or occurrence) times of the transitions of a net. Chapter 3 describes how this is

accomplished.

The probabilistic timed Petri net that we have introduced is a generalization of pre-
vious Timed Petri net models. In our model arbitrary probability density functions are
associated with the places of the net. Furthermore, our model admits random variables that
are not independent, a fact that plays an important role in the modeling of time correlation

that appears in interface specifications of off-the-shelf hardware components.

Due to causality, it is required that the probability that any random variqléds
a negative value be zero. (For strict causality, the probability that the random variables
T, = 0 should be zero too.) The set of random variableis= 1.M, associated with the

places of the net are fully described by the joint probability density function (in short pdf)

f Ty oo Ty).

In some cases some of the random variables are independent,fsodlydiave a

compact form. For example, if allare independent then

f (T ooy Tv) = (1) - F(Ti) (Eg. 2.2.1)

Of course in order to be able to model time correlation, one has to use the most

general form in which not all random variables are independent.

The probabilistic aspect of our model has practical applications in describing inter-
face specifications of components. An interface specification describes the behavior of not
one but an ensemble of components. Thus a probabilistic approach to modeling seems
very adequate to take into account variations in component behavior. Those variations are
due to different instances of the same class of components affected by factors such as fab-
rication process, and different operational conditions such as temperature variations. We
will exploit that in the reliability analysis of systems, that is we will be able to quantify not

only if a system meets the (timing) constraints but also if it fails to meet some constraints,

17

by how much. How to compute the probability that a constraint can be violated can be

described by a probabilistic measure. This is the topic of Chapter 4.

2.2.4 Examples of probabilistic timed Petri nets

In this subsection we introduce two simple examples to give a flavor of probabilistic timed
Petri nets. In particular in the second example we show the fact that time-extended Petri

nets have a different behavior from classic Petri nets. More examples will be shown in this

and following chapters. The firing rule will be discussed in more depth in Section 2.4.1.

The first example shown in Figure 2.2.3 consists of one place and two transitions.
The only random variable associated with the net is described by the probability density

functionf,(x) (also shown in the figure). The initial marking is shown in the figure, thus at
time 1y = 0 there is a token in the place of the net. The token in the place is not visible to

transitionst; ort, until a timet, = x, where the value of random variabldollows the

known pdff,(x). Because the place is a free-choice place (refer to Section 2.2.1), either
transitiont; or t, will fire (but not both). Once a transition fires, it places a token in the

place which will be made visible &f =1, +x.

X fX(X)

Figure 2.2.3 Petri net with a free choice place labeled with random
variablex.

18

Note that there is a non-deterministic choice in the model for the firibgoot,.

We can use non-deterministic choice to abstract out some phenomena that are not relevant
to our verification procedure. For instance if a hardware component is capable of perform-
ing either a read or a write cycle, this can be modeled using a free choice place because
when attempting to verifying that both cycles meet the timing constraints (as will be dis-
cussed later) it is not important to know the ratio of read vs. write cycles, but just that both
cycles can occur. From a performance point of view, assuming that a write cycle takes, say,
longer than a read cycle, it might be important to determine the profile of read and write
cycles to be able to quantify the performance of a system. In that case, one could also
assign a scheduling variable to a free-choice place that compigegeterministically or
probabilistically) which transition (of the several enabled in the current marking) should
fire in an execution of the net. In the sequel we consider that the choice of firing transition

is made non-deterministically.

Figure 2.2.4 A probabilistic timed petri net that does not present deadlock.

The second example shown in Figure 2.2.4 consists of three places and three tran-

sitions. If transitiont; fires, the system deadlocks. Random variables associated with
placesp; andp, are independent and their corresponding pdf’s are Dirac’s delta functions
(if the pdf is the Dirac’s delta functidp(t) = 8(t-1,), the token is made visible with prob-
ability 1 at timet,). At timet = 0 both tokens are put in plagesandp, respectively. The

token inp; will be made visible at = 1, andt; will fire immediately. Similarly the token

19
in p, will be made visible at = 11, andt, will fire immediately. It is clear that unlike the

untimed (classic) version of the Petri net, the probabilistic timed Petri net in Figure 2.2.4

will never deadlock.

Of course, if more realistic pdf’s are used to model the delays of glaessip,,
such that the pdf's are non-zero for a (possibly infinite) interval, then deadlock will arise

in the Petri net of Figure 2.2.4. However in our probabilistic timed Petri net, unlike classic

Petri nets, one can quantify the probability of deadlock.

2.3 Signal transition graphs

Signal transition graphs, erGs, are a widely used representation of asynchronous digital
circuits [29, 115, 79, 124].%%'s are Petri nets whose transitions are interpreted as signal
transitions of a circuit. In this section we exte&Td's in the obvious way to use the prob-

abilistic timed Petri net proposed in Section 2.2.3. Before doing so, we briefly overview

previous related work on timedGs.

2.3.1 Previous work on timed signal transition graphs

The work by Brzozowsket al.[17] aimed at providing a mathematical foundation to the
interface timing verification problem. Their result holds for a restricted case of timing
behavior, namely if every signal transition is caused by another single transition.
McMillan et al.[82] presented a more general formulation of the timing verification prob-
lem and proved that it is NP-complete and developed algorithms for sub-cases of the prob-
lem. Independently Burkst al.[20] followed a mathematical programming approach to
solve a class of problems which includes the interface timing verification problem and

suggested a branch-and-bound algorithm to solve the problem which is worst-case expo-

20

nential in time. The above research did not use an underlying Petri net model, however it
uses mathematical programming techniques that are the foundation of the techniques we

shall present in this dissertation.

StG’s were first used for the specification and synthesis of asynchronous digital
circuits in [29, 115]. No time annotation was used in the underlying Petri net model.
Vanbekbergen [124], Rockicki [114], and Escalante and Dimopoulos [46] proposed simi-
lar timing extensions tsTGS to represent timing in asynchronous digital circuits.
Vanbekbergen [124] proposed a Petri-net based model, calledgiraedthat he used to
represent asynchronous circuits with time bounds. Independently Rokicki [114] proposed
another Petri-net based model, called orbital nets, to model a class of digital logic. Inde-

pendently Escalante and Dimopoulos [46] used a Petri-net based model similar to Vanbek-
bergen’s timedsTGs, to specify component interface protocols and associated interface
logic. An important feature of all three models is that they make a clear distinction

between circuit delays and timing constraints in the specification of component behavior.

Myers and Meng [97, 98] used a conservative estimate of gate delays to remove
redundant edges in an STG; with their technique they could synthesize much simpler cir-
cuits thus showing the advantage of taking timing into account. Hulgaard and Burns [67]
have developed algebraic techniques to find bounds on the maximum time separation
between two given signal transitions of a tinggd. Their results are exact for Petri nets

without choice, but they also explored approximations for free choice Petri nets.

In the research mentioned so far in this section, timing is represented using inter-
vals. In [48, 49] we proposed a more gensmad model with an underlying probabilistic
timed Petri net. Thus we needed to develop novel time verification techniques that shall be
presented in Chapter 4. Moreover, as explained in the Introduction, the other main goal of

this dissertation is to determine tight bounds on interface logic prior to synthesis, a tech-

21

nigue called timing analysis for synthesis that shall be discussed in Chapter 5. Before

tackling those tasks we need to complete the presentation of ourstimetbdel.

2.3.2 Components, ports, signals and signal states

A componentommunicates with its environment througbrts A port has a direction
associated with it. The direction of a port can be input or output. An input port accepts
information from the environment, while an output port sends information to the environ-
ment. Several ports can be grouped together into a combined port. Bi-directional ports can
be modeled as two ports, one of type input and one of type outpomABinedoort is an

n-bit port, wheren is the number of single ports that comprise the combined psihgle

port is also called a 1-bit port. Another common term used to describe a lpuet FRor

example the 32 data lines of a memory component constitute a 32-bit port.

Signalsare the means to convey information. The relationship between a port and a
signal is that a port is an entity that can be physically located usually on the boundary of a
circuit, and a signal associated with such a port describes the value of the port as a func-
tion of time. Most current implementations of electronic digital circuits use electrical sig-
nals, although optical and other physical media can be used as well. We use a continuous
model of the time domain (also called dense time) although discrete models have also
been studied in the literature. In general discrete time models are computationally simpler

but suffer the problem of resolution accuraioy.(what is the right granularity to properly

describe the nuances of tinwf, [114]). In this dissertation we consider digital signals.
The range of values that a digital signal can take is discrete and is called thetatetsof

the signal. The states of a digital signal in a single port, in the simplest case (called binary
case), are logic ‘0’ and logic ‘1’. Tri-stated signals carflditing, or in a high-impedance

state ‘Z’, too. We supplement these basic states with the following states:

Valid: This state is particularly useful to describe the state of a combined port

whose individuals signals are binary. A valid state of a combined port occurs when such a

22

port has a value within a range of allowed values. The particular value of the signal at the
combined port is not important nor is the fact that the port carries a value that can be used
by another part of the system. For example, when the value of a group of data lines of a
certain component is valid, it can be read by another component. A valid state for a group
of signals is an effective way of describing a large number of states compactly. For exam-

ple, a valid state for a 32-bit binary data pog.(whose individual ports can take only the

values ‘0’ and ‘1’) of a memory component may represéhstates. This can be advanta-
geously exploited to reduce the number of cases to consider for representation, analysis or

verification purposes whenever the actual value on the port is not relevant.

Invalid : This state is complementary to the valid state of a combined port. The rel-
evant piece of information is not the particular value at the combined port but the fact that
the value should not be used by another component. For example, when the address lines
of a component are changing, their state is invalid and should not be used for decoding

purposes.

Driven: A tri-stated signal is driven if it is not in a high-impedance state. Thus a
driven binary signal is either ‘0’ or ‘1’. A driven signal can be valid or invalid. For exam-

ple a don't care state ‘X’ of a binary signal can be modeled using a driven state.

State

¥

driven floating

¥ N

valid invalid

¥ N

‘0’ ‘q

Figure 2.3.1 Signal states.

23

Floating: A tri-stated signal is floating if it is in a high-impedance state.

We define thencludesbinary relationl on the set of signal states as shown by the
directed graph in Figure 2.3.1 such that there is a directed edge frors, $tagtates, if
s, I s,. The include relation is important when trying to determine if two ports can be con-
nected (refer to Definition 2.3.4). Before we discuss this, we need to give some basic defi-
nitions on the description of signals which are adapted from a similar treatment described

in [17].

Definition 2.3.1.- A (possibly infinite) timed state sequencef port p is the

sequences, ={sy, To, Sy, ---» Tn-1, Su}» Wheres; are signal states amgare times, such that
§ #S4 andtj <1,y fori=0,...,n-1 andj =0, ..., n-2. The sub-sequence ..., Tn_1}

is called the time sub-sequencedsyf
Definition 2.3.2.-A signal transitionis a pairts;, s,[Jof states whers, # s,.

Definition 2.3.3.- If Is, ={sy, To, Sy, -+, Tn-1, Sut IS the state sequence of pqut
the correspondindgimed signal transition sequenc& port p is given by sequence

Ity = { (o, So 10 1, 1, S0 -+, g, Snog, S

A timed state sequence is an enumerative description of the signal associated with
a portp (i.e., the values that pog takes as a function of time). The time subsequence
{10 ..., To_1} indicates the instants when the port change state. The port is i stiate
iIng —o0 < T < T, in states, duringt,,_; < T < oo, and in general in stageduringt;_; < T <T;

fori=1,...,n-1.

A signal transition describes a change in pdrom states; to states,. Although
the values of the time sub-sequence are not strictly increagingny number of signal
transitions are allowed to occur at any instantve only consider in this work state
sequences (or timed signal transition sequences) for which there is a finite number of sig-

nal transitions that occur at any given time

24

Definition 2.3.4.-Let us assume that two poggandp,, having input and output
direction respectively. If for any given timehe values of the porfs andp, ares; ands,
respectively, and, I* s,, wherel* is the reflexive and transitive closurelpthen ports,

andp, are said to beompatible

The definition of compatibility of two connected ports, one of them being an input
port and the other being an output port, restricts the state of the output port to those

included by the state of the input pore. those states at or below the input state node in

the state graph of Figure 2.3.1. Two compatible ports can be connected via a wire. In that

case the value of the input port follows the value of the output port.

The alphabef\(p) of a portp is the set of signal transitionss{, 5 of the timed
signal transition sequends. Notice thatA(p) is finite. The alphabet of a set of poftss

given by A(P) = [] A(p) .
pOP

We use the following notational conventions: a port whose direction is always an
input is denoted with its name underlined. A port whose direction is always an output is

denoted with its name overlined.

We deal now with some implementation issues. The logic levels of a signal are
implemented as physical values of a circuit. Without loss of generality let us consider the
implementation of logic levels using voltage levels. For a port that uses positive logic, a
low voltage corresponds to logic ‘0’ and a high voltage corresponds to a logic ‘1’. For a
port that uses negative logic, a low voltage corresponds to logic ‘1’ and a high voltage cor-
responds to a logic ‘0’. To distinguish the logic implementation of a port, we appéhd a *
as a suffix to the name of a pprthat uses negative logie.g, p0). Because logic values
rather than voltage values are more meaningful in the description of signal transitions, we
use the termassertednegated to denote a signal transition from ‘0’ to ‘1’ (from ‘1’ to

‘0’), independently of the logic implementation.

25

transition symbol
[hegatedasserted pt+
[assertednegated! p-
[ihvalid, validd] Pty
OValid, invalidd P~y
[Z’, driver] p1
[driven, ‘Z' [p:

Table 2.3.1. Notable transitions on part

For some notable transitions we use the special symbols given in Table 2.3.1.

Please the reader be aware of our usage of negated with the opposite meaning of

asserteddf. [119]), although in other areas negated has the connotation of logic inversion.

2.3.3 Timed signal transition graphs

In the previous section we proposed a signal state lattice to describe the value of a port.
The lattice allows us to define compatibility of port connection in a straightforward way.
In this section we introduce signal transition grammssg) which are Petri nets whose

transitions are associated with signal transitions.

Definition 2.3.5.- An (extended) timed&TG is a tuplez =[N, Y, A\LlwhereN is a
probabilistic timed Petri neY, is as set of ports, aid T — A(Y) U {€} is a signal transi-
tion labeling function which assigns transitidris T of the Petri net to signal transitions

a0 A(Y) or the silent signal transiticny whereA(Y) is the alphabet of.

In the sequel we use the terms transition and signal transition interchangeably

whenever there is no possibility of confusion.

Figure 2.3.2 shows a probabilistic timed Petri net (left) and a corresponding timed
signal transition graph (right). The Petri net consists of the set of places
P={pg Py, P, Pg}, the set of transitionsT={ty t;, t,, t3}, the flow relation

26

frirora(T, T2, Tg)

Figure 2.3.2 Signal transition graph.

F={(Po.to), (to:P1): (to:P2): (t:Pa): (Puty), (P2to), (Paite)l, the initial marking
Mo ={(Po,1), (1,0), (02,0), (P3,0)}, and the time labeling function
M ={(Po.To): (P1.T1), (P2.T2), (P3,T3)}. The joint probability functionf i oa(To, Ty, T2, T3)
fully characterizes the set of random variaties{t,, 14, 15, T3}. To draw thesTGwe use

the usual convention according to which a place with a single input transition and a single
output transition is shown as an edge labeled with the random variable associated with the
place. The set of ports ¥6= { clk,, add, as, ds}, and the signal transition labeling function

is A = {(to.Clkgt), (ty,dSt), (tp,addk), (tz.as+)}.

2.3.4 Signal transition graphs and signal transition sequences

In Section 2.3.2, we introduced timed signal transition sequences of mples_;, S0
which describe a change in the value of a port at timefrom states_; to states to

describe the signal activity at a port. In that subsection our main goal was to formally
define a signal transition and we were not concerned about how to represent the behavior

of ports using such a sequence. A (potentially infinite) signal transition sequence describes

27

one possible observation of the activity at a port. An also potentially infinite set of signal

transition sequences is necessary to describe all the possible behaviors even of simple

ports. For example, if the places of the tingat shown in Figure 2.3.3 are associated
with independent random variables whose probability density function is the uniform
probability density function defined in the interval [1, 1.01], one possible signal transition
sequence is the infinite sequend®, &+ 1, b+[) 2, a-[][3, b-[]...} as itis the also infi-

nite sequencel, a+[][1.001,b+[][2.001,a-[][3.001,b-[]...}, and so on.

y
e

Figure 2.3.3 SimpleTG.

Thus signal transition sequences are limited in their expressiveness in the sense
that they describe only one observation. Typical component interface specifications com-
prise the behavior of an ensemble of components and thus they must allow for variations.
Rather than listing a possibly infinite set of observations, signal transition graphs can com-
pactly describe the behavior of an ensemble of variations. Signal transition sequences are

useful as the formal underlying semantics of a single observation. For instance they are

used in [11] to analyze the behavior of time Petri nets. Of course in [11], sequences are
grouped into classes. A class potentially represents an infinite number of observations. On
the other hand, signal transition sequences are more general thagtt@sethat is, there

are sets of signal transition sequences which cannot be expressed by aTtanEdr
example an infinite sequence in which evemtb, ¢, andd appear randomly such that a

given event cannot be followed by itself.

28

From the previous discussion it is clear that a tisesis a compact representa-
tion of multiple possible behaviors. In the sequel we shallsusis to describe timed
behaviors. However notice that a brute force approach to the analysis oftiges not
feasible, due to the infinite number of sequences that one has to consider. In the following
section we discuss a subset of tinggd’s for which we have developed techniques that

analyze “classes” of behaviors rather than individual sequences.

2.4 Subclass of STG's

Analyzing the timing behavior of an arbitrary net topology is a difficult problem. In this
dissertation we have developed timing analysis techniques for the sub-class of Petri nets
which describe onlaND andoRr causality.

2.4.1 AND and OR causality

The interface timing verification has been formulated as the solution of a set of linear/min/
max inequalities [6]. In this section we link this result to two types of causality discussed

in the concurrent systems communAXD andoRr causality.

We first present the classical definitionsapid andor causality, without explicit

time. A transitiort is said to beND-caused by a s&of transitions ift occurs after all the

transitions inSin all signal transition sequences (refer to Definition 2.3.3). Similarly, a
transitiont is said to beor-caused by a s&of transitions ift occurs after the first transi-

tion in Soccurs.

When delays are taken into consideration, the definitiomrsibfandor causality

are modified as follows: the effect of a transition takes place at{iftg, wheret, is the
time when the transition occurred ands the delay of the transition. (Notice that in our

case, the delay is given by a random variable.) A trandii®said to beND-caused by a

29

T1 T2

© @)

Figure 2.4.1 Causality classes: (a) AND causality; (b) OR causality;
(c) and (d) Petri net constructs.

setSof transitions ift occurs after all the effects of transitionsShave taken place in all
possible signal transition sequences. Similarly, a tranditiersaid to beor-caused by a

setS of transitions ift occurs after the earliest effect of a transitios imas taken place in
all possible signal transition sequences. For example in Figure 2.4.1a, tramsidomrs

only after the effects ad and b have taken place. In Figure 2.4.1b, transitarccurs as

soon as the earliest effectabr b takes place.

Figures 2.4.1c and d depict the corresponding Petri net constructs [131]. Clearly,
AND causality is a direct mapping of the firing behavior of our probabilistic timed Petri
nets: transitiorc will fire only when there are visible tokens in all its input places; the
tokens in places labeled with random varialileandt, make the token visible to transi-
tion ¢ sometime after transitiorss and b respectively have occurred (the delay is con-

trolled by the respective random variable).

The Petri net fragment that impleme® causality is more involved (refer to

Figure 2.4.1). For the sake of the following presentation, we distinguish between the three

silent transitiong by assigning a subscript to each of them. We also use the convention of

30

calling a place labeled with random variabjeat place. The random variabtg (or t,)
represents a delay after transitiarfor b). Places labeled with random variabtesare

bound to make tokens visible immediatelg.(the probability density function of the ran-
dom variable is the Dirac’s delta function at the origin). Let us assume that traasition

occurs first and that the valuetfis less than the value of. Thus the silent transitiogy
will fire sometime after, and when it fires, it will send a token to plagg The place,
will make the token visible immediately and transitowill fire after delayt,;. Whenc
fires, the token in placeg,; andt,, are consumed and a token is sent to ptageAfter
transitionb fires, another token is sent to plaggaftert,, and then the silent transitieg

fires, putting a token back in platg. Notice that for proper operation of the causality,

there must be a token in placg at the beginning of aor cycle. In Section 2.5.2 we shall

use the concept of a constraint rule to guarantee thartkab-net is properly initialized.

For the sake of clarity from now on we adopt the more compact representation
shown in Figures 2.4.1a and b. We call these two compact represematioasdoRr arcs

respectively. In the sequel we shall develop a timing verification procedure for the sub-

class of Petri nets which have omiyd andor causality arcs.

Let us consider the multiplenD join, that is a transition with multiple incoming
places, shown in Figures 2.4.1a and c. Places are associated with random variables
which, without loss of generality, are assumed to have independent probability density
functionsf(t;). After the firing of a transition, say at timet,, a token is made visible to
transitiond at timet, + t,, with pdff;(t,). According to the firing rulec fires when all

tokens ina, andb are visible, which happens at:

T.=maxT, + T, T, +Ty) (Eqg. 2.4.1)

Similarly for a multipleor join (refer to Figures 2.4.1b and d), transitaowill fire

as soon as the first afor b occurs, which happens at:

31

T.=Min (T, + Ty, T, +Ty) (Eq. 2.4.2)

Note that bottaND andoR causality collapse to linear causality(one transition
is uniquely caused by another transition) if there is only one predecessor to the generated

transitiond.

2.4.2 The Aoc class of timed signal transition graphs

We have developed timing verification and analysis techniques for a subclass of signal
transition graphs. Although limited to this subclassTds, we have been able to describe
interface specifications for a great variety of off-the-shelf components using this subclass

that we have called theoc class. Abc stands foaND andoR causalitySTGSs.

TheAoc class of nets comprisesGs with the following properties:
1. OnlyAnD and/oror causality are allowed (refer to Section 2.4.1).

2. All the places of thesTG are safe (refer to Section 2.2.1), except the unique
choice places abr causality edges which akebounded, wherk is the num-

ber of edges.

The Aoc class is more general than the class of marked graphs which is properly
included inaoc. Recall thabr causality introduces unique choice places, which are not

allowed in marked graphs, andc STGs are not necessarily strongly connected. However

neither free choice, nor arbitration choice, are allowedin (refer to Section 2.2.1).

It is possible to represenbc STGS usingAND andoRr arcs (Figures 2.4.1a and b),
that we have calledoc directed graphs or di-graphs, although it is straightforward to

obtain their Petri net representation ofsarc di-graph.

Definition 2.4.1.- An Aoc di-graph is the labeled di-graph
Q=g Po Mao, I Clo, Y, AgLl whereTy is a non-empty set of nodé%, [T X T is

32

a set of edgesdylgy: Po — O is the initial marking function that assigns to each edge a
non-negative number of tokens {s the set of the non-negative integefg),: Py — Tis

the time labeling function that assigns to each gigeP, a random variable (r.vi\p),

cty: To — {AND, OR} is the causality type function that assigns to each node the type
AND Or OR, Y is a set of ports, ankly: T - A(Y) U {€} is a signal transition labeling

function which assigns to each node a signal transatidrA(Y) or the silent signal transi-
tion €, whereA(Y) is the alphabet of.

Notice the analogies between aac di-graphQ = [T, Po, Mo, o Clo, Y AgD
and an sTc X2 =[N, YA and its associated probabilistic timed Petri net
N =[P T, F, M, F'JThe sets of nodes and edggs,andP,, of theAoc di-graph describe

the connectivity of the grapl, T andF in thesTG achieve the same purpose. The mark-
ing, time labeling, and signal transition labeling functions have similar form. The only

function characteristic ofoc di-graphs is the causality type functictg, which is used to

specify the firing semantics as discussed in Section 2.4.1.

(@)

(b)

Figure 2.4.2 (a) Amoc di-graph; (b) equivalent timesirG.

33

An example oroc di-graph is shown in Figure 2.4.2a. Signal transit@AND-

caused by transitiorss andd, while transitiond is OrR-caused by andc. The equivalent

timedsTGis shown in Figure 2.4.2b. Although we shall use the graphic representation of
Aoc di-graphs, which is more compact, in our figures, we shall refer tadbeligraph
Q=g Po Mgo, o Clo, Y, AgLor its equivalensTG Z = [N, Y, Alwith the associated net

N =[P, T, F, M, I'indistinctly.

2.5 Interface specifications

In the previous sections we have presented tigTei$ which are suitable to describe the
(internal) behavior of components. However, specifications of components include infor-
mation about the environment. For instance, a component may specify that an input signal
should not be changed in certain interval during which the input is being sampled. If those

environment specifications are not followed, the component may not behave as expected.

In this section we introduce a new type of timing relationship, different from the
places of the probabilistic timed Petri net that are suitable to model (circuit) delays. We
called them constraint rules. In the literature, the term “constraint” has been used to desig-
nate both circuit delays and timing constraints. To avoid confusion, we differentiate them
explicitly and when we want to refer to both we called them timing relationships. It shall
be clear from our formal description of constraint rules, that circuit delays and timing con-
straints have different semantics. Vanbekbergen [124] and Rokicki [114] used two types of
places with different firing semantics to describe delays and timing constraints. We argue

in the following section that places are not the best model for timing constraints.

34

2.5.1 Constraint rules

Event-rule (ER) schemata were introduced in [22] to analyze the performance of asyn-
chronous circuits. It was modified in [98] to represent timing constraints in a circuit speci-
fication. An ER schema consists of a set of atomic actions, called events, a set of causal
dependencies between them, called rules, and an initial marking, which is a subset of the
set of rules. A rule is of the forig, f, €, tThwheree andf are two eventg is defined to be

1 if the rule belongs to the initial marking and O otherwise, madl, u] is a compact
interval with lower bound and upper bound. In [98] timing constraints and delays are
treated in the same manner. In this dissertation we make the distinction between timing

constraints and circuit delays. We adapt the ER system as follows:

Definition 2.5.1.- A constraint rule associated with the timed probabilistic Petri
netN =[P T, F, M,, 'lis a tuplec; = i, t, 4y, ebwheret;, t;, O T is a pair of transitions of

the net,A; 0O is a non-empty compact real interval (s the set of compact real

intervals [112]), and is an integer in {0, 1}.

Let us denote the time of firing of tieh occurrence of transitioa ast,;. The

interval A; of a constraint rule; = [, t, A

i» lldefines a time window with respect to the

k-th occurrence of transitiof (ti), given byt + 4y, such that thekt-€)-th occurrence

j)
of t; (tjkse)) Must occur within this window for any occurrence indeXotice that the

bounds ofy; are not required to be non-negative.

Definition 2.5.2.-The set of constraint rules, = {c;} associated with the timed
probabilistic Petri nell = [P, T, F, M,,, ' ldenotes a set of timing constraints given on tran-

sitions of the neN.

As illustrated in Figure 2.5.1 for constraint rude= [a, b, A;, OL} once thek-th

occurrence of transitiogy, fires at timet,y, then the K+¢)-th occurrence of transition

35

A A zAl;
3 S R e
‘\ Al A]
\ p{ Tok+e) time
< >

Figure 2.5.1 Constraint rule for transitiaandb.

by must occur during the intervaly, + 4, where interval addition [112] is used, other-

wise the constraint rule 18olated It is said that transitioh is constrained by the firing of

transitiona, or equivalently that transitiomis constraining transitioh.

Although constraint rules are defined for transitions of a probabilistic timed Petri
net, the extension of constraint rules to be defined for signal transitions of a signal transi-

tion graph can be done in the obvious way by using the signal transition labeling function

A of thesTG (refer to Section 2.3.3). Graphically in aocC STG, a constraint rule can be

depicted as a directed edge from the constraining transition to the constrained transition,

labeled with the constraint interval, as shown in Figure 2.5.1. We use the convention that
constraint edges are drawn using dotted lines. Becawee take only the values O or 1, in
the former case the directed arc connects two transitions belonging to the same cycle; in

the latter case, the directed arc “folds back” connecting a transition belonging to a current

cycle to a transition which belongs to the next cycle (calleanstraints in [46]).

There is no causality implied in a constraint rule because the lower bound of the
constraint interval can be negative, in which case the constrained transition can occur
before the constraining transition. As a matter of fact if the upper bound of the constraint

interval is also negative, the constrained transition must occur before the constraining tran-

sition. We shall give an example in Section 2.5.5. It is this fact that makes difficult to rep-

resent timing constraints using places.

36

The trivial constraint interval iA = (—o,+0), which signifies that the constrained
transition is not constrained at all by the firing of the constraining transition. If the con-
straint interval is non-negatived,, its lower bound is non-negative), the constraint rule is

called asequencingonstraint.

The basis of our timing verification and timing analysis for synthesis procedures is

the satisfaction of the constraint rules. In Chapter 3 we develop some concepts that shall

prove useful to check that the constraint rules are not violated.

2.5.2 (R causality revisited

In Section 2.4.1 we mentioned that for proper operation obtheausality sub-net (refer
to Figure 2.5.2) it is required that there be a token in pigcbefore a token arrives at

placet,; due to the firing of the first o, or by, for anyk>0. In this section we show

that sequential constraint rules (refer to Section 2.5.1) can be used to detect this potential
problem.

»a <
. ul
S +[T2
,l Tl '[2
'. Al c AZ ,.

Figure 2.5.2 Q@ causality constraints.

37

Consider the sub-net shown in Figure 2.5.2a where trangitieror-caused by
transitionsa and b. We shall show that by adding the sequential constraint rules
c, =[5, a, A4, 10andc, = [E5, b, A,, 10Jit is guaranteed that, in a correct behaviorkttie

occurrence of transitiorsandb must precede thé&<1)-th occurrence of transitian

Theorem 2.5.1.4 et us assume that the initial marking assigns a token to place
and no tokens to places,; and 1,5 Then if constraint ruleg; = [£5, a, A, 10and
C, =[5, b, Ay, 10are satisfied, wherd; and A, are non-negative non-empty compact
intervals, there is a token in placg before a token arrives at placg due to the firing of

ayy Or by for any index<> 0.

Proof.- Clearly fork =1 theoR sub-net is properly initialized. We have to check

that this is also the case for 1. If the sequential constraint rulesandc, are satisfied,
then, using the fact that; andA, are non-negative non-empty compact intervalskitre
occurrence of transitiogy must precede thé&+<1)-th occurrence of both transitioasind
b, for anyk > 1. When transitiorzg fires, it sends a token immediately to plage But

placet,, makes the token visible immediately. Therefore a token is visible at place

prior to or at the same time as the first of thelf-th occurrences of transitioaor b. []

In our short-hand graphical notation, we describe constraintapéesic, as con-
straint edges from a virtual transitieRyp which isAND-caused by transitions andb.

Notice that in this case the same random variable is associated to two edges, the original

OR edge and the virtualnD edge. Thus the firings of the virtuglyp andeg are indistin-

guishable.

2.5.3 Interface specifications

The aim of this chapter is to develop a formal representation capable of describing accu-

rately the temporal behavior of off-the-shelf components of hardware systems, in particu-

38

lar components of microprocessor-based systems. Because a system is comprised of the
interconnection of several components, there are two facets in component specifications:
the internal operation of the component and the set of constraints that the environment
must satisfy for proper operation. In the previous sections we have developed two formal
structures: timed signal transition graphs suitable to model delays, and constraint rules
suitable to describe timing constraints. In this section we put both structures together to

form a new structure that we call interface specification.

Definition 2.5.3.-Given a timed signal transition graph= [N, Y, AlJand a set of
constraint rulesCy = {¢;}associated with neN, an interface specification is the pair
Y=z, Cl

In preparation for the examples of component interface specifications, in the fol-

lowing section we present a simple transformation

2.5.4 Projections

Our goal is to use interface specifications to formally specify the behavior of hardware
components. Manufacturers usually provide this information in the form of timing dia-
grams and associated timing parameters. In this section we address the problem of inter-
preting the timing information from the timing diagrams to construct an equivalent

interface specification.

As mentioned in the previous section, an interface specification consists of a timed
signal transition graph and a set of constraint rules. The signal transition graph is com-
posed of places, transitions, the connectivity of the net, the initial state, a set of random
variables associated with the places, and a set of signal transitions associated with the tran-
sitions. A constraint rule defines an occurrence window for a transition with respect to a

reference transition. Thus in our model, operational timing is captured by the set of ran-

39

dom variables, and environmental timing is specified byApevindows of constraint

rules.

Figure 2.5.3 A simple timing diagram.

In component data sheets, timing parameters may be classified as delays and tim-
ing constraints (a common nomenclature is to call them switching characteristics and tim-
ing requirements respectively), although sometimes there is no indication of the type of

parameter and ingenuity from the part of the designer is required to interpret the parame-

ters correctly. Consider for example the simple timing diagram shown in Figure 2.5.3. The
timing diagram describes three timing relationships between two sigrigAsandsigB
(according to our notatiorsjgA is an output signal, arglgB is an input signal). One can

interpret timing relationshify, as a timing constraint, and the other twg,andt,, as
delays. It is easy to see why is a timing constraint, if one considers that it goes from an

output signal transition to an input signal transition, and therefore it could not be an inter-

nal propagation delay, but a restriction on the environment. Analogtysould be a

delay because it relates an input signal transition to an output signal transition.

The sequence of signal transitions implied by the above timing relationships is

described by the graph shown in Figure 2.5.4, where solid lines represent the two delays,

and the dotted line describes the timing constraint.

Timing parameters are usually given as intervals,[T ad in the data sheets. For

the timing diagram of Figure 2.5.3, the timing parameterstgre:[5, 10], t,, = [0, 10],

40

Figure 2.5.4 Interface specification corresponding to the timing diagram
shown in Figure 2.5.3.

andt,; =[5, ©). The problem we want to address is how to convert the timing parameters

into the parameters of the corresponding interface specification. For a constraint timing
parameter, which is to be transformed into a constraintcyutet, t, 4;, L] the mapping

of the timing parameter to the winddyy is direct. For a delay timing parameter, the map-
ping is not as straightforward because in our model a delay is modeled using a random
variable, and the set of random variables of the probabilistic timed Petri net is character-
ized by a joint probability density function (pdf). To solve this problem, let us first take a

look at possible representations of delay information.

Delays can be modeled in increasing degree of accuracy by: a fixed
parameter [111, 117]; a value belonging to an interval [124, 114, 67]; or a random variable

with a certain probability density function [49]. The single value case is the easiest to ana-

lyze but not very realistic when considering an ensemble of components subject to differ-
ent conditions €.g, temperature variations). Cerny and Khordoc [72] have previously

identified that timing specifications of components describe more complex timing behav-

ior thanAaND andoR causality. They have developed timing verification techniques under a

41

different framework based on process algebra which includes what they have called con-

junctive constraints to model timing correlation.

Probabilistic models have proved expressive in related domains of gate-level

power estimation [99, 100], and gate-level timing analysis [70]. In this dissertation we use
both intervals and random variables to describe delays. Furthermore, we have made a con-
nection between the interval representation and the probabilistic representation by means

of the concept of projections which is discussed in the rest of this section.

Our probabilistic interface timing verification manipulates the joint probability
density function of the random variables to obtain a detailed picture of the temporal
behavior of the circuit. Our timing analysis for synthesis is to be used prior to synthesis,
when some timing parameters are still missing, thus an interval analysis is more appropri-
ate. In this section we show the relation between the interval representation and the statis-
tical representation of a delay.

For the sake of simplicity, let us first consider the case in which all the random

variables are independent. Then the joint probability density function is given by:

f w(Ta oo Tw) = fu(T) - fou(Tw) (Eq. 2.5.1)

where the set of random variablestg {=1, ...,M}. Thus each random variabteis char-
acterized by its pdi;(t;). Chip manufacturers usually have process data that can be used to

construct the pdf’s that characterize the delays of a component [23]. In the data sheets,
manufacturers only provide the boundaries of the values of the pdf's. Thus a delay param-

eter i Tmad defines an infinite set of pdf’s which are non-zero in the interval

[Tmin Tmax @nd are zero otherwise (refer to Figure 2.5.5).

The case in which some or all the random variables are not independent is more

interesting. In that case, one needs to know the expression for the joint pdf

frl TM(Tl’ AR TM)'

42

fi(t)

T
Tmin max

v

Figure 2.5.5 Probability density function of an independent delay.

0 S1
clk f tchel)\ [
_d |— tCHAV—’l‘— tA\/SA—>
a |
_ — tcisa
as] _ﬁ\

Figure 2.5.6 Timing relationship betweaad andas

To get an intuitive idea of the problem, consider the following example taken from
a microprocessor data transfer cycle. The addressduekare used to select a particular
device. In order to avoid incorrect selection while the address lines are changing, a strobe

signalasis used to indicate when tlagld lines contain a valid address. The timing rela-
tionships between thedd andasIsignals and the clock are shown in Figure 2.5.6. There
are four signal transitions of intereslk, andclk,, the rising and falling clock transitions
respectivelyaddt,, that indicates the moment when the address lines are guaranteed to be
in a valid state, andst, the high-to-low transition on the negative-logic sigmsal (refer

to Section 2.3.2).

Typical values of the timing parameters are given in Table 2.5.1. There are four
timing parameters specified in the table. For instdngg, is the duration from the rising

edge of the clock (state 0) and the instant when all the address lines are valid. A minimum

43

and a maximum value are given for each timing parameter due to variations in temperature
and fabrication process. The manufacturer guarantees that a chip will perform within the

minimum and maximum given times.

Symbol | Timing parameter Min Mak Unit
tehay Clock high to Address valid 0 40| ns
tcisa | Clock low toasasserted 0 40| ns
tavsa Address valid tasasserted 20| - ns
tcuel | Clock high to Clock low 35| 45| ns

Table 2.5.1. Timing specifications (Motorola MC68030)

Figure 2.5.7 shows a graphical representation of the timing diagram shown in

Figure 2.5.6. One can identify two clock transitions, which are indexed by the correspond-

ing states, the instant when the address lines contain a valid address, and the assertion of
the address strobe signal. The four timing parameters of Table 2.5.1 label the edges in the

graph.

C|k0wA

teneL

ada,
\

\ tasa

oy e
\
v

ast+

Figure 2.5.7 Signal transition graph.

With the exception offy,sa Which is the object of our discussion, the other timing
parameters describe causal relationships between the corresponding signal transitions. For

instance, the range tfyc in Table 2.5.1 specifies that the (high) pulse width of the input

44

clock signal should be between 35ns and 45ns. Tingg andtc spdescribe the delay

from the respective clock transitionaddt+, andast+.

e
—»{ addlogic add

Figure 2.5.8 Generation of the address lines and address strobe signals.

The fourth timing parametet,, s, Specifies thaaddt, always precedesst by at

least 20 ns. One may be tempted to add a causal edgadbyto ast+ (as shown by the
dashed edge in Figure 2.5.7). However it turns outtfj)gkis not a propagation delay. To

understand this, one needs to refer to Figure 2.5.8 where a possible implementation of the
circuit that generates signadsid andas is depicted. Two logic blocks drives andadd
respectively to their appropriate values (taking as inputs the clock and other internal sig-

nals which are not shown for the sake of simplicity).

Let us calld; andd, the delays frontlk, to ast andadd+, respectively. From the

parameters in Table 2.5.1, it can be inferred that [0, 40] andd, O [35, 85] without
takingta,sainto consideration. It is clear that there are some combinations of valuis for
andd, for whichtpysais not satisfied. For exampledf = 40 andd, = 35. Notice that we

have chosen the maximum value fi@rand the minimum value fak,.

However the sources of delay variatieng(process fabrication tolerances, tem-
perature effectsetc) arelikely to affect both delays in the same direction, making the

above choice of values for the delays improbable. Thus we say; tiatld, are not inde-

pendent of each other but a@rrelated That is, the probability thal, take certain value

is not independent of the value tldlattakes. Figure 2.5.9 shows a joint probability density

45

function of two variables. Note that for different valuex,ahe range of values thatan

take varies. A similar behavior is expected betw#iesndd,, i.e., the values of the delays

are not independent of each other.

flXY)

04

Figure 2.5.9 Joint probability density function.

Once the joint probability density function is known, it is possible to perform a
timing analysis of a design [48]. However if complete information about the joint proba-
bility density function is not available, a simplification is possible if the boundary values
of the function are known. The general idea is to look just at the possible values that the
delays can take, disregarding the probability information. In that case a worst-case analy-
sis can be performed. The effect of the specialization can be seen as the projection of the

probability density functiofy; ,.(X;,...,X,) into the hyperplang,...x,.

In Figure 2.5.10 the shaded area describes the projection of the probability density
functionfy; 4,(dy,dy), which better expresses the intention of the timing information pro-
vided by the manufacturer (c.f. Table 2.5.1), namely that the values that thedjedags
d, can take are such that always the transition oatlitdines to valid precede the asser-

tion of asby at least 20 ns.¢., d; — d, = 20 ns). Ifd; andd, were independent, the projec-

46

tion would be the rectangle whose perimeter is depicted by a dashed line. Note that the
boundary of the projection in Figure 2.5.10 can be described by linear expressins on
and d,. Although arbitrary boundaries can be usedg,(the dark area shown in

Figure 2.5.10), linear boundaries have a clear computational advantage, and lend them-

selves to a concise description.

Figure 2.5.10 The projection (dark region) and a linear projection (gray area) of a
probability density function for delayl andd.,.

Now we proceed to formalize the concept of projection of a joint pdf.

Definition 2.5.4.- The projection of a joint probability density function
fu Ty -.o, Ty) is the maximal set ¢, ..., Ty) | fir wu(Te, ..., Ty) > 0} (with respect to

inclusion).

Geometrically, the projection of a joint pdf can be represented as a regiorMn the

dimensional euclidean spaé®'. As mentioned before, it is sometimes convenient to
approximate the actual projection by another region which contains the original region but
whose representation is easier. Convex regions have the property that any two points in the
region can be connected by a line that is included in the region [109]. In this dissertation

we only consider a particular type of convex approximations.

Definition 2.5.5.- A hyperplane irR¥ is the set of pointsty, ..., T,,) O R¥ such

thata,[@, + ... + aydy, =B, for the set of given constardts, ... a,, BOR

a7

A half-space is the portion & lying on one side of a hyperplane. A closed half-

space is a half-space including the hyperplane.

Definition 2.5.6.- A polyhedral set, or in short polyhedron,RY is the intersec-
tion of a finite set of closed half-spaces.

Definition 2.5.7.- A linear projectionof a joint pdff; (T4, ..., Ty) iS @ polyhe-

dral setPSthat includes the projection §f (T4, ..., Tw)-

In the sequel a polyhedral set shall be referred simply as a polyhedron. It is well

known that a polyhedral set is a convex set that can be described by a set of inequalities on

the variableg; [104].

Now we address the problem of extracting a linear projection from the correlation

edges of an interface specification.

Definition 2.5.8.-Given two transition,, t, 0 T of a probabilistic timed Petri net
N =[P T, F M, I'[)the sequency,...t, is called adirected pathf all the transitions are
distinct and for any, i =1, ... n, there exists g such thatt{_;, p;) U F and ;, t;) U F, for

i=1...n.

Definition 2.5.9.-A directed path is callesimpleif for each pair of adjacent tran-
sitionst;_4,t; in the path, there exists only one plageuch thatt{_;, p;) O F. Thedelayof
n

a simple directed path is given t/(t,t)) = z T, , wheyes the random variable
i=1

associated with plagg.

Definition 2.5.10.-Given three transitionty, t;, andt, U T of a probabilistic timed

Petri netN = [P, T, F, My, '] transitiont, is called asimple fork transitiorfor t; andt, if

48

there exists a simple directed path frigrto t; and there exists a simple directed path from

ty tot,. The time separation fromtot,, denoted, — Ty, is given by:

d(to, tp) — d(to, ty).
Definition 2.5.11.-A timing parametery; associated with two transitiofsandyt
of anetN =[P T, F, My, I'Lis the tuplet, t;, p;, T;Lwherep; is a place of the net such that
(t, py) U F and @, t;) O F andt; O O+ is a non-empty non-negative compact real inter-

val (U+ is the set of compact non-negative real intervals [112]).

A timing parameters; represents a causal delay from transitjdo transitiont;,
modeled by the random variable associated with aeenose unique input transition is

t; and whose unique output transitior;is

Definition 2.5.12.-A correlation ruleg; associated with two transitiohsandt; of
anetN =[P, T, F, M, I'ls the triple= [&, t;,p;wherep; [[J is a non-empty compact real

interval (I is the set of compact non-negative real intervals [112]).

A correlation rule describes a time restriction on the time sepamiort, from
t; tot,, such thatry, — 14 U pj. A correlation rule is represented graphically as an edge

fromt, tot,. To distinguish a correlation edge from delay edges and constraint edges, we

use the convention of drawing correlation edges as dashed lines (refer to Figure 2.5.7).

Correlation rules and delay timing parameters can be used to construct a projection
of a joint pdf with the interpretation given above. The collection of timing parameters and
correlation rules of a specification describes a region of possible values for thetdelays

The following procedure simply describes how to construct such a region.

Procedure 2.5.1.-Construction of the projection of a joint pdf of a probabilistic

timed Petri neN = [P, T, F, M,, I'Ligiven a set of delay timing parametergf{and a set of

correlation rules g; }.

49
1. For every timing parametes; = [, t;, p;, T;Isuch thatry = [T min Tjj mads @

pair of linear inequalities;; min < Tjj < Tjj max@re generated.

2. For every correlation rulg; = [, t;,p;; Isuch thap;; = [pjj min, Pjj mad: @ pair of

linear mequalltlespij’min < 'l'ti —th < Pij. max -

In this dissertation we further restrict that a correlation edge be placed from transi-

tion t; to transitiort, only if there exists a simple fork transitigyfor t; andt,. In this case
the expressions of the formj’min <7 -T <Pjjmax Can be computed in a simple way.

The following Lemma states that also the region of possible values of the dleley@rd-
ing to the specification is a polyhedral set. Thus such region can be thought of as a linear

projection of the pdf,; (Ty, ..., Tw)-

Lemma 2.5.2.-Let N=[P, T, F, M, F'be a probabilistic timed Petri net and let
M ={m;} be a set of timing parameters atd={@;} be a set of correlation rules. If for
eachp; from transitiont; to transitiont; there exists a simple transition fork fpandt;,

then the region defined by bdthand® is a polyhedral set.

Proof.- Step 1 of Procedure 2.5.1 definesulimension cube iR™ described by

Tij min < Tij < Tj max Which is clearly a polyhedral set. We now show that the addition of

correlation inequalitie:pij min < Tt =T SPjj max 9eNerates a polyhedral set. Consider a
, Pt ,

correlation ruleg; = [, t;,p;; Lifrom t; to t;. If there is a simple fork transition fgrandt;

then, according to Definition 2.5.101, —T, can be expressed as the difference
i j

dT- sz . Thus a constraint rule specifies:
i i

i j

50

Equation 2.5.2 defines a region®Y between two hyperplanes. Therefore the region con-
structed by Procedure 2.5.1, provided that each pair of transitions related by a correlation

rule has a simple fork transition, is thus described by a linear set of inequalitie{_]

Notice that a correlation rule is not part of the flow relation of the Petri net. How-
ever it is often convenient to show a correlation rule in an interface specificatiorsatthe
level as a different type of edge between two signal transitions. In the sequel we draw a

correlation rule as a correlation edge between two signal transitions of the interface speci-

fication as shown in Figure 2.5.4 (the correlation edge is labeled Ay&R.

In the following section we show some examples of interface specifications of

commercial components which contain time correlation information.

2.5.5 Examples of interface specifications

From the previous sub-section, an interface specification of a component consists of two
parts: a signal transition graghand a set of constraint rul€ which is denoted com-
pactly asW =3 + C. There is a graphical representation for bstids and constraint

rules. We shall represent in this dissertation interface specifications in graphical form for
its more intuitive grasp. However it should be clear that a textual description, which is

more convenient for large specifications, is also possible.

Although the fundamentals presented here can be applied to different areas, the

examples we use throughout this work are from microprocessor-based systems. In

Chapter 3 we shall discuss the interface design problem in the context of microprocessor-
based systems. Microprocessor components can be classified into prodessors,
DSPs), memory devicese(g, RAM, ROM), andi/o devices €.g, parallel ports, serial ports).

Systems are built around standard buses to facilitate the integration of system components.

51

The interface behavior of a component describes the protocols followed by the
ports of the component to be able to communicate with other components. Informally a
protocol is a predefined series of events. Events are encoded in hardware components as
signal transitions. Interface protocols can be described by interface specifications. As
mentioned before, an interface specification has two parts: the description of the internal

operation of the component and a set of restrictions on the environment of the component.

The interface behavior of microprocessor components can be quite involved. It is
convenient to separate the overall behavior into sub-behaviors. For exaomleray
transfer data to and from other devices, may accept external hardware interrupts, may arbi-

trate the use of its data transfer lines by other active devices (called masters, refer to

Section 3.2.1), or may support cache coherency mechanisms. Each abiresétiesis
specified by a protocol. The overall component behavior is given by all its capabilities. At
this moment we have concentrated on studying protocols of capabilities. An area of future

research is to develop extensions to our approach that work with the overall behavior.

Component behavior are usually given in the form of timing diagrams in the man-
ufacturer’s data sheets. We prefer to use a formal description, interface specifications, for
it allows us to develop formal methods for timing analysis and verification. The internal
operation of the single capability protocols that we have studied can be easily described
usingAocC STGS. In this section we illustrate the read cyclies. (the protocol of the read
capability) of the Texas Instrument SM64C%8AM device, and the Analog Devices
SHARC DSP. We shall use other interface protocols in subsequent chapters of this disserta-

tion.

2.5.5.1 &AM read cycle

The Texas Instrument SM64CE&AM device is a static random access memory device
organized as 4,096 words by 4 bits. Although this is an early device, the nevrAstatic
chips follow the basic interface protocol of the SM64C16, only with faster timing parame-

52

ters. The interface protocol of the SM64C16 is representative of otherrstsitec with
different configurations. There are four group of signals: data lines (4-bit bidirectional
ports that are represented by a 4-bit input poand 4-bit output por®), address lines
(12-bit input portA), and control lines (1-bit input pori&&] andWD), and power lines

(GND andVCQC). The TJ after a name of a port indicates that it uses negative logic (refer

to Section 2.3.2). The power lines do not play any role in the protocol descripfias.
the write signal, which is ‘1’ if the cycle is read, and ‘O’ if the cycle is wiiéis the
enable signal, which is ‘0’ if a read or a write cycle is taking place, or ‘1’ if the device is in

standby mode.

e te(rd))|
N tv(A)
invalid |«ta¢a) -

AO1] valid

Q0:3 —vard valid |
previous invalid
cycle

invalid

Figure 2.5.11 Timing diagram of an SRAM read cycle from address.

The read protocol otycle of the SM64C16 device is described in the manufac-
turer’s data sheets [120] by two timing diagrams, reproduced in Figures 2.5.11 and 2.5.12.

The first timing diagram (refer to Figure 2.5.11) shows the sequence of signal transitions
on the data lines (the output port) caused by signal transitions on the address lines (the
input port) when the control inputs aiftlis ‘1’, or negated, ang8C]is ‘0’, or asserted.

Both ports alternate values between a valid state and an invalid state. There are three tim-
ing parameters in the timing diagratgq), tya), andty). The first parametet,q), is a

timing constraint that restricts the width of the valid state of the address lines. The other

two parameterd,) andt,), are propagation delays of a signal transition in the data lines

caused by a signal transition in the address lines. In the data sheets of the SM64C16, prop-

agation delays and timing constraints are differentiated (they are called switching charac-

53

teristics and timing constraints respectively). However in other data sleegt§9b])
there is no indication of the type of timing information and some ingenuity from the

designer is required to identify the timing relationships.

We lof tsuew)rd —| th(w)rd
- _]
te(rd)
*ten(E)
. « ta E)-’I » tdis(E)
B — | [

Q3 g vald —— @——

Figure 2.5.12 Timing diagram of an SRAM read cycle from enable.

The second timing diagram (refer to Figure 2.5.12) describes the sequence of sig-
nal transitions of the data lines as caused only by the control signals. The address lines
must be valid prior to or simultaneously with the high-to-low transitio&lofi.e., E[H, a
transition from negated to asserted). The timing constraint$.gjg:a restriction on the
pulse width ofEL} andtsywq andtywg, @ set-up and hold times BflJwith respect to
ELl The propagation delays atgyg), the propagation delay frofel# to Q1; tyg), the
propagation delay frofB[# to Q+,; andtyqg), the propagation delay fro&i+ to Q. (for

the special signal transition symbols, refer to Table 2.3.1).

The value ranges of the timing parameters are given in Table 2.5.2. A constraint
parameten; can be transformed into the constraint gyle [, t;, 4;, L] A delay parame-
ter is transformed to a place of a probabilistic timed Petri net. Such a place is associated
with a random variable. The set of random variables of the Petri net are characterized by a
joint probability density function (pdf). If all the random variables are assumed to be inde-

pendent, each random variable is characterized by its pdf. Chip manufacturers count with

data that can be used to construct either the joint pdf, or the independent pdf’s [23]. In the

54

timing parameter | range (ns)
teray (C) [25,)

tya) (D) [0,)

ta) (D) [0, 25]
tsuwyrd (C) [0,)
thowyrd (C) [0, «0)

ten) (D) [5,)
NG [0, 25]
taise) (D) [0, 15]

Table 2.5.2. Timing parameters for the 25 ns version csrhae! device
(C: timing constraint; D: propagation delay).

data sheets, manufacturers only provide the boundaries of the values of the pdf’s. Thus a
delay parametet], tmad defines an infinite set of pdf's which are non-zero in the inter-

val [ty tmad @nd are zero otherwise.

A+, bt
' E#
tere)
) Q1

tae)
! tc(rd) ' tc(rd)

Lis(e) =T
v / AN Fh(\N)rd
Q Awor

Figure 2.5.13 Partial interface specification of the SRAM read protocol.

55

One would like to combine the information of the two timing diagrams into a sin-

gle specification. This is accomplished by the interface specification shown in

Figure 2.5.13. As before, solid edges describe delays, and dotted edges describe timing

constraints. With the exception of the thick edge, which requires further explanation, the

other edges can be easily identified from the timing diagrams in Figures 2.5.11 and 2.5.12.
At the end of the read cycle there are two concurrent actions: the data lines become invalid
after the address lines become invalid; and the data lines are tri-stated after the enable line
is negated. Then the following three scenarios are possible: the data lines first become
invalid and then tri-stated, or the data lines become at the same time invalid and tri-stated,
or the data lines become tri-stated (forcing the data lines to invalid teaa@ality is
invaluable in this case to model the three aforementioned scenarios by stating that the data
lines become invalid either after the address lines become invalid or after the data lines
become tri-stated due to the negation of the enable signal. If the pdf characterizing the ran-
dom variable associated with the thick edge/place is the Dirac’s impulse function, then the

place makes the token visible immediately as desired.

Figure 2.5.14 Interface specification of the SRAM read cycle.

56

In the timing diagrams some information is implicit, namely the sequencing of
states of a signal. That is, a port cannot be in two states simultaneously and thus imple-

ments a sequential process. Additional edges that guarantee port sequencing complete the

interface specification of theRAam device, which is shown in Figure 2.5.14. Notice that

the delay edges (solid lines) connect an input transition to an output transition (except for
the speciabr causality edge fron®. to Q-,). The added edges to transitions of input
ports A, E[1and Wl are clearly timing constraints (with associated intetval[0, o)

which indicates a precedence constraint) because the ports are manipulated by the environ-

ment.

However the four added edges to transition® eéquire further explanation. The

edge fromQ+, to Q—, is a precedence constraint that checks for an inconsistent specifica-
tion that assigns value ranges fQg, t), andtys) such that transitio®@-, occurs after

Q+,. Using the same argument, one can see that the edg®fréoQ+ must be a prece-
dence constraint. The edge fr@r, to Q. is actually not necessary becausedreau-

sality edge fronQ: to Q—, ensures tha-, will occur not later tha®: .

Finally the edge fron@+ to Q+, is a correlation edge shown as a dashed line (refer
to Section 2.5.4). This correlation edge specifies that the value of dglayandt,g are

not independent, so that delgyg, is always smaller thatyg). From Table 2.5.2, and our

previous discussion on transforming delay parameters to pdf’s of random variables, one
can see that whilg,g is a positive number not exceeding 25 tggg) can be take any
value greater than or equal to 5 ns. The correlation edge restricts the valuestg{gyoth
andtyg) so that sequentiality of the data lines is always observed. Let ug aatlt, the
random variables associated with the delay places labeled respectively with timing param-

eterste gy andtyg). The linear projection of the joint pdf,(t4, T,) obtained according

to Procedure 2.5.1 is described by the following set of inequalities:

57

5ST1<°°
0<t1,<25
OSTZ_Tl

and it is shown in Figure 2.5.15.

Figure 2.5.15 Projection of the probability density funcfigp(t;, To).

2.5.5.2 BxPread cycle

The Analog DevicesHARC (Super Harvard ARchitecture Computegpis a highly par-

allel high-performance processor. In this section we modeaHhrCs read cycle.

The read cycle is described in theARCs data sheet [4] by the timing diagram

reproduced in Figure 2.5.16. Four groups of ports are involved in the read cycle: the 1-bit
CK clock input line, the 32-bit inpDD address lines, the 48-bit bi-directiosT data

lines (as output lines), and the control likkd3 andACK.

The value ranges of the timing parameters are shown in Table 2.5.2. The timing
parameters are classified in the data sheet as switching characteristics and timing require-
ments. Timing requirements correspond directly to our timing constraints; however
switching characteristics specify not only propagation delays but also time correlation

data, as explained below.

58

* tsacke .
tek »| thacke
thsparl
K * |tsspami |
K / _
tbabro,
¢ tbadL
—_— [“toand T 'ItHA R(
ADD [| |
ACK Ty
tbRpo
= IDRWL tRW ¢ tRWR _.l
RD T\
bAT — o—

Figure 2.5.16 Timing diagram of the SHARC read cycle.

timing parameter | range (ns)
tsackc(C) [6,)
thackce (C) [-1,)
tsspati(C) [3, »)
thspari (C) [2,)
tpaak (C) (-, 10]
tpabro (D) [0, 8]
thapro (D) [0,)
torwi (D) [8, 13]
toroo (D) [1, 4]
tparL (R) [2,)
trw(R) [13,)
trwr(R) [6,)

Table 2.5.3. Timing parameters for the 40 MHz version o§HrrC DSP
(C: timing constraint; D: propagation delay; R: correlation data).

The interface specification of treARC read cycle is shown in 2.5.17. Once the

59

type of timing information has been determined, the construction of the interface specifi-
cation from the timing diagram is straightforward. Each timing parameter of the timing
diagram is represented by an edge in the specification of the corresponding type (delay,
timing constraint or correlation). Sequentiality edges have been added as discussed before.

Notice thatCK;+ corresponds t€Ky+ of the next cycle.

CKy+

WDRO torRwL
; __
ADD+, ¢ - > R0«
. N\
o oo \
L \ |
\
\ | \
\\ | |
DAT+ |
V¥ : |tRW tRwr ll
.- tsspaTi I]
| /
| /
L s /

tHspaTI!

v B
DAT-, -

Figure 2.5.17 Interface specification of the SHARC read cycle.

Notice that the lower bound of the timing constragi,y is a negative value.
Specification formalisms in which timing constraints are modeled with places of a Petri

net €.g, [124] and [114]) will have problems handling “negative-valued” timing con-

straints, because tokens in places behave causally.

We now discuss briefly the correlation edges. Consider the igdge As dis-

cussed in Section 2.5.4, this edge does not describe a causal (delay) timing relationship

60

from transitionADD+, to transitionRD+, which will imply some circuitry that generates
RD+ usingADD+, as one of its inputs. The manufacturer can guarante®Bratlways
follows ADD+, because delaytgpro@ndtpryy @re not independent (due for example to
the proximity of the circuits that generd&®+ andADD+, in the chip wafer, so that they

are affected similarly by fabrication process variations and temperature changes). A simi-

lar argument can be applied to understand why the égges,yr and (the added sequen-

tial edge)tapp_segspecify time correlation data.

CKo+
T2
1
_ toARL » RD+ -
DD+, * ' \
\ | \
\ | \
13 \ | \
\ | |
| | tRw trRwr
tADD_SEQ, |
I | {
v ol /
CK,+ I /
/ | /
15
1, / v . /
RD+ -
ADD-; ~

Figure 2.5.18 Construction of a linear projection of the joint pdf
fracosus(Te To T3 Ta Ts).

Notice that the associated transitions to each correlation edge have a simple fork
transition (refer to Definition 2.5.10). The random varialileassociated with the delay
edges of the interface specification are shown in Figure 2.5.18. The expressions generated

by step 2 of Procedure 2.5.1 are:

61
T~ Ty Utpare
T3+ 15— T Uty
T~ Ts Utrwr
Ty ~ T4 Utapp seq
The linear projection of the joint pafprars(T1, Tor Tz, Ty, Ts) IS @ region irk>,
so that we do not attempt to visualize it. However, standard techniques can be used for its

manipulation [109].

We shall come back to the interface specification ofstkem and thebdsp read

cycles in Chapter 4 where we shall use linear projections to construct joint pdf’s given

some assumptions.

2.6 Summary

In this chapter we have presented interface specifications, our formal framework to
describe the behavior of hardware components used to build up a system. An interface
specification consist of two parts: a description of the component’s internal operation, and
a restriction on the component’s environment. The first part can be described using an
interpreted Petri net called timed signal transition graph. The second part can be specified

as a set of constraint rules.

In the following chapter we shall address the interconnection of components.
There we shall show that the behavioral properties of the system can be inferred by study-
ing a “merged” graph which consists of the interface specifications of the components that
comprise the system. Furthermore, if the components cannot be connected directly and
glue logic is necessary, we show that the system consisting of the components plus the
interface logic can be described as a graph which contains the interface specifications of

the interconnected components plus additional edges that represent the interface logic.

Chapter 3

Timing and the Interface Design

3.1 Introduction

As hardware systems become more complex, the design process shows a trend towards the
use ofCAD tools that automatically carry out the clerical, time-consuming, and error prone
synthesis and verification tasks. Timing is a critical aspect of the design which, except in
toy systems, cannot be separated from other parts of the design such as design specifica-
tion, synthesis, and verification. This is particularly true for high-performance systems, for

which achieving the maximum possible throughput is of paramount importance.

In the previous chapter we presented a formal framework to specify the interface
behavior of components, that we called interface specifications. Those components are
independent modules that can be used to build up more complex systems. The main goals
of this chapter are: to show how interface specifications can be used to facilitate the
description and validation of systems composed of an aggregation of components; and to

provide the foundation of our verification and analysis techniques that will be discussed in

Chapters 4 and 5.

In the following section, we discuss the interface design problem, that arises when
a hardware system is to be constructed using predefined moeuesoff-the-shelf
microprocessor components, parameterized libraries, special function ewmesQur

main contribution is the formulation of the interface design problem as the “merging” of

63

interface specifications. The rest of the chapter discusses the concept of time-consistency

as applied to the interface design problem.

3.2 Interface design problem

Reuse is a powerful concept that makes it possible to construct more complex systems out
of pre-existing ones. In this dissertation we use microprocessor-based systems as one
example, although the underlying ideas are applicable to other areas where a system is
composed of well-defined sub-components or modules. An essential ingredient that

empowers reuse is a clean component interface.

In the case of microprocessor-based systems, a system is composed of off-the-shelf
components that can be classified as processors, memory devices, and input/adtput (or
devices. Single-processor systems are rapidly being superseded by multi-processor sys-
tems, with a complex memory hierarchy and high-throughiputo satisfy the demands
for increasing power. In the previous chapter, we introduced a formal specification of
interface behavior of digital hardware components called interface specifications. In this
section we use interface specifications to specify the temporal behavior of complete sys-

tems composed of off-the-shelf components and interface, or glue, logic.

3.2.1 System integration and interface design

System integration is the process of building systems out of pre-existing components. In
microprocessor-based systems, it may not be possible to connect the components directly
together. For instance, a memory device may expect a positive logic signal to initiate a
read, while the processor may use a negative logic signal. This type of incompatibility is at
the physical (electrical in this case) level, and signal conditiorergy @n inverter) is

involved. A more serious incompatibility arises when a processor initiates a read differ-

64

ently from what the memory device expects. We say that the processor follows a different
protocol from the one used by the memory. Interface logic is a circuit that must be placed
between microprocessor components to resolve incompatibilities so that the components
can exchange information. In this section we introduce some terminology and provide an

example to illustrate our ideas.

Microprocessor components are complex modules themselves, and they may per-
form different operations. For example, a processor typically is capable of transferring
data with other components, of accepting external hardware interrupts, of allowing other
processors to take over its data transfer liats,Such operations are calledpabilities
e.g, the data transfer capability, the bus arbitration capalality,The logic and temporal
behavior of a capability can be described Ipyaocol Informally a protocol is a series of

actions or atomic operations, that are used to perform a capability. Components are con-

nected to other components through input and output ports (refer to Section 2.3.2). The
actions of the protocol are encodedsamal transitionsi.e. changes on the values of the

ports.

master master arbiter
|nterfacﬁ |nterfac+ |nterfacﬁ |nterfac+ |nterfacﬁ

j W TE W jﬂ: arbijtration
<. > lines
<: data transfer bus >

Figure 3.2.1 Multi-master system.

Consider for example a microprocessor system which consists of multiple masters

shown in Figure 3.2.1. Among its several capabilities (such as transferring data, accepting
hardware interruptgtc), a master is able to initiate a data transfer via a shared resource:

the data transfer bus. This capability is called bus arbitration. The bus arbitration lines are

65

used to guarantee that at most one master requesting the bus takes overahany
given time. A bus arbitration protocol is defined by the standard bus, and each of the mas-
ters may use a different bus arbitration protocol. The interface logic placed between a mas-

ter and the standard bus generates the input actions to both components.

Figure 3.2.2 Master bus arbitration protocol.

Protocols are usually given in the component data sheets in the form of timing dia-

grams. The timing diagram of a bus arbitration protocol used by a typical master is shown

in Figure 3.2.2. According to our notation (refer to Section 2.3.2) in Figure 3.2.2 input sig-
nals are underlined and output signals are overlined REQEIACK [Isignals are control
signals which can be asserted and negated, whileTéhés a group of lines that are ini-

tially in a high-impedance state, and are driven by the master (when the master takes over
the bus).

The bus arbitration protocol can be described by a sequence of actions. The master
signals to the arbiter that it wants to use the bus by asserting the rREgpigignal (a &
suffix identifies a negative logic signal), and it waitsAgk [1to become asserted before it
can take over the bus. When the master ends its transaction, it releaSehe arbiter

then releasesck[1so that another arbitration cycle can take place.

An interface specification embodies the previous protocol description with a pre-
cise meaning. The actions of the protocol correspond to signal transitions. For clarity, we

use short names to describe the various signal transiteaps(req-) indicates the change

66

Figure 3.2.3 Interface specification of a bus arbitration protocol.

from asserted to negated (negated to asserted) eEthiesignal; similarlyack+ (ack-)
indicates the change from asserted to negated (negated to assertedda(tlsggnal;

dtb: (dtb:) indicates the change from tri-stated to driven (driven to tri-stated) afrthe

lines. The interface specification shown in Figure 3.2.3a describes the bus arbitration pro-
tocol. From Section 2.5.3, we know that an interface specification consists of two parts:
the internal operation of the component (delays), described by a timed signal transition
graph, and a restriction on the behavior of the environment (timing constraints), given as a
set of constraint rules. Delays and constraints are graphically represented as solid and dot-

ted edges respectively (correlation edges can also appear in an interface specification as

discussed in Section 2.5.4). Each delay edge is associated with a random vargaiale

each constraint is labeled by a timing inte&¥alFor example, in Figure 3.2.3, the random
variablet, represents the internal propagation delay in the master from the receiving of the
bus grant dck+) to the driving of thedTB lines; and the interval, specifies that a grant

(ack+) is expected to occur some time after the master issues a reqgekst (

Notice that an interface specification, as discussed in Section 2.5.3, combines two

types of information, a specification of the internal operation of the component, given by a

67

timed signal transition graph (with underlying Petri net), and a restriction on the behavior
of the environment of the component, given by a set of constraint rules. The underlying net
is not connected, and thus, tokens cannot propagate through the net. The main objective of
this section and the following section is to introduce the conceqopletggraph, which
informally is a signal transition graph that describes the “complete” operation of a system
composed of two or more components, and thus there is an additional requirement that the

graph be connected. Please the reader be aware that our usage of complete is different

from the concept of complete graphs studied in Graph Theory [73].

Figure 3.2.4 A bus arbitration protocol variant.

An interesting variation of the protocol shown in Figure 3.2.3, which is chlled

handshakeis the bus arbitration protocol shown in Figure 3.2.4, followed by typical

devices. This variation is calledpartial handshakefor reasons that shall become obvi-

ous. The difference is that while in the original protoradk- is generated after the master

has released therB lines, in the lattereq- is generated just before the release obife

lines. Let us examine the implications of this modification. There is a potential problem in
the second protocol, if the arbiter grants the bus to another master before the current mas-

ter tri-state®7TB. The constraint edgk. checks for this hazard. (Notice tifgtis an exam-

68

ple of a constraint edge between two output signal transitions). However if the delay from
req- to a new granackt is larger than the delay, then potentially the second protocol
can display higher throughput because the arbitration for a new cycle occurs concurrently

with the releasing abTB by the current master.

VMEbus DMA
BR* B
ﬁ’: | Interface REQ
BUSY ~ ACK
| —
th data transfer bus | dib

Oco

Figure 3.2.5 Bus arbitration interface: (a) structural view; (b) behavioral
view.

Suppose that one wants to build up a system witlbaardevice around theve-

bus. ThevmEbus bus arbitration protocol is more involved [69]; it implements the arbiter’'s
behavior. ThesmeEbus standard defines three control signBR{ BGL] andBBSY) and

one status signaBUSY (refer to Figure 3.2.5). The structural view of the system is

shown in Figure 3.2.5a. Notice that theA device uses two signals to perform bus arbi-

69

tration while thevmMEbus defines three controls signals and a status signal for bus arbitra-

tion. Thus interface logic is required to convert the two different protocols.

For the sake of clarity of the graph representation, we use the following short
namesbr for BR(] bg for BGL] bbsyfor BBSYlandB for BUSY ThevMmEbus bus arbitra-

tion interface specification is shown in Figure 3.2.5b. After a request is recemgda(

grant is generated@+). A master being granted the bus acknowledges the grant by assert-
ing the grant-acknowledge signab&yt) to which the arbiter responds by releasing grant
(bg-). bbsyis used to speed up the arbitration similarly to the partial handshake described
previously by allowing the arbitration to take place while the last part of the transaction is
still in progress. The master must wait until the busy status siBhad fiegated before

driving the bus lines.

» B+
\ ¥ dtb 1,

. dtb , R B+ o
® 2 lry ® Mo | L\ Ty ",
' : z Dg

dtb, M L
- E_A/‘[Z tbl B

Figure 3.2.6 Bus busy status signal: (a) strobe relation; (b) actual relation.

The last piece of information describes the relationship between the use of the bus
(dtb) and the busy status sign@)(A desirable behavior is that transitio$ andB-

“frame” the utilization of the bus (betwedib: anddtb.), as shown in Figure 3.2.6a. This
is known as a strobe relation, and has the advantagB betomes negated only after the
bus lines have been released by the master, so that by monBatirsgpossible to avoid
bus collisions. However thevebus allows the designer to use one ofe lines (the

address strobe signal) as the indicator of the status of the busdibhamndB actually

observe the relation shown in Figure 3.2.6b. Thus constrainflipkeeds to be added to

70

prevent the possibility of a bus collision. All constraint plates Figures 3.2.5 and 3.2.6

are assigned the interval [&) exceptA; and A4, which according to the’mMEbus

specifications [69] are assigned intervals [8Dand [900) respectively, indicating a pre-

cedence requirement.

The question that arises is whether it is possible to carry out the design of an inter-

face between two components whose protocols are described by these interface specifica-

tions (refer to Figure 3.2.5b). In this dissertation, we shall assume that a designer (human
or machine) has produced a design. In the following paragraphs we give an informal dis-
cussion of some ideas of how to go about carrying a design needed to substantiate our def-
inition of what we have called a “complete” graph, which is used to describe a system
consisting of two (or more) interface specifications together with the interface logic that
accomplishes the system integration. We stress that our aim is not to derive a theory about
the construction of complete graphs but rather to introduce some basic requirements that
we have identified. As a matter of fact in the following sections and chapters we shall

assume that a complete graph is given.

First notice that the interface acts as the environment of each component. There-
fore the interface must generate the necessary input actions expected by one component
using the output actions. One possible approach is to add delay edges from the output sig-
nal transitions to the input transitions. For example, a delay edge may be added that con-
nectsreg+ to br+. This is the approach considered in this work. Then the system can be
described by a graph which contains the interface specifications of the components that
are to be interconnected together with some additional edges corresponding to the inter-
face logic. The resulting graph is called a “complete” graph, which shall be discussed fur-

ther in the following section.

A procedure that automatically carries out the interface design is beyond the scope
of this dissertation, although we believe that this is an important topic which demands fur-

ther investigation. On another track, the implementation of the interface logic that realizes

71

the added delay edges in the complete graph was explored in [42]. We also leave this prob-

lem for future work, although we believe that synthesis techniques that have been used for

signal transition graphs are good candidates [79, 97, 123]. In this work, the starting point

is a complete graph, and our goal is to investigate the temporal properties of the complete

graph. These are the topics of Chapters 4 and 5.

3.2.2 Complete graphs

Two components can be interconnected if they share some capalaligieddta transfer,

bus arbitrationetc). The behavior of each capability is given by a protocol, which in turn

can be formally described by an interface specification. In the previous section we intro-
duced the interface design problem which arises when the protocols followed by two com-
ponents to implement a capability are not “complementary” of one anetigertijere is

no one-to-one correspondence between the input ports of one component and the output
ports of the other component). If that is the case, interface logic is necessary to achieve the
interconnection. In the previous section we also hinted at the possibility that a system
composed of the components to be interconnected and the interface logic can be described
using some sort of interface specification. In this section, we characterize such a represen-

tation that we have called a complete graph.

First we shall discuss the issue of describing the purpose of a protocol. This issue
has been investigated in the related area of communication protocols where it has been
given the name of semantic seed [102]. A semantic seed is intended to capture the seman-
tics (or purpose) of the protocol. For example, the purpose of a bus arbitration protocol is
to arbitrate the use of a shared resource, the data transfer bus lines, among several masters
so that at most one master can take ovebtiseat any given time. In [102] the semantic

seed is represented as an automaton. In this work, we use constraint rules, which are more

suitable to describe expected relationships (as discussed in Section 2.5.1), to specify the

semantics of the protocol; constraint rules can describe non-causal timing relationships

72

such as a hold time of -1 nsec for the input data with respect to the negated transition of

the clock in a latch. We call this additional piece of information a semantic specification.

Definition 3.2.1.- Given two Petri nets Ny=[P, T, F;, My, M0 and
N, = Py, Ty, Fp, Mpo, 'yl @ semantic specification oy andN, is a set of constraint rules

S={s;}, wheres; =, t, 4;, elJsuch that, t; O T, 0 Ty,

Figure 3.2.7 Bus arbitration semantic specification.

The two nets that Definition 3.2.1 refers to are the underlying Petri nets of the
interface specifications that describe the protocols of two components that are to be inter-
connected. Although a semantic specification defines relationships between pairs of tran-
sitions of a Petri net, it can be extended to define relationships between pairs of signal
transitions in the obvious way. Thus a semantic specification consists of timing constraints

between selected signal transitions of the two protocols. As before, constraint rules can be

represented graphically. For example Figure 3.2.7 shows the semantic specification of a
bus arbitration protocol. It specifies that any consecutive uses of resfibrarist not

overlap given that tha, andA, are [Og).

Before defining a complete graph, we need to define some basic concepts.

Definition 3.2.2.- An undirected path between two transitiaggsndt,, of a Petri

net N=[F, T,F, M, Ois a sequence of transitiorgt; ...t, such that, for each

73

i =0,...,n-1, there exists a possibly non-uniqoie] P such that eithert(p,) or (o, t;)
belongs td- and eitherfg, t;,4) or (.4, p;) belongs td~.

Definition 3.2.3.- A directed path between two transitidgsandt,, of a Petri net
N=[F T, F, M, ITis a sequence of transitiof, ...t, such that, for each=0,..., n-1,
there exists a possibly non-uniqoe] P such thatt{, p;) and ¢;, t;,;) O F.

Definition 3.2.4.- A Petri netN =[P, T, F, M, 'Jis connected if there is an undi-

rected path between any two transitions of the net.

A complete graph is an interface specification (refer to Definition 2.5.3) which sat-

isfies a set of conditions as given in the following definition:

Definition 3.2.5.- Given two interface specifications¥, =X, C,,J and
WY, =&, C\,[with associated timed signal transition graghs= [N, Y, A0 and
2, =Ny, Y, ApLl and a semantic specificatidon N, andN,, a complete graph is the
interface specificatio. = [X;, C\.[Lwith associated timesirc >, = N, Y., A;.[and set of

constraint rule€,. thatsatisfiesthe following conditions:
1. N, andNy are subgraphs of;
2. Cya Cyp andSare subsets @, ;

3. N is connected, and for evety] T, there exists a directed path from a differ-

entt; U Tg;

4. There does not exist a plgeél P\ (P, [Py) such thak (ep) is a signal tran-

sition of an output port, where \ denotes set difference; and

5. N.is live.

74

The first two conditions of Definition 3.2.5 ensure that the sub-graphs contained in
the interface specifications are part of the complete graph, and that the purpose of the pro-
tocols’ capability is achieved. Notice thdt is not necessarily the union Nf, N,and S
for the case that additional signal transitions are required for instance to achieve protocol
conversion. The third condition ensures that there are no dangling transitions and that each

signal transition is generated by other transition(s). Examples of nets that do not satisfy

condition 3 are shown in Figure 3.2.8. The first net is disconnected but there is a directed
path that terminates in every transition. The second net is connected but there are no
directed paths that terminate in transitiansr b. Notice that connectivity is only checked

on the Petri net part of the complete graph. The fourth condition disallows new delay
places which sink into an output transition: output signal transitions of the interface speci-
fications are generated internally by a component and should not be driven by the interface

logic. Finally the fifth condition guarantees that every signal transition is live, and thus

deadlock does not occur (refer to Section 2.2.1).

DO Y

Figure 3.2.8 Examples of nets that do not satisfy condition 3 of
Definition 3.2.4.

Given two interface specifications for two components that are to be intercon-
nected, there may be quite a few different ways of designing an interface. Some designs
may have nicer properties than othexrg{a design may be faster or may occupy less sili-
con area). Our definition of a complete graph aims to describe a minimum set of structural

properties that a graph representing an interface design should have. For example that

75

input ports must not be disconnected. The term structural properties refers to properties
concerning the connectivity of the graph, and not the behavior of the underlying Petri net.
It may be the case that a valid complete graph may not exhibit a correct bebayior (
because it violates some of the timing constraints). At the end of this chapter we shall dis-
cuss the concept of feasibility of an interface. Informally, an interface is feasible if it
implements the environment of each of the components correctly from the point of view of
timing. Thus feasibility shall be used to check the correctness of the timing behavior of the

interface.

A complete graph derived from the bus arbitration interface specifications shown
in Figure 3.2.5 and the semantic specification shown in Figure 3.2.7 is depicted in
Figure 3.2.9. The added delay edges are shown as thicker lines and are labeled with ran-
dom variablesy;,. One can check that the four conditions of Definition 3.2.4 are satisfied:

the original interface specifications and the semantic specification are part of the complete
graph; the underlying petri net is connected and every signal transition has an incoming

delay place; finally none of the added delay edges sinks into an output signal transition as

stated in Definition 3.2.5.

Let us recall that the intention of Definition 3.2.5 is to provide necessary, although
maybe not sufficient, conditions for a representation of an interface design. Also notice
that if components share more than one capability then an interface design may consist of
several complete graphs. A procedure to efficiently combine all the complete graphs is left

as future work.

3.3 Time-consistency of complete graphs

From our previous discussion, a complete graph, like an interface specification, consists of

ansTG and a set of constraint rules. TéBs of a complete graph is a connected net such

76

Figure 3.2.9 Bus arbitration interface design.

that every transition is generated by other transition(s); and the complete graph “contains”

two component interface specifications and a semantic specification. There are some addi-
tional edges in the complete graph in addition to the ones corresponding to the component
interface specifications and the semantic specification: those edges describe the interface

circuit that realizes protocol conversion. In general the construction of a complete graph

may result in asTG which is notaoc (refer to Section 2.4.2). As we already mentioned it
is not our aim to develop a theory to construct complete graphs. We shall assume in the
sequel that theTG part of a complete graph A®c. How severe this assumption is we do
not know, although from our experience it seems reasonable. Moreover should this
assumption prove too limiting in some cases, our approach could provide a basic frame-

work for future development.

In this section, we shall investigate the temporal behavior of complete graphs. As

mentioned in the previous section, it is possible that a complete graph may not exhibit a

77

correct temporal behavior. The question we are trying to answer is: Is it possible to deter-
mine if all the possible temporal behaviors of a complete graph satisfy all the given timing
constraints? We have found conditions under which the answer to the question is positive.
First we discuss the timed execution ofA®IT STG.

3.3.1 SG unfolding

A key problem of our verification and analysis techniques is to find the time separation
between two transitions, as it will be discussed in Section 3.3.2. This problem is not trivial
for live nets, even for sub-classes of Petri nets using deterministic firing times [110, 117],

or using interval data [3, 67]. In this section we describe the execution of a signal transi-

tion graph using partial orders.

Partial orders have been used to describe the operational semantics of concurrent
systems [54, 12]. In contrast to the interleaving semantics of reachability graphs (refer to

Section 2.2.1), partial orders avoid the state explosion that occurs in highly concurrent
systems by not having to represent all possible interleavings of a net1@ bhafolding

presented in this section is a partial order technique.

We shall need the following definitions adapted from [113] in subsequent sections:

Definition 3.3.1.-Let A be a set. A binary relatiom] A x A is called a similarity
relation if and only ifJ a,b O A:

1. apa
2. apb O bpa

Definition 3.3.2.-Let A be a set. A binary relatiop] Ax A is called a partial
order if and only ifJ a,b O A:

78

1. -(apa)
2. apbObpcOd apc

Thus a similarity relation is reflexive and symmetric, and a partial order is irreflex-
ive and transitive. Notice that conditions 1 and 2 of a partial order imply anti-symmetry

(.,e,apbO - (bpa)). Let us denote a partial order by.*
Definition 3.3.3.-Let A be a partially ordered set.
1. Letli O AxAbe givenbyalibifand onlyifa<borb<aora=b
2. Letcod A x Abe given bya co bif and only if=(alib) ora="h.

Relationdi andco stand for linear (precedence) and concurrent respectively. It can

be shown thai andco are similarity relations [113].

Definition 3.3.4.-A subseB [A is called aegionof a similarity relatiorp if and

only if:
1. OabOB:aphb
2. DaJOAadBO ObOB:~(apb)

Definition 3.3.5.-Let A be a partially ordered set, andBef] A. B is called dine

if Bis a region ofi. B is called ecutif B is a region oto.

Figure 3.3.1 shows the graphical representation of a partial ordered set, or poset,
where there is a directed edge frarto b if and only ifa <b and there is no such that
a<c<h. The similarity relations andco are also depicted (g is a similarity relation,
then a graphical representation draws an undirected edgea fimmif and only ifa p b).

Theli relation formalizes the idea of a path in a poset; that &liib then there is an
directed path frona to b or fromb to a. The cut relation describes events that are concur-

rent; ifa co bthena andb can occur simultaneously.

79

e > —» g

(@)

d
/ \f f d a
N\ /\. NS NS
c a 9 e c e

g

(b) ©)

Figure 3.3.1 A poset (a) and its relationsli(pand (c)co.

The connectedness and liveness properties of the signal transition sub-graph of a
complete graph imply the presence of cycies, directed paths which start and end at the
same transition). Acyclic graphs, graphs without cycles, are easier to analyze [58]. The
unfolding of a signal transition graph is an acyclic graph in which different occurrences of
the transitions are considered as different nodes of the graph. The notion of the unfolded

graph of arsTG corresponds to the notion of processes and occurrence nets in Condition/

Event Systems [113].

So far we have represented the operational behavior of an interface specification,
or a complete graph, graphically usingAtsc di-graphQ = [T, Po, Mgo, [, Clo, Y, AL
and we have used the equivalemG Z = [N, Y, ALlwith associated néd =[P, T, F, M, ']
for the development of the theory. ThgG unfolding procedure that we shall describe
below is more easily understood in term<oMNotice however that the translation of the
results to thesTG is straightforward (refer to Section 2.3.3). The left arrows used to

denote assignment, afids the special root transition of the di-graph.

80

Procedure 3.3.1.- The unfolding of anaoc di-graph Q is the di-graph

Qy =Oye Puo Muo Clua Y, Aygconstructed fron® according to the following steps:

Tug < {0}, Pyq < {}
Define the index functiordx : T - 0
Ot0OTg, idx(t) O
U « {tj : Mao((t, 1)) = 1 0 (t;, t;) U Pg}
Ot 0 U, idx(t) « idx(t) +1
Vo {gaxy - § 0 UL W = {(0, Gigaxy) - § E U}
Tug < Tug UV, Pyg « Py W
U4 0U O 5) UPg FualO, Gaxay)) < ol 1)
Lt DU, ctyq(taxg)) < Ctat)
Ot 0 U, Adua(tiaxy) < Aaf)
do forever
U — {t:40U0(tt) 0P}
Ot OV, idx(t) < idx(t) +1
Vo {Tgaxgy - § 0 U
Wi« {(Ggaxiyy Gaxay) - § DU O£ O, 4) U P}
Wi« {(tigaxcti)-1)» tiiaxcy) © (6) O Pg}
Tua < Tug U V. Pyg < Py OW OW,
040U O,) OPo Fualltigaxay Gaaxay) < Mol §))
Ot 0V, ctyaltiaxa)) < Ctalt)
O DU, Aua(axay) < Aalt)
U-u
end do

Procedure 3.3.1 construdiy, as follows: First it sets the root transitiOnwhich

represents time = 0. The functiondx keeps track of the number of occurrences of each

transition. The transitiortsenabled by the initial marking 61 are added td, as nodes
tia), that is the first occurrence of each transition, &ixd;) is increased by 1; edges
(0, t;(1)) are added t€yq. The new nodes (edges) adde@tpare labeled with the signal

transitions and causality type (random variables) of the original nodes (edges)he

same process is repeated indefinitely for transitipteswhich that transitiont are con-

nected.

81

Figure 3.3.2 Signal transition graph and a partial view of its infinite
acyclic unfolding.

Consider for example th&rG shown in Figure 3.3.2. The initial marking assigns
one token to each of the edges labeled with random varmpéexits. Those tokens are

assumed to arrive at the places at time0. Thus from the root transition 0, two edges

labeledt, andts are connected to two nodes labeteg) andb+y, respectively. From
at (), there is an edgsg to b+), and fromb+,) there are two edges andt; connected to
a+y andb—) respectively. Thus fromat), edger, is added td+), and edges, andtg

are added ta—(;) andb—;) respectively.

Notice that the unfolding of theoc STGis an infinite acyclic graph.

Lemma 3.3.1.-Given an unfoldind?y,, letp be a binary relation ofy, such that
tim) P tjn) if @nd only if ¢, tin)) U Pug- Then the transitive (but not reflexive) closure of

p, denoted by?*, is a partial order.

Proof.- From Definition 3.3.2, a partial order is a binary relation which is transitive
and irreflexive. Relatiop* is by construction transitive. Then we shall show {bfats

irreflexive, that is €, tim) U Puq for tim U Tyg To show this fact, suppose that
(tim), tim)) U Pug for a transitiont;, U Tyg. The setPyq is constructed in the step

Puq < Puq W O W,. By construction, t(), timy) could only be added #8,q in W,

82
which takes care of the case thiatt() U Pg in the originalaoc di-graph. But explicitly

the construction of W guarantees thatiift() O Pg, then .1y, tiim) is added t@yq. [

Thus p* is a partial order on the infinite sé,o, and theaoc di-graph can be

thought of as the graphical representatiop*fin the sequel we shall cgh the prece-

dence relatior of the unfolding,;.

3.3.2 Time-consistency

From a timing perspective, a complete grapgh=[X C\.[describes two different
aspects: a net execution given by the signal transition gigpnd a set of timing con-
straintsC,. which specify a desired behavior. The connectivity properties of the signal
transition graplt of a complete graph assure that; this is not the case with interface spec-

ifications, whose input signal transitions are not generated by other signal transeipns (
there are no delay edges incoming to input signal transitions). Time-consistency is a prop-
erty of a complete graph whose net execution satisfies its timing constraints. Notice that

time-consistency is not a property of the interface specifications.

Ta(k)
a T tiTe
\ . A]_ : »
\ v 1
Y —=>
| I I
b : Tb(k+s) :
h time

Figure 3.3.3 Constraint rule for transitiamandb.

t, A

As discussed in Section 2.5.1, a constraint eyke [, t;, 4, ellon two transitions

of the neN = [P, T, F, M,, I'idefines a time windowy; with respect to thk-th occurrence

83

of the constraining transitiofy during which the K+€)-th occurrence of the constrained

transitiont; is allowed (refer to Figure 3.3.3).

Definition 3.3.6.- Given a complete graphl. =X C.[J a constraint rule

c; = M, t, 4y, elof Cy is said to besatisfiedif for every possible execution of the underly-

ing Petri neN, of 2. = [N, Y, ALJitis true that:

T OA. (Eg. 3.3.1)

t B Tti (K |

j (k+¢)

for allk >0, wherert, “ is the time of tHeth occurrence of transitiapn Otherwisec; is

said to beviolated

Eq. 3.3.1 is called the constraint equation for constraintaul@he expression

T -1 denotes the time separation from kah occurrence of transitioh to the

t t

j(k+¢) i (k)

(k+€)-th occurrence of transitian(recall that can be either 0 or 1).

Definition 3.3.7.- A complete grapi¥. = [£;, C\.Uis said to be time-consistent if

every constraint rule; [J Cy is satisfied.

To compute the time separation of Eg. 3.3.1, we can unfoldTthstarting from
the initial marking, and then check that Eq. 3.3.1 applies. Notice that we have to do this for

an infinite number of occurrencas(, k > 0); moreover, because the occurrernges are
i (k)

not deterministic, we have to consider a possibly infinite ensemble of occurrgnces
i (k)

(refer to Section 2.3.4).

One point to note is that in general if there is no trivial constragnt4 constraint
with associated intervat-¢o, +c0)) between two transitions, they should have a common
ancestor, otherwise the constraint would not be satisfied because the time occurrence of

the transitions would be independent of one another and their time separation can be arbi-

84

Figure 3.3.4 Time separation between transiteoasdb with respect to a
common ancestor transition.
trarily large. Suppose for the moment that such a common ancestor exists (refer to

Figure 3.3.4). If the common ancestor is within finite reach, then one does not have to

check an infinite number of time separations.

In the following section we shall show that such a common ancestor does exist in

an unfolding of amoc sTG. Rather than findingtm and separately and then

tj (k+e¢)

computing Eq. 3.3.1 for each possille and , we could determine Eg. 3.3.1

i (k) j(k+¢)

with respect of the common ancestor.

Consider for example the time separatign;) — T4(1) In Figure 3.3.2, The com-
mon ancestor to botit ;) andb+ 4y is the root transition 0. Transiti@t ;) occurs at time
Ta+(1) = T4- Transitionb+y occurs when there are visible tokens at both edgasd with

T5, that is at[b+(1) = maX([4+T1, T5)' ThenTb+(1) - T§+(1) = maX([4+T1, T5) - T4.

We shall discuss more thoroughly our algebraic approach to computing Eq. 3.3.1

in Section 3.3.4. Notice that we still have to deal with an infinite number of occurrences.
In the following section we introduce a notable type of common ancestor, the cycle-invari-

ant fork transition, that can solve this problem.

85

3.3.3 Fork transitions

The satisfaction of timing constraints plays an important role in our approach. As men-
tioned in the previous section, the constraint equation must check that the constraint rule is
satisfied over all executions of the net, that is, fok&ll0. In this section we investigate
under which circumstances the constraint equation becomes independent of the occur-

rence indeX. First we formalize the concept of common ancestor of two transitions.

A common ancestor of two transitioasandb from which the left-hand side

expressior, -1
j(k+g)

b of the constraint equation (Eq. 3.3.1) can be computed is called a

fork transition

Definition 3.3.8.- Given the unfoldingQ, of anAoc di-graph, a transitiox is
called a fork transition of transitiong, andt,.. if in the partial ordex induced by the
unfolding,x <ty andx < tj.¢), and every line of containing eithet or tj,.¢) contains

alsox.

s,
o
/“ '
N

a---._A l

b

Figure 3.3.5 Fork transitianof transitionsa andb.

According to Section 3.3.1, a line is a region oflthelation generated by the pre-

cedence relation. Thus a line ok corresponds to a single path in gw di-graph. Con-

86

sider for example the di-graph shown in Figure 3.3.5. Transstiemot a fork transition

of a andb, because there are lines<o€ontaininga but nots (e.qg, line {a, u, g, Xy, X5}).
Transitionx, is a fork transition o andb. Notice that a fork transition may not be unique.

For examplex, is also a fork transition @ andb.

Lemma 3.3.2.-Every pair of transitions of an unfoldirfgy, have at least one fork

transition.

Proof.- From the construction d@, by Procedure 3.3.1, it is easy to see that the
root transition O precedes every transition. Also every path starts at transition 0, therefore

every line of< contains transition 0. L]

As mentioned in the previous section, we would like to compgute -t

j (k+¢) t

i (k)

with respect to a common ancestot;gf andt;.), rather than computing each possible

T, andrt, . As shown in Figure 3.3.5, not every ancestor is suitable. For instance,

t j(k+¢g)

i (k)
had transitiors in Figure 3.3.5 been chosen as an ancestor, then the effect of tramsition
on the firing ofa would have been ignored, as it would have been the effedrothe fir-

ing of b.

Thus a fork transition is a synchronization point, or time origin, from which the

time separatiort, - T, can be computed. From this point of view, it should be clear

j(k+¢g) i (k)
that the root transition O is a fork transition for every pair of transitions. However we are

interested in the fork transition closest to the transittggsandt;,). Furthermore, we

are interested in a fork transition that “moves” vijgh andt;).

Definition 3.3.9.-A pair of transitiond; andt; of a complete grap®#. = [X;, C\.U
has acycle-invariant fork transitionf in the unfoldingQy, of . there exist two integers,
andM, and a transitiorx.,), such thak,.,, is a fork transition of;;, andt;,., for all

k=M.

87

Definition 3.3.10.-Given a complete grapW,. = [X., Cy.Jand a constraint rule
c; = [, t;, 4, ebsuch that; O Cy, the ordered pait;(t) is said to be a pair of transitions

constrained by;, written as{ - t)c;.

Definition 3.3.11.-A complete grapi¥, = [£, C\.Uis said to be cycle-invariant if
every pair of transitionst;(t) of % such thatt{ - t)c;, wherec; U Cy., has a cycle-

invariant fork transition.

There must be a cycle-invariant fork transition for every constrained pair of transi-

tions, which must be checked according to the interface and semantic specifications.

Definition 3.3.12.-A pair of transitiong; , andt;. of an unfoldingQ, are said
to be repeatable if there exist an intelgeior which the probability density function of the

time separatiorr, -1, is invariant far= M.

j(k+e) i (k)

Lemma 3.3.3.-If a pair of constrained transitiong ¢ t)c; is repeatable, then

there is a finite procedure that can check if the constraintyusesatisfied.

Proof.- First check the constraint equation fyrfor all 0<k <M. According to
Definition 3.3.12, the left-hand side of the constraint equation;farinvariant fork > M,
so that it is sufficient to check the constraint equatiorkfoM to determine if the con-

straint is satisfied fok> M.]

It is clear from the previous presentation that it is desirable to find if two con-
strained transitions are repeatable. In the following section we shall show that a cycle-

invariant fork transition is a necessary condition for repeatability.

88

3.3.4 Computing constraint equations

In this section we give a procedure to express constraint equations in terms of the random

variables associated with the edges ofatbe di-graph.

aY
qu /\j

%uy/vf

Figure 3.3.6 Unfolding for transitiomsandb from their fork transition.

The characterization of a fork transitienof two transitionsa andb given by

Definition 3.3.8 makes it suitable to be considered as a time origin, because all the paths of
the unfolding of thesTG from the root transition O to eitharor b must pass through In

this section we try to compute the time separatignst,, fromx to a, andt,, — 1, from x

to b, in terms of the random variables associated with the edges (refer to Figure 3.3.6).

Becausex is a common reference point for bathand b, then the left-hand side of

Eq. 3.3.1 can be written as:
Tp—T,= (T, —T) — (T, - Ty (Eq. 3.3.2)

The computation of, - 1,, or 1, — 1, in term of the random variables associated
with the edges must obey the firing semanticsamb and oR causality (refer to

Section 2.4.1) that we reproduce below.

89

a b c a b c
T T

&l% Ty L 13
d d

Figure 3.3.7 (aAND causality; (b)or causality.

If transitiond is AND-caused by transitiore b, andc (refer to Figure 3.3.7a), then
the occurrence time afis:

Tg=max,+ Ty, Ty + Ty, T+ 1) (Eq. 3.3.3)
wheret,, 1, andt; are the occurrence times of transitianb, andc respectively.

Similarly, if transition d is or-caused by transitions, b, and c (refer to

Figure 3.3.7b), then the occurrence timel a:
Tg=MiN(Ty+ Ty, Tp + Ty, To + Tg) (Eq. 3.3.4)
Finally if there is only one transition that caudgsaya, then:
=T+ 7 (Eq. 3.3.5)
and the causality type is not important.
A procedure to compute the time separation,tgayt,, is as follows:

Procedure 3.3.2.-

1. Expandrt, according to the causality type of transit@nby using Eq. 3.3.3,
Eq. 3.3.4, or Eq. 3.3.5.

90

2. Recursively expand the occurrence times of transitions that appear in the

expression for t, until the fork transition is reached.

At the end of the procedure, the expressiortfocontains min/max/linear terms
on the random variables andt,. Moreover, each linear term that contaigss of the

formt, + ... +7,.

Once Procedure 3.3.2 is applied to find an expressior, for terms oft; andt,,
the expression for the time separatiyr 1, can be computed from Eg. 3.3.2, where

T, T, andt, - T, are given by the expressions producedtfaandt, by Procedure 3.3.2

in which the terms,, corresponding to the reference point, have been removed.

For example, consider the di-graph shown in Figure 3.3.6. The expressignsfor
min(t, + Tg, Ts + T7), Which is expanded into mmy+ T3+ Tg, Ty + T4 + T7), and finally
into mMin(, + 1, + 13+ 15, T, + T, + T, + T7). Similarly the final expression for, is

Ty + T+ Max@y + Ty + Tg, Ty + 15 + Tg). Then,
Tp—Ta=Tr +Tygt Max{, + Tg, Ts + Tg) —MIN(T; + T3+ 75, T, + T, +77) (EQ. 3.3.6)

In Chapter 4 we shall give a procedure to obtain the probability density function of

Eqg. 3.3.2. Now we can prove the following lemma.

Lemma 3.3.4.-If a pair of transitions; andt; of a complete grapW. = [X;, C\.U

has a cycle invariant fork transition theandt, are repeatable.

Proof.- Consider transition andt;. By Definition 3.3.9, transitionty,y andt;,..
of the unfoldingQ, have a transition,_,, for eachk = M (refer to Figure 3.3.8). We can
find equations for the time separatiaqg) = Tyk-x), fromX) 10 tigy, aNAT ey = Tun)
from Xy.) tO tjuse) Using Procedure 3.3.2. These two time separations are invariant for

k=M, because by construction of the unfoldi2g from theAaoc di-graphQ (refer to

91

X(k-1)

tig tiokre)

Figure 3.3.8 Fork transition fé&r= M.

Procedure 3.3.1) the same sub-graph must existXgoR to t;,) andt;,.). Thus a cycle-

invariant fork transition is a synchronization point for both transitiggeindt;y.). Then

(t, -t)-(y -1,) (Eq. 3.3.7)

t i (k+€) X (k=2 i (k) X (k=2

j(k+¢) ti (k)

applies for allk = M. Eqg. 3.3.7 implies that the probability density function of the time

separatior . — Ty iS invariant fokk > M. Therefore; andt; are repeatable. []

The existence of a cycle-invariant fork transition is only a sufficient condition.

That means that a pair of transitions without a cycle-invariant fork transition may be
repeatable. This subject has been studied in the literatufé](and [67]). One example

is thesTG shown in Figure 3.3.9. It can be shown that for any pair of transitions there is no
cycle-invariant fork transition. Such type of nets may exhibit repeatable behavior, however
they may also exhibit non-repeatable periodic behavior with arbitrarily long transients by
just changing the delays, and thus they are difficult to analyze. In the interface specifica-
tion of components that we have studied, we have never found this type of net. We conjec-
ture that the reason is that their behavior is time-dependent, that is, by changing the timing
parameters, it is possible for the same system to exhibit radically different behaviors,

something that is not desirable in a protocol.

92

Figure 3.3.9 ArsTG whose transitions do not have a cycle-invariant fork
transition.

So far we have assumed that a (cycle-invariant) fork transition has been found. In
the following section we present an algorithm that can find a fork transition, if one exists,

of two transitions in a finite unfolding of axoC STG.

3.3.5 Procedure to find fork transitions

The procedure that is discussed in this section finds a fork transition of two trartgj§ions
andt;.) of a finite unfolding of amoc sTG, if one exists, otherwise flags that no fork

transition could be found. The finite unfolding is a finite graQp; produced by

Procedure 3.3.1 by expanding t&c sTG until transitiong;,y andtj.) are added tQy,
for ak =M.

The fork transition procedure requires that the unfol@ggbe sorted in topolog-

ical order. A topological ordering or sort of an acyclic di-graph assigns a level to each

node of the graph.

A di-graph can be represented as a @a# [V, E[) whereV is a set of nodes and
E DOV xVis a set of edges. A nodef a directed graph is called a root node if there does
not exist a nodé such thatlg, a) is an edge of the graph. The in-degree of nodethe

93

number of edgesy|, b) of the graph. The topological level of a na@eg V in G is com-
puted as follows: the root node is assigned to level O; then recursivglysithe set
{3 | level ofg isi}, the nodes in sett | (3, by) U E anda; LI A} are assigned to levetl.

Notice that a topological level is defined only for acyclic di-graphs.

The following procedure computes the topological level of the nodes of a graph

G [73]. TheN =|V| nodes of5 are named 1, 2,., N. M = |E| is the number of edges.
Procedure 3.3.3.-Topological level of the nodes of an acyclic di-gr&ph [V, E[J

forj « 1toN,c[j] <« O
for each edgé, j) U E, c[j] — c[j] +1
Leve[O] — {j O V|c][j] =0}
k-0
repeat

L « Levelk],L' « O

for each node] L do

for each edge(j) do

c(j) ~c()-1
if c(j) =0thenL ~ L O {j}
k « k+1
Levelk] — L
untilL=0
returnLevel

The procedure first computes the in-degrgeof nodej. Level[0] is the set of root
nodes. The level variableis set to zero. Iteratively: sktis set taLeve[0] andL’ is set to
empty; the in-degrees of the nodes to which the nodesiie connected are decreased by
one; if the in-degree of a node becomes zero, the node is addethélevel variable is

increased by one; anabve[k] is set toL. The iterations continue untilis empty.

The Procedure 3.3.3 finds a topological soiGoh running time O{ + M) [73].

Consider for example theoc sTG shown in Figure 3.3.10. For the procedures
given in this section, the causality type and the time label of an edge are not important, and

thus they are ignored. Notice that n@de not connected to other nodes.

94

(\;tgf
|
j/

Figure 3.3.10 Ac signal transition graph.

A finite unfolding fork = 2, called 2-unfolding, of theoc sTG of Figure 3.3.10 is

shown in Figure 3.3.11. The corresponding topological sort is given in Table 3.3.1.
A topological sort has the following property:

Lemma 3.3.5.-Let < be the partial order induced by a topological sorted di-graph

G=LV, EUIf, fora, bV, a<bandais assigned to levé] andb is assigned to leve),

thenl, <,

Proof.- If a<b then there is a set of nodeg V| (&e), (e, &), ...,
(en, b) U E}. From the computation of topological level, &,(e) U E ande is assigned to

leveli theneg is assigned to level+ 1. A topological sort is only defined for acyclic di-

graphs, theh, <1, L]

95

e b

Figure 3.3.11 2-unfolding of trexG of Figure 3.3.10.

96

level nodes

0

a1y by
Caay %y Yy
e T

h)

o

1)

Jay b

42)

C2y A2y 92)
€2 T

he)

O] O Nl O O | W[N

=
o

=
=

i2)

Table 3.3.1. Topological sort of the 2-unfolding of Figure 3.3.11.

Given ak-unfolding of anaoc STG, represented by the di-gragh= [V, E[] where
V is the set of transitions arttlis the set of edges of the unfolding, the following proce-
dure finds a fork transition of a selected pair of transiteoaadb of G. The procedure is

an application of a best-first search, where the topological lev€saoé used as the cost

function [129].

Procedure 3.3.4.-Algorithm that finds a fork transition of a pair of transitions

a, b O E of an acyclic di-grapls = [V, EL)whereG has been topologically sorted.

OPEN « {a, b}

while [oPEN > 1 do
sortoPeENiIn descending order on the topological level
j « first(oPEN
OPEN — OPEN{j} OO {i | (i,)) O E}

end while

returnOPEN

97

The procedure first initializes sePEN to contain the transitions andb. Then
until the size obPENis less than two, it selects jahe highest element alPEN removes

j from oPEN and adds all the direct ancestor transitions@bPEN

At termination of Procedure 3.3.8PEN has either one or zero elements. We shall

show in Theorem 3.3.7 thaPEN actually has always one element, and that such element
is a fork transition. In the case kdunfoldings ofaoc STGS, the root transition 0 will be

returned instead if there is no cycle-invariant fork transition.

We need the following lemma to prove the correctness of Procedure 3.3.4.

Lemma 3.3.6.-If x andy are two distinct fork transitions of transitioasandb,

with topological level, andl, respectively, theh # |,

Proof.- We have to show that distinct fork transitionandy cannot have the same

level. Suppose they have the same level; by the definition of fork transition (refer to
Definition 3.3.8) there exists a line containing sagnda but noty otherwise that would

mean by Lemma 3.3.5 thigt# |; this is a violation of Definition 3.3.8 which requires that

every line containin@ also containg. Then ifx andy are distinct eithex<y ory <x. []
The following theorem proves the correctness of Procedure 3.3.4.

Theorem 3.3.7.-When applied to &-unfolding of anaoc sTG, Procedure 3.3.4

terminates with a fork transition of transiticmsndb or the root transition O.

Proof.- Suppose that Procedure 3.3.4 does not terminate; that implies that transi-
tions are continuously being addeddeeN because the k-unfolding has a finite set of
transitions, the only way of continuously adding transitionsHEN is to add transitions
previously removed; however when a transition is removed, it has the highest topological
level in oPEN that implies that none of the transitions leftdreN is preceded by the

removed transition; then it is not possible to add a removed transition agaREND

98

which is a contradiction, therefore Procedure 3.3.4 terminates. When Procedure 3.3.4 ter-
minates the size adPENIis either 0 or 1. Suppose it is O, then the sizer&N changed

from 2 or greater to O in one iteration of the while loop; howewanN is decreased only

by removing one element, firs®EN), which is a contradiction. Therefore when

Procedure 3.3.4 terminate®EN has size 1. Now suppose that the unique elemeft

oPENwhen Procedure 3.3.4 terminates is not a fork transition; by Lemma 3.3.2 one knows

that there is at least one fork transition, let usx#ile closest fork transition andb.
Firstly suppose that >y, then by Lemma 3.3.6 the topological levelxaé greater than
the topological level of; but oPENis sorted in descending order so tkatould be in
front of y; furthermorex would be the only transition at topological leigbtherwise there
would be a line containing either or b but notx thus violating Definition 3.3.8; then
Procedure 3.3.4 would have returnedhich is a contradiction, thea<y. Secondly con-

sider the case that<y (note that by both Lemma 3.3.6 and the definition of fork transi-
tion, if x andy are distinct, they cannot have the same topological order); note that then

there must exist a path from to eithera or b that does not includg (refer to

Figure 3.3.12); without loss of generality, let us say that it is a pathxrzna given by

X...VW...a; let us choose& andw such that their topological levdlsandl,, respectively
arel, <l,<l,, wherel, is the topological level of; such an assignment always exist,

because there is also a path.y...a, and together with patk...v w...a imply the fol-

lowing relations between the topological levels of the transitions on eacH,path< |,

andl, <I, <l <ly becausd, <, w must have been ioPeEN before the termination of

Procedure 3.3.4. But then when the direct ancestawsnadre added toPEN v must have

been added toPeEN and becausg <1y, v cannot be removed fromPEN beforey, which is

a contradiction. Thereforgmust be a fork transition. Finally Lemma 3.3.2 states that the

root transition O is a fork transition for every pair of transitions, then if the only fork tran-

sition of transitions andb is 0, Procedure 3.3.4 returns {0}. L]

99

X

Lo

Yz

Figure 3.3.12 Construction for Theorem 3.3.7.

/<

Before we can determine the time complexity of Procedure 3.3.4, we have to intro-

duce the counting sort procedure adapted from [33]. The inputs of counting sort is a posi-
tive integerk, and a matrixA that containsA| (possibly repeated) integers in the range
[0, M] to be sorted. The result of counting sort is a mdrof the same size aswhich

contains the elements Afsorted in descending order.
Procedure 3.3.5.-Counting sort

fori « OtoM,
cli] <0
forj « 1t0 A,
c[A[]l — c[A[]] +1
fori « M-=1to O,
c[i] « c[i+1] + [i]
forj « 1t0 A,
BIC[A[] ~ Al
c[A[]l — c[A[]l -1

Procedure 3.3.5 uses a counting array of Mzé to store inc[j] the number of
integers inA which are greater than or equal to integerhe first for loop initialize<.
The second for loop counts the number of times integppears irA. The third for loop

places inc[j] the number of integers ik which are greater than or equal to intggdihe
last for loop places the sorted integersfah B. Notice that multiple occurrences of an

integerj are allowed iPA. The running time of counting sort is 8|} M) [33]. We are

100

going to use counting sort to sorENIn topological descending order; thiens the max-
imum topological level of &unfolding, and bottM and A| are OY]), whereV is the set

of transitions of thé&-unfolding. Therefore counting sort has a running tim&/|P{p sort

OPENIn Procedure 3.3.5.
The following lemma determines the running time of Procedure 3.3.4.
Lemma 3.3.8.-Procedure 3.3.4 has a running time\(}|

Proof.- The operations inside the while loop of Procedure 3.3.4 have the following
running times: We use counting sort to implement the sort operation and thus the sort
operation has a running time of @j| Selecting the first element oPEN can be done in
O(1). Removing from oPENand adding the direct ancestorg ¢d OPEN can be done in
O(1) + O(V]), because the number of direct ancestors of a transition\§.Ahus the
running time of one iteration of the while loop is\@)| The while operation can be exe-

cuted O(Y|) times, because a transition can be added only oroeetg and when it is

removed fronDPEN it cannot be added w@PENagain. L]

Now we study under which conditions the fork transition returned by

Procedure 3.3.4 is a cycle-invariant fork transition.

Definition 3.3.13.-An AoC STG Z = [, Y, Alis calledsimpleif every transition of

the net is associated either with a distinct signal transatiohA(Y) or the silent transition

€, whereA(Y) is the alphabet of (refer to Section 2.3.3).

Theorem 3.3.9.4f Procedure 3.3.4 terminates with a fork transition different from

the root transition 0 when applied to find the fork transition of transiagnandby,.) of

a (k+€)-unfolding of a simpleoc STG, then the fork transition is cycle-invariant.

Proof.- Let us callxy,) the fork transition ofy,y andby.,, that is different from

the root transition 0. Letpathgxy.) &) be the set of all transition paths

101

XAy -+ Y(ka1) ZkA2) - 8y from Xy 10 3y, and lepath (X, aky) U pathgX .y, a)-
Similarly let pathgXc»), Pi+e)) be the set of all paths frorg, to bye). For each path
path(Xa)), there is a (possibly not simple [58]) non-indexed path
path(x,a) =X ...y z... ain theaoc STG. Now consider thekfe+1)-unfolding, which is
constructed from thek¢e)-unfolding by addingne cycleof the simpleaoc sTG (i.e., one

set of transitions and edges; notice that the signal transitions are not repeated). Consider
first ay.qy; construct a pathpath(Xy+1) &1y By incrementing the indicek of
path(Xu-ay a) by one. Pattpath (X x+1) k1)) Must appear in thekte+1)-unfolding
because its corresponding non-indexed pathy z... ais a path of thaoc sTG. Simi-
larly construcpathgXg+1), Bse+1)) from pathgXcyy, Bse))- Moreoverx., .1y must be a
fork transition fora, 1y andbye.1). SUPPOSE.y41y IS NOt a fork transition ody,qy and
Dise+1) then there is a line containirag,,y or Bye4q) Ut NOtX) 41y but that would

imply that there is a line containirg or by, but notx,.,), which is a contradiction. If

Xa+1) IS @ fork transition then it is a cycle-invariant fork transition. L]

Theorem 3.3.9 suggests a simple procedure to find a fork transition. For a con-
straint rule c; =M, t,4;,e00 of a complete graphW, =[X, C\.J obtain the

(e+1)-unfolding, and apply Procedure 3.3.4 to find a fork transitidppandt; .. If the

root transition O is returned, then add one cycle to the unfolding, otherwise the returned
transition is the sought cycle-invariant fork transition. We have not found a tight upper-
bound on the number of cycles required to guarantee that a cycle-invariant fork transition
will be found. The number of transitions in thec STGis an upper-bound but we believe

it is not tight. A more likely candidate, we conjecture, is the size of the cuts of the unfold-
ing. A cut is a snapshot of the unfolding, and thus gives an indication of the degree of con-
currency. For instance all the cuts of a sequential process (a total ordering) have size 1, and
the cycle-invariant fork transition of two transitioasandb, is a if a<b, b otherwise,

which can be found in the<{1)-unfolding.

102

3.4 Summary

In this chapter we introduced the interface design problem, that arises when two compo-
nents, that are to be interconnected to construct a system, require interface logic to be able

communicate. The case in which protocol conversion is necessary is particularly interest-

ing. Protocols can be described by interface specifications (refer to Chapter 2) which

describe the internal operation and the desired environment of a component.

We have shown that one can view the interface design as the “merging” of two
interface specifications with additional delay edges that generate the input signal transi-
tions (the environment) of the interface specifications. This merged graph is called a com-
plete graph. A complete graph consists of a live net, and a set of constraint rules. We
developed the concept of time-consistency that checks if the set of constraints rules is sat-

isfied by all possible executions of a complete graph.

Typically there is an infinite number of possible executions of a net (we are dealing
with dense, or continuous, time). Thus it is important to find procedures that can deter-
mine if a complete graph is time-consistent. The concept of a cycle-invariant fork transi-
tion established that it is possible to check all the net executions by analyzing a finite
unfolding of the net. Not all nets have cycle-invariant fork transitions; however we have
found that all the interface specifications that we have studied possess that property. More-
over, nets that do not have cycle-invariant fork transitions may exhibit fundamentally dif-

ferent behavior if the time (delay) parameters of the net are slightly modified.

In the next chapter we shall present our probabilistic interface timing verification
procedure which is heavily founded on the concepts developed in this and the previous

chapters.

Chapter 4

Probabilistic interface timing verification

4.1 Introduction

Once the implementation of a digital system has been completed, one would like to check
that the system operates correctly. One approach is to check one instance of the system,
against a suite of tests which are intended to detect any malfunctioning. This approach suf-
fers two major drawbacks. Firstly the chosen instance of the system may happen not to be
representative of the production run. Secondly the suite of tests, unless exhaustive, may
fail to detect a problem. If a problem eluded the checking procedure, eventually it would
show up later on at a time when it would be very expensive to fix. Thus there is a market

force that is driving system checking towards formal techniques.

Formal verification attempts to prove mathematically that the implementations of a
system are going to function correctly under all circumstances. In this sense, it is equiva-
lent to exhaustive system checking. It is no surprise that usually formal verification is
computationally very expensive. And until recently [19, 31, 83], its application was lim-
ited to toy systems. However due to the potential benefits, and the development of efficient
formal verification techniques, industry has been more receptive and is adopting formal

verification techniques, at least in parallel with standard checking, in their design method-

ology.

104

The aim of this dissertation is to develop formal timing verification techniques to
certify that a system composed of sub-components and interface logic satisfies timing con-
straints given in the interface specifications of the components. In the previous chapter we
have presented a formal representation of the interface design, called a complete graph,
that is amenable to formal timing verification. In this chapter we shall present a procedure
that relies on probability theory which can be used to certify that an ensemble of instantia-

tions represented by the complete graph satisfies all the timing constraints.

An important remark is that our approach uses a probabilistic, rather than a statisti-

cal, analysis, as differentiated in [100]. Statistical techniques are essentially Monte Carlo
methods that are based on statistical sampling, and thus are close in spirit to simulation. A
probabilistic technique propagates the probability measure directly through the system.
Clearly a probabilistic approach is preferable, although sometimes it is not feasible due to
the complexity of the problem. The main contribution of this chapter is the development of
a probabilistic technique to compute time separation between transitions that propagate

the probability density functions of the delays exactly.

4.2 Verification problem formulation

A complete graph is a formal description of a system composed of two components and

interface logic (refer to Section 3.2.2). There are two parts of that description: the specifi-
cation of the operation of the components that make up the system, and the description of
the timing constraints that each component imposes on its environment for proper opera-

tion.

In the previous chapter we characterized time-consistency of a complete graph as a
constraint satisfaction problem. A complete graph is time-consistent if and only if the set
of all the timing constraints are satisfied by every possible execution of the net describing

the operation of the system. We pointed out the difficulty involved in checking time-con-

105
sistency, namely the infinite number of possible executions of the net. To avoid that prob-
lem we identified a sub-class of nets with a remarkable property whose behavior is

repeatable(refer to Definition 3.3.12). Moreover, the existence of a cycle-invariant fork
transition for each constraint, being a structural property, implies that it can be easily veri-
fied.

In this section we show that for repeatable nets there is a simple procedure to solve
the interface timing verification problem that we define below.

Definition 4.2.1.- Given a complete grapW. = [X., C\.[Jwith associated timed
STG 2. = N, Y., A.Jand set of constraint rul€, the interface timing verification prob-
lem is the problem of determining if every constraint jlél C,. is satisfied by every

execution of thesTG.

In other words, the goal of the interface timing verification problem is to find if a

complete graph is time-consistent. From our discussion of Chapter 3, it is clear that the
interface timing verification problem for the general case may involve checking an infinite
number of executions. Fortunately, as mentioned above, for repeatable nets it is possible

check if a constraint is satisfied in a finite number of steps.

Recall that a constraint rutg = [, t;, A

i» ELdefines a time windou; with respect

to thek-th occurrence of the constraining transitiosuring which thek+e€)-th occurrence
of the constrained transitidnis allowed. The constraint rule is satisfied if for all occur-

rence indice& > 0, the following constraint equation foyis true:
Tiee) ~ Tty L Dy (Eq. 4.2.1)

If a net is repeatable, then the time separatign,) — Ty is invariant fork = M.
Thus it is possible to check Eg. 4.2.1 foe M by checking Eq. 4.2.1 fok=M. In
Chapter 3, we identified a structural condition on the net, the presencgdéanvariant

fork transition (refer to Definition 3.3.9), that guarantees repeatability. Furthermore, as

106

discussed in Section 3.3.4, one can express the left-hand side of Eq. 4.2.1 with respect to a

cycle-invariant fork transitiow as:
Thjk+e)ox ~ Tti(k)ox 04 (Eq. 4.2.2)

where each ofj.e)ox aNdT4se)0x Are €xpressions containing linear/min/max terms on a

set of random variables that defines the timing behavior of the net.

The set of random variables is characterized by a joint probability density function
(or pdf). Our goal is to propagate the probability information of the random variables to

the constraint equation. Let us denote the constraint equatiB =y, \.¢) — Tigm)- It is
clear that; is a random variable. If the pdf gfis known, then the constraint rule is satis-

fied if and only if all the values dfj lie within 4;.

X A2)

2
a
‘\A A Z
\ »
«€ | d
b Z=Tp—- T4

Figure 4.2.1 Checking #=T1,, — 1, satisfies the constraifkt

Consider for example Figure 4.2.1. There is a constraint rule from transitemn

transitionb. Let us define = 1, — 1,. If the pdf ofz, f(2), is given by the shaded area, and

the intervalA of the constraint “covers” the pdf, then the constraint is satisfied because all
the values that the time separataan take are within the allowed time windAwlLet us

formalize these ideas.

Definition 4.2.2.- Given a constraint rule; = [i, t, A, eLJof a complete graph
W, = [Z, Cycthek-th time separatiorfrom; tot; is the random variabtg (k) = Tyje) =

Ty for a positive integek.

107

Definition 4.2.3.- Given a constraint rule; = [i, t, A, eLof a complete graph

W, = [, CycLIthecover of the #h time separatiomverd;, denoted by;;(K), is given by:

1500 = [T, 40 @(K)dz; (K (Eq. 4.2.3)

A,

wheref,) (zij(k)) is the probability density function of #éh time separation.
ij

The cover of the time separation is the area of the pdf of the time separation that is

within the intervald,.

To understand the significance of a cover, let us briefly introduce pdf’s. The inter-
pretation of a probability density function is as follows: kdte a random variable with

pdf given byf,(x). For a sufficiently smalhx,
f(Xg) Ax = Prob{xy < X <Xy + Ax} (Eq. 4.2.4)

The equality is approached&s — 0. Thus the probability thattakes a value in a

small interval is proportional tf(x). Clearly if the Probability is zero, thég(x) is also

zero. Thus the cover of the time separation is the probability that the time separation lies

within the windowdy;. Thus ifl;;(k) =1 it is certain that the constraint is satisfied.

Without the existence of a cycle-invariant fork transition one would have to check

an infinite number of covers.

Definition 4.2.4.- Given a constraint rule; = [, t, 4;, eJof a complete graph
W, =[x, CycLJand a cycle-invariant fork transitiontpfndt, for k> M, theinvariant time

separationfrom¢; tot; is the random variablg = Tjn.e) ~ Tii(n), for anyn = M.

Definition 4.2.5.- Given a constraint rule; = i, t, 4;, eLJof a complete graph

W, = [, CyUof transitionst; andt;, thecover of the invariant time separati@ver4;,

108

denoted by, is the integral of the probability density function of the invariant time sepa-

ration, denoted by, (z;) , over the constraint intef\al
z;\] @

|ij = J-fzij(zij)dzij (Eq. 4.2.5)

Ay

Theorem 4.2.1.-Given a constraint rule; = [, t,, A;, eJof a complete graph
W, =[x, CycLland an invariant fork transition pfandt; for k> M, the constraint equation

is satisfied fok = M if and only if the cover of the invariant time separatjprs 1.

Proof.- If I = 1, then all the values @ are within4;. It is easy to show that the

converse is also true.]

The constraint satisfaction procedure that solves the interface timing verification

problem can be stated as follows:

Procedure 4.2.1.-Given a cycle-invariant complete graph, for every constraint

rule ¢; O Cy do:
1. Compute the cover of theth time separatiohy (k) fork=1, 2,..., M-1.
2. Compute the cover of the invariant time separdfjon
3. The complete graph is time-consistent if and only if,
;) =1 (Eq. 4.2.6)
fork=1, 2,...,M-1, and

. =1 (Eq. 4.2.7)

Theorem 4.2.2.Procedure 4.2.1 solves the interface timing verification problem.

109

Proof.- In a cycle-invariant complete graph there is a cycle-invariant fork transition
for every pair of transitions involved in a constraint rule (refer to Definition 3.3.11). Then

for each constraint rule there is an invariant time separation. According to Theorem 4.2.1,
checking the cover of the invariant time separatjoguarantees that the constraint rule is
satisfied fork > M. Using a similar argument, checking the cover ofkttie time separa-

tion (k) fork=1, 2,..., M-1, guarantees that the constraint rule is satisfietd fot, 2,

oy M1 []

Thus Procedure 4.2.2 checks a finite number of covers to find if a cycle-invariant
complete graph is time-consistent.

The rest of the chapter presents the techniques that we have developed to deter-
mine the pdf’s of the invariant time separation. We provide several examples to illustrate
our ideas. The chapter concludes with a discussion of a reliability analysis for the case that
some of the covers are less than 1.

4.3 Probability distribution of functions of random

variables

The time of occurrence of each transition in a complete graph is a random variable, as it is
the time separation between two transitions. In this section we state some results from

probability theory [105] that will be needed to compute the time separation between tran-

sitions.

110

4.3.1 One function of two random variables

Given two random variablesandy and a scalar functiog(a, b) of two real variablea
andb, the random variable= g(x, y) is formed. The probability density function o€an
be expressed in terms of the joint probability density fundtigr, y) of the random vari-

ablesx andy, and the functiog, as discussed below.

Let the random variable be a given valu&. Denote byD, the region of theb

plane such thai(a, b) < Z, Then:
{z=Zy={axy) oY) =Z}={(xy) | &k y) ODz (Eq. 4.3.1)

The probability that the poiniX(Y) of the pair of random variableg, §) is in a
regionD, of theab plane is given by the following integral:

Prob{ (xy) OD} = UDZny(x, y)dx dy (Eq. 4.3.2)

The cumulative probability distribution function ofs given by:
F,(2Z) = Prob{z< Z} = Prob{(x, y) Ol D} (Eq. 4.3.3)

Thus, to determin€&,(z) one has to find the regidh, and evaluate the integral in

Eq. 4.3.2.

The probability density function can be determined similarly. ABt be the

region of theab plane such that < g(a, b) <Z +dZ Then,

{Z<z<Z+dZ ={(xYy) | & y) UOAD;} (Eq. 4.3.4)

f,(Z)dz= Prob{ z< xz+dz = UAszxy(X’ y) dx dy (Eq. 4.3.5)

111

4.3.2 Statistics of linear/max/min functions

In Section 3.3.4 we have shown that the left-hand side of the constraint equation
(Eg. 4.2.1) when computed with respect to the fork transition of transttigrendt; .

IS an expression on a subset of the random variables containing min, max and linear terms

only. Thus, the constraint equation is an expression of theHprnE,, where each of the

E; is recursively defined as follows BnF notation:

E « nil|
T |
E+1|
maxE, 1;) |
min(E, T;)

wherenil means thaE is empty. This occurs if eithéy, or tj,. coincide with the fork
transition (only one of them could be the fork transition, assuming;fhandt;,., are

distinct).

In this section we summarize the application of Eqgs. 4.2.3 and 4.2.6 to the special

functions that can appear in a constraint equation derived from a fork transition.
Let x andy be two random variables with joint piif(x, y).
1. z=x+y

The regionD, of theab plane such thad+ b < Z, and the regio&D,, given by

Z<a+b<Z+dzZare shown in Figure 4.3.1.

After integrating over the corresponding region, Egs. 4.2.3 and 4.2.6 can be written

as:

0 z-Yy
F2 =] [fyxydxdy (Eq. 4.3.6)

112

a+b=z+dz

a+b=z

Figure 4.3.1 Probability regions foE x +.
f(2 = J'_mfx))(z— y, y)dy (Eq. 4.3.7)

If x andy are independent random variables,, f,(x,y)="f(x)&(y), then

Eq. 4.3.7 becomes the convolution of the individual pdf’s:

f(2 = J'_mfx(z—y)fy(y)dy (Eq. 4.3.8)

2. Z=y—-X

The regionD, of theab plane such thab —a< Z, and the regio&D,, given by

Z<b-a<Z+dZare shown in Figure 4.3.2.

Figure 4.3.2 Probability regions forE x - .

113

After integrating over the corresponding region, Egs. 4.2.3 and 4.2.6 can be written

as.
F(9 = fm fz+xfx¢x, y)dy dx (Eq. 4.3.9)
f(2 = jm % X+ (Eq. 4.3.10)

If x andy are independent random variables then Eq. 4.3.10 becomes the cross-cor-

relation of the individual pdf’s:

f(2 = I:, FOOf (x + 2 dx (Eq. 4.3.11)

3. z=max(x,Yy)

The regiorD, of theab plane such that mag(b) < Z, and the regioAD,, given by

Z < max@, b) <Z+ dZare shown in Figure 4.3.3.

AD
max@, b) =z dz ‘

max@, b) =z +dz

Figure 4.3.3 Probability regions foe= max(, y).
After integrating over th®,, Eq. 4.2.3 can be written as:

F(2) = F(z 2 (Eq. 4.3.12)

114

andf(2) is obtained after differentiating Eq. 4.3.12:
d
f(2 = d_zFXV(Z’ 2 (Eq. 4.3.13)

where

y X
Fo W = [[f,[cB) dadp (Eq. 4.3.14)

is the cumulative joint distribution function rfndy.
If x andy are independent random variables, Egs. 4.3.13 becomes:
(2 = 1(DF (D +1,DF D (Eq. 4.3.15)
4. z=min(x,Yy)

The regiorD, of theab plane such that mia(b) < Z, and the regioAD,, given by

Z<min(a, b) <Z+ dZare shown in Figure 4.3.4.

min(a, b) =z

min(a, b) =z +dz

N

Figure 4.3.4 Probability regions forF min(x, y).

After integrating over th®,, Eq. 4.2.3 can be written as:

115

F(9 = F(2+F/(2-F,[(z 2 (Eq. 4.3.16)

andf(2) is obtained after differentiating Eq. 4.3.16:

f(2 = diZ(Fx(z) +F(2) —Fy(z 2) (Eq. 4.3.17)

If x andy are independent random variablg&) is commonly expressed in terms

of the reliability functiorR(x) defined as:
R(X) = Probfx = X} =1 -F(X) (Eq. 4.3.18)
Then Eq. 4.3.17 becomes:
f(2 = f(2 Fg,(z) + fy(z) R(2 (Eqg. 4.3.19)

Notice that the expressions for themax, and min operators are commutative. It is

easy to show that they are also associative.

4.3.3 Point conditional probability

The results of the previous section can be used directly to compute the time separations

Tiere)ox aNd Tiigox With respect to a fork transition However to COMputey.eyox —

Tigoox WE have to address the issue of the so-called reconvergence fan-out [28]. The effect

of reconvergence fan-out is due to the presence of common random variables in expres-
SIONSTyj4e)0x ANAT4i0x- IN @ COrrect analysis, the value used for a common random vari-
able that appears in both expressions should be the same. As we shall discuss below, even
if the delay random variables are independent, the topology of a net may introduce corre-

lation.

116

N YN

T T,
3 T e Ty
1Y/ Ig
A

Figure 4.3.5 Two partial unfoldings @pndb independent; (kg andb
correlated.

Consider for example the two unfoldings shown in Figure 4.3.5. For the sake of
clarity, let us assume that the random variablessociated to the edges of the unfoldings
are independent. To check constr@inbne has to compute the time separation from tran-

sition a to transitionb with respect to the fork transition given by:

Thox ~ Taox U A (Eq. 4.3.20)

where both expressiong,, andty,, are functions of thg.

For the unfolding shown in Figure 4.3.5a, the time separagQn- T,y IS Simply

z={1,+ 14 — {14 + 13}. Application of Egs. 4.3.8 and 4.3.11 obtains the pd& &fom
the pdf’s of the random variablegto 1,. An interesting property of this unfolding is that

Thox = { T + T4} @and 14, = { T4 + T3} @re two independent random variables.

For the unfolding shown in Figure 4.3.5b, the time separa&mpy, — T4ox IS

given by the following expression:
Z=max(y, + Ty, Tg + Teyy) — Max(y + Tz, T7 + Tgpy) (Eq. 4.3.21)

wheretg,, = max(4 + g, T, + Tg) is the occurrence time of transitienvith respect to the

fork transitionx.

117

Notice thatrt,, appears in both max terms. It is clear that to compidea partic-

ular set of values of the random variabigne has to make sure that the same value for

Ty IS USed in both max terms. This implies that the two max terms in Eq. 4.3.21 are not
independent of one another, even if thare independent. Thus common random vari-

ablest; in expressions,, andty,, introduce correlation in random varialle

To take into account the dependency introduced by common terms we use point
conditional probability [106]. Lek andy be two vectors of random variablgsand let
f(X,y) be a function ok andy. The point conditional probability df (x,y) provided

thatx = X, writtenf

yx(X: ¥), is given by the following equation:

fey (X, Y)
Uw“ﬁ)zﬁjﬁ_ (Eq. 4.3.22)

if £ (x) # 0.

Consider again the time separation Ty, — Toox 10 Simplify the notation in the

following paragraphs, let us denads= 1,4, andb=T1,,,. To computez, one can use

Eqg. 4.3.10, which necessitates the joint probability distributjga, b).

To determine the joint pdf,(a, b) we use the following procedure based on point
conditional probability (Eq. 4.3.22). Let us denotexgyandx, two vectors of random
variables formed from the set of random varialsjesn which random variablesandb
respectively depend. The dependency of random varialaiedb on vectors¢, andx, can
be explicitly written as = a(x,), andb = b(x,). Let us denote by, the vector containing

all the variables common to both andx,,

118

The probability density functiofy,,.(a, b, X,) describes the joint pdf af andb
for a given value of. For a fixedk,, f,, (X X,) andfy, ., (xp, X,) are independent of one

another. Thus one can writg, ,(a, b, x,) as:
fab|xn(a’ b’ Xm) = fa|xn(a’ Xm) 1:b|xr1(b’ Xm) (Eq 4-3-23)
In Section 4.5 we shall show that it is straightforward to comgytéx,, x,) and

foxn (Xpr X,.). Finally, the joint pdf of andb is given by:

f@ b = I_m...f_mfabxﬁ(b, a, X)dx_ (Eq. 4.3.24)

where (using Eq. 4.3.22):
fabxﬁ(a, bx.) = fablxﬁ(a, b, xn)fxﬁ(xn) (Eqg. 4.3.25)

Thus point conditional probability allows us to take into account the reconvergence
fan-out due to common delays in the occurrence times of transitiangb with respect

to fork transitiorx. Once Eg. 4.3.24 has been obtained, the application of Eq. 4.3.10 yields
the desired pdf of the time separation frano b.

4.4 Reliability analysis

In this section we take a look at the case when a complete graph is not time-consistent. As

we shall discuss, it is for this case that our procedure can provide invaluable insight.

In Section 4.2 we introduced the cover of the time separation, which computes for
a constraint; = [, t;, A;, e[the area under the pdf of the time separation between the tran-
sitions over the intervad;. Our interface timing verification procedure checks that the

cover of the time separation is 1, that means that every possible value that the time separa-

119

tion can take lies within the constraint winddy:. In this section we extend the yes/no

answer produced by Procedure 4.2.1 so that a designer can have, in case that the complete

graph is not time-consistent, a measure of the deviation from time-consistency.

Definition 4.4.1.-The set of reliability factors of a constraint rale= [, t;, A, eUJ

of a cycle-invariant complete grap¥, = (X, C\.Llis the set of covers of the time separa-

tion {I;(k) |k=1, 2,..., M=1} O {I;}.

A2

f2(2

(R -

a < pA—> b

Figure 4.4.1 Reliability factor.

In essence, a cover of a time separation associated to a constraint represents the

probability that the constraint is satisfied by the net. The verification procedure of
Section 4.2 requires that the constraint be satisfied 100%. By keeping the values of the
covers, rather than just checking if they are 1 or not, it is possible to qualify a design. Con-
sider for example two possible pdf’s of a time separation for the same constraint shown in
Figure 4.4.1. Neither of the pdf’s satisfy the constraint. However, the probabilify, {zat

would violate the constraint is significantly smaller than the probabilityfg(@ would

violate the constraint.

This is particularly important when the joint pdf that characterizes the set of delay
random variables describes an ensemble of components. The reliability factor would pro-

vide some indication about the reliability of a design. For instance, an estimation of the

120

number of finished boards that would be returned. Moreover,1thg Tnad are likely
approximations of the actual ranges such that, say 99.5% of the components show a delay

in that range.

The reliability factor of a constraint is actually a set of values. To determine a reli-
ability figure of a design, one may want to develop a strategy to combine the reliability
factors of all constraints of the complete graph into a single figure. A simple approach is to
use the minimum of the values of the reliability factor set to represent a constraint and then
choose the minimum of the constraints’ values to represent the design. However different
applications may require different strategies and we have preferred to leave this decision to

the designer.

4.5 Examples

In this section we look at some examples to illustrate our probabilistic timing interface
verification procedure. Our first example considers the case in which all the delays are
independent. A second example considers the case in which some delays are not indepen-
dent. Then we analyze a read interface design involvingHhec bspand arsRAM mem-

ory chip (the interface specifications of these two components, which contain correlation

data, were presented in Chapter 2). Finally we explore the relation between the traditional
interval representation of delays and our probabilistic representation by analyzing some

special cases.

4.5.1 Example with independent random variables

In this example we shall explore the effect of using different pdf's. We have chosen uni-

form and Gaussian functions as representative pdf's. For the sake of simplicity, the ran-

121

dom variables are assumed to be independent. In the following example we shall look into
the effect of correlation.

/\

A

)

Figure 4.5.1 Constraint satisfaction by a net unfolding.

84—’

Consider the net unfolding shown in Figure 4.5.1. The time separatiordftom
with respect to the fork transitiom is the random variablez=1,-1, wWhere

T, = maxt,, T, + Ty) + T, andty =T, + T5. The delays are assumed to be independent, and

their projections (refer to Section 2.5.4) can be described by the following intervalgs: for
[0, 90]; fort,, [0, 100]; and or;, T,, andts, [10, 20].

First we tackle the task of finding the joint pdf that characterizes the delays of the

unfolding. Because the delays are independent, the joint pdf has the following form:

fr1rom3uars(Te Tor T Ty, Ts) = f11(Ty) Fio(T2) Fra(Ta) fr4(T4) fis(Ts) (Eg. 4.5.1)

wheref;(t;) is the pdf of the independent random variakle

As mentioned in Section 2.5.4, the projection of a pdf describes an infinite number

of possible pdf’s. First let us assume that it is known that the pdf’s of4teee uniform.

That defines unequivocally the pdf’s given their projections. For example, the pdisof

shown in Figure 4.5.2.

The next step is to determine the pdf of the time separatiag,, — T4, fromdto

e with respect toa. The expressions for each of the terms involvedzirare

122

ftl(Tl)

0.011

v

Figure 4.5.2 Probability density functiég(t,) of ;.

Tena = Max(ty, 1o + 13) + T4 andty,, = T, + 1. The random variable, is common to both
terms, thus one must use point conditional probability as discussed in Section 4.3.3 to find
frd0a|r2(Td0a’ 1)) andfTeOaltz(TeOa, T,) to obtain the joint pdf fi,areoa(Taoa Teoa) FeQuUired in

Eq. 4.3.10 to computg(2). Figure 4.5.3 shows the intermediate step to find the condi-

tional pdf ofx given a fixedr, wherex = max1,, T, + 13).

b b 0.1 fave 0.1
0.011
—»
6 S 9% 5903 2 5 3
& 5 & 5 & 5
(@ (b) ()

Figure 4.5.3 Probability density functionfgf,(x, 1,),
X =maxT,, T, + T3), for: (&) 0< 1, < 70; (b) 70< 1, < 80; (c) 80< 1, < 100.

The resulting pdf ot is shown in Figure 4.5.4. The projectionfgf) is the inter-
val [0, 100] (not clearly shown in the plot due to resolution). Hence any constraint interval
A that includes [0, 100] is satisfied by the net unfolding.

Let us consider now the case in which the pdf’s oftflaee Gaussian distributions,
such that 99.7% of their values lie within the above intervals within three times the
standard deviatioa to each side of the mean. For example, the mean and standard devia-

tion of the Gaussian distribution correspondingt{oare 45 and 15 respectively. The

f.(2) wus

123

0.05 -

0.04 -

0.03 -

0.02 -

001+

Figure 4.5.4 Probability density distribution@f 14,5 — T4 Uniform

pdf’s.

resulting pdf ofz is shown in Figure 4.5.5. Notice the similarities of this pdf to the pdf

shown in Figure 4.5.4. This is due to the filtering effect of the operations performed on the

random variables.g., convolution, and correlation).

Figure 4.5.5

0.05F

0.04F

0.03F

0.0z

0.0

Probability density distributionzof 1, — T4 Gaussian
pdf’s.

124

The area undef,(2) within the interval [0, 100]i(e., F,(100)- F40)) is 0.997,

therefore a constraint inten@l= [0, 100] is satisfied by the unfolding in 99.7% of its exe-

cutions.

In both cases, for uniform and Gaussian pdf’s, it is clear that a tighter constraint
would be satisfied by the unfolding with a lower probability. To investigate the effect of
the reliability factorr on a constraint for the time-separation distribution shown in
Figure 4.5.5, consider the variable constraintd[Q,]. Figure 4.5.6 shows the plot of
r vs.d,,. Note the two main regions in the plot: for low values.gf, a variation ind,,
causes a noticeable change;irstarting fromd,,,,= 25, the slope asymptotically dimin-

ishes towards zero. Fdf,,,= 80,r = 1.

r(%) 120
100+
EInS

B0

4ok

0

Figure 4.5.6 Reliability figure

4.5.2 Example with correlated random variables

In our second example we investigate the impact of ignoring correlation data in the verifi-

cation procedure.

125

a
Tj Ty
b P1
~cC
13 + 1,
Ts
d -8

Figure 4.5.7 Partial unfolded graph with correlation between transtions
andc.

Consider for example the partial unfolded graph shown in Figure 4.5.7. Transition
d will occur as soon as the first bfor c occurs @R causality). Suppose the delays have
projections with the following lower/upper boundgandt, in [0,20]; 15 in [10,50];1, in
[0,60]; andts in [10,30]. Moreover, andt, are related by a correlation edgewhose
range is [-5,5]. Correlatiop, states that for all possible valuestofandt,, T, — 1, [I p,,
which can be written as 61, — 1, < 5. Note that non-causality is not implied py as
transitionsb andc always occur after transitiom The other delays are assumed to be
independent. Finally let us assume that the pdf’s are uniformly distributed so that we can
reconstruct a joint pdf for the delays from the given projections. The joint probability den-
sity functionf,,»(T4,T,) is shown in Figure 4.5.8. The joint pdf that characterizes the delays

of the unfolding is thus given by:

frarorsrars(Ty T2 T3 T Ts) = Fraea(Ta, Tp) Fi3(Ts) fra(T4) Fis(Ts) (Eg. 4.5.2)

15201

Figure 4.5.8 Joint probability density function of delayandt,.

126

To check constraimk one must find the time separation frero d, which is given

by the random variable = Ty,; — Teyg, Wherety,, = min (1,415, 1,+1,), andtg, =T, + T,

relative to the fork transitioa. Figure 4.5.9 shows the probability density functiom. of

f,(2)
0103

Figure 4.5.9 Probability density distributionzf 1, — T4,: CONtinuous
line, with correlation; dashed line, without correlation.

The bounds on the time separatiofiom d to e are [-45,30]. Therefore any con-
straintA such that [-45,30]1 A would be satisfied. A is not satisfied, the probability that
the constraint can be violated by the interface circuit can be determined by computing the
cover of the time separation. Suppose that[-30,30]; then =0.9703, that i& would be

violated in about 3% of the executions.

If correlationp, is not taken into consideration, it can be found that the bounds on

z are [-50,40] (refer to Figure 4.5.9) thus yielding pessimistic results.

As a side remark, we comment on the simpler problem of obtaining just the bounds
on the time separation of the events related by the constraint. One might think that it could
be possible to determine the constraint bounds by computing the time separation for every

combination of the extremed. min/max) values of the delays This in general does not

127

hold. For instance in the previous example the -45 bound occurs only in the following
cases:

1. 1,+1;21,+T1, andr,=55,1;=10.

2. T,+13<T1,+T1, andt, =5,1,=0,13=50,1,=10 ort, = 25,1, =5, 1, = 50,

15 = 10.

In general taking correlation into consideration tightens up the bounds on the time
separatiorz = Ty, — Ta- 10 See that consider the linear projections shown in 4.5.10. If the
random variables are independent the linear projection is given by the rectangular projec-
tion, indicating that the values that each r.v. can take does not depend on the values of the
other one. If they are correlated, this is described by the hexagonal shape, indicating that

there is some depedency between the values of the two r.v.

Figure 4.5.10 Two linear projections of pdf’'s of two random variables: independent
(dotted boundary) and correlated (gray area).

Because the projection for the case of independent r.v. properly contains the pro-
jection for the case of correlated r.v., the possible values for the time separatign —
T fOr the latter case is always a subset of the possible values for the time sepgaration

= Tga — Tea fOr the former case.

128

4.5.3 Memory read interface example

In our last example we shall examine a read interface design involwiagand arRAM

device. The interface specifications of these two components were covered in Chapter 2,
where it was shown that the operational part of the interface specification included time

correlation data,e., some of the delays were not independent.

Consider a high-performance system comprisingtyrc bspand some fast, no-
wait state,RAM. The DsSPs clock cycle is 25 nanoseconds. The designer of this system
would like to choose a ram chip that is not an overkill, because it will increase the cost of
the system, but at the same time she would like to certify that the system will not fail. Our
interface timing verification procedure is a tool that can help her in making the right
choices.

bsSP Interface SRAM
_ mill - n
ADDJ0:31] ADD[0:11]
N e
o
g b p E*
RD* [3>OT E
W* > W+
Ag;K %
DATJ[0:31] DAT[0:31]
l
| h |
CLK
Clock

Figure 4.5.11 Interface read design.

129

Figure 4.5.11 shows a block diagram (a structural view) of a system composed of a
DSP, ansRAM component and interface logic. The interface logic consists of a selector that
generates the enable signal of $fkewm, and of the generation of theksignal. Due to the
design requirements, tlaek signal is generated as soon as possible to avoid incurring wait

states.

<

Figure 4.5.12 Complete graph representing the interface read design.

DSP RAM

The complete graph describing the read cycle of this design is shown in

Figure 4.5.12. Notice that the complete graph provides a behavioral view of the design.
The complete graph contains the interface specifications for the read cyclepef tied

the sRAM. The semantic specification that defines a data transfer, given by the sequence
dat+ - dat+ - dat- - dat- -> datt, is already included in the interface specifications.

Finally there are some additional delay edges, shown as thick lines, which correspond to

130

the interface logic. For example the two deldysandd; represent the propagation delays
from the address lines and the address strobe sujmalthe DSk, through the selection

block in the interface block, to the enable signial thesrAM. Notice that those delays are

able to represent also interconnection delays; this is very important in the new sub-micron
technologies for which interconnection delays are comparable to gate delays, and thus not
negligible.

To certify the design one must check that each one of the constraints is satisfied. In
this example we shall focus our attention on one constraint, which is usually overlooked:
the back-to-back cycle constraint that monitors that the data lines in the previous cycle are
tri-stated before a new piece of data is placed in the data bus during the current cycle. The

interval associated with the constrainfis [0,).

Figure 4.5.13 Back-to-back cycle constrdint

Figure 4.5.13 shows a partial net unfolding for constéaimMotice thatck;+ of the

previous cycle coincides wiitk;+ of the current cycle.

131

The bounds of the delays are as follows{! [0, 8], t, U [8, 13], 1, 0[O0, 5],
1, 0[5, 7], 400, 8], 8, 02, 5], 530 [2, 4], &, O [3, 6], anddg LI [1, 5]. Delayst;, T,
andt, are correlated, according to the following inequalities:
T2 - Tl = 5
T2 - T4 = 8

Moreover, the interface delays are also assumed to be correlated according to the
following inequalities:

We assume that the joint pdf is uniform. The joint pdf that characterizes the ran-

dom variables of the net unfoldiffgh »452535758tatd(T1y T2 Tas Oy O3, 07, Og, T, Tg) IS

given by:

fr110ta(T1, T 1) To257(02, O7) f5358(03, Og) fral(Ta) fra(Ta) (Eqg. 4.5.3)

0,4

6_____

»

Figure 4.5.14 Projection ¢f57(d,, 8;).

The projection 0ffs,5/(d,, 8;) is shown in Figure 4.5.14. The projection of

f5057(05, 07) can be similarly obtained. The projection fof,.4(T1, Tp, T4) IS shown in

Figure 4.5.15. To obtain the actual uniform pdf from its projection, one first must find the

hypervolume of the projection. In this dissertation we consider projections described by

132

set of inequalitiesie., polytopes [104]). The problem of finding efficient algorithms to

compute the volume of a polytope has received recently considerable attention in the
literature [32, 75, 59, 80, 18]. We have used to compute the volume of the polytopes in our

examples Prof. Fukudaégld code [56], which we gratefully acknowledge.

AT

9

\
.
.
.
ol _

Ty 5
Figure 4.5.15 Projection &f;;5.4(T1, To, Ty).

The constraint equation fdrcan be written as:
Tgat — Tgan U A (Eq. 4.5.4)

which can be expressed in terms of the delays with respect to the fork tracigjtias

follows:

We consider two cases: (a) the delays are assumed to be independent, which
implies that there is no correlation; and (b) the delays are correlated. For both cases we
have to compute fyatcdat (Tdats Tdat)- Figures 4.5.16 and 4.5.17 show
f dat tdat (Taat » Taar) fOr cases (a) and (b) respectively. Notice the symmetry of the pdf for

case (a), in contrast to the skewed pdf corresponding to case (b). This effect is due to the

phenomenon of time correlation among the delays.

133

0.025{-"'”5
il
o5
D.mﬁ--""'E

0005

Figure 4.5.16 Joint pdfyay, rdat!: (Tdat » Tdar) Without correlation.

004
003l
0oz

oot

Figure 4.5.17 Joint pdfyay, tdat: (Tdat » Taar,) With correlation.

The pdf of the time separation=14,, — Tga, fOr both cases is shown in

Figure 4.5.18. The continuous curve in Figure 4.5.18 corresponds to case (a) and the
dashed curve corresponds to case (b). The projection of the pdf for case (a) is the interval
[-3, 23], while for case (b) is the interval [4, 21]. The constrAint[0,) is satisfied by

134

01

(] TR
00ab

0.0z -

Figure 4.5.18 Probability density function of the time separation.

case (b) but not by case (a). Moreover, our procedure allows the designer to quantify the
probability that the timing constraiAtwould be violated in case (a), which turns out to be
2.3%.

Let us interpret the previous two cases as follows: case (a) corresponds to the anal-
ysis of a circuit for which correlation among delays is ignored, while in case (b) correla-
tion is taken into consideration. Under this view, an analysis that neglects timing

correlation would yield an incorrect conclusion. In general, as discussed in Section 2.5.4,

timing correlation reduces the projection of the delays (cf. Figure 4.5.14).

In the following section we present several examples that show the relationship
between the probabilistic analysis that we have developed in this chapter and traditional

interval analysis techniques.

135

4.5.4 Special cases

In this section we present a suite of special cases in order to show the relationship that

exists between an interval arithmetic (or bounded-delay) analysis [112] and our probabi-
listic approach for the case that the pdf's are bounded (a bounded pdf is zero outside a

bounded interval).

Figure 4.5.19 Sequencing.

We start with the sequencing of two transitions (refer to Figure 4.5.19): trargsition
causes transitiob which causes transitian Let us find the time separatiarirom a to c.

Clearly the fork transition is itself, thusz=1; + 1,. For the sake of simplicity let us
assume that; andt, are independent. Rather than using specific pdf'sfandt,, we
shall only assume that the pdf’'s are bounded,that the pdf's are non-zero only in the
interval [d;, D;] (refer to Figure 4.5.19). Notice that a non-empty interval implies that

d < D,.

Using the above assumptions, it can be seenfif@itcan be computed using

Eq. 4.3.8, which denotes convolution. Figure 4.5.20 shows the integrand of Eq. 4.3.8 for a

particularz. We are not interested in the actual shagg(@f but in its bounds. It is easy to

check that the integrand is non-zero #af [d; + d,, D; + D,]. Hencef,(2) is non-zero in

136

oY) fa@y)

/\A/\ y
| | | | ;

I I | ! I

Figure 4.5.20 Convolution.

that interval (refer to Figure 4.5.21). This coincides with the result of the addition of inter-
vals [d;, D;] and [d,, D).

A2)

N\

| »

I I Ll
d l+d2 D 1+D 2

Figure 4.5.21 Sequencing pdf.

% b
a
\TZAC
ftl(Tl) fTZ(TZ)
M 1] /\‘ L)
B —» | { —»
1 D, d D,

Figure 4.5.22 Time separation.

137

The second special case is a simple time separation between two transitions (refer
to Figure 4.5.22): transitioa causes both transitiofisandc. Let us find the time separa-
tion zfromc to b. The fork transition ig, thusz= 1, - T,. Let us assume again thgtand

T, are independent and that we only know that the pdf's are bounded.

sz(X) frl(X"'Z)

‘/\/\ y
| | ;

I I I | I
d2 D2 Z+dl Z+Dl

Figure 4.5.23 Time separation construction.

Using the above assumptions, it can be seenfjf@itcan be computed using

Eq. 4.3.11, which denotes the operation of correlation (not to be confused with the correla-
tion data in our interface specifications). Figure 4.5.23 shows the integrand of Eq. 4.3.11
for a particulaz. The integrand is non-zero faf [d; — D,, D; — d,]. Hencef,(2) is non-

zero in that interval (refer to Figure 4.5.24). This coincides with the result of the subtrac-

tion of intervals §l;, D,] and [d,, D).

fA2)

N\
| »
| I | »
dl_DZ Dl_d2

Figure 4.5.24 Time separation pdf.

The third special case is simplsD causality (refer to Figure 4.5.25): transition

is caused by both transitioasandb. Let us assume that both transiti@andb occurred

138

a*’
time:O/' c
b 1,
ftl(Tl) fTZ(TZ)
M 1] /\‘ L)
i I > | { —»
d; D, d, D,

Figure 4.5.25 AD causality.
at exactly the same tinmg. Let us find the time occurrene®f ¢ with respect ta,. Thus
z=max(4, T,). As beforer, andt, are independent and we only know that the pdf’s are

bounded.

¥ N

Figure 4.5.26 AD causality construction.

Hencef,(2) isf,(2F(2) + f(29F,(2) (refer to Eq. 4.3.15). Figure 4.5.26 shdw$)

andF,(2). Itis easy to check th§{z) is non-zero foz [J [max(d;, dy), maxD,, D,)] (refer

to Figure 4.5.27). This coincides with the result of the max operation on intedyels |
and [d,, D,].

The final special case is simp& causality (refer to Figure 4.5.28): transitiors

OR-caused by both transitioasandb. Let us assume that both transiti@endb occurred

139

max(d,d,) Max(Dy,Dy)

Figure 4.5.27 AD causality pdf.

T
b T2
fra(ty) fa(12)
M T /\‘ T
i { —» i { —»
1 D, dy D,

Figure 4.5.28 @ causality.

atty. The time occurrenceof ¢ with respect tag is z= min(ty, 1,). As beforer; andt,

are independent and we only know that the pdf’s are bounded.

\FA2)

»

Figure 4.5.29 @ causality construction.

Hencef/2) is f,(2)(1 - Fy(2) + f(2(1 — Fx(2) (refer to Eq. 4.3.19). Figure 4.5.29

shows F,(2 and Fy(2. It can be shown thatf (2 is non-zero for

140

z O [min(dy, dy), min(D,, D,)] (refer to Figure 4.5.30). This coincides with the result of

the min operation on intervald;f D4] and [d,, D,).

min(dy,dy) MiN(Dy,Dy)

Figure 4.5.30 @ causality pdf.

More complicated graphs cannot be expressed using plain interval arithmetic
alone, due to correlation either implied by the joint pdf of the delays of the net, or intro-
duced by the topology of the net (reconvergence fan-out). Of course the interval analysis

techniques can be extended to handle more complicated situations.

4.6 Summary

In this chapter we have presented a probabilistic interface timing verification procedure
that not only can check if every constraint of a cycle-invariant complete graph is satisfied,
but if a constraint is not satisfied, it returns a reliability factor which is a measure of the

probability that a constraint will be satisfied.

Thus our verification procedure provides more information than traditional inter-
face timing verification techniques, which can be invaluable when evaluating the trade-
offs of a design. Our verification procedure is based on a probabilistic framework that
gives a natural interpretation to the time correlation data that crop up in component data
sheets. We also show in this chapter that by ignoring time correlation, a pessimistic result

may be obtained. In high-speed designs, where every nanosecond counts, it is important to

141

determine tighter bounds: a pessimistic result may seem to indicate a timing constraint

violation where none exists.

The verification procedure presented in this chapter requires that all the delays be
known. This is not the case prior to the interface logic synthesis. However it is possible to
adapt our procedure so that instead of checking for constraint satisfaction, it determines
the values of the delays that satisfy all the constraints. In the following chapter we shall

present this variation that we have called timing analysis for synthesis.

Chapter 5

Timing Analysis for Synthesis

5.1 Introduction

During the system integration phase of the design flow, interface logic may be required to

construct a system that uses off-the-shelf components. In Chapter 2 we presented a suit-

able formal specification to describe the interface behavior of the components, while in
Chapter 3 we addressed the issue of describing the glue, or interface, logic whose function

is to connect the components together, and in Chapter 4 we discussed a timing verification
procedure that, once the necessary logic has been implemented, not only checks if the new
circuitry meets the timing constraints given in the component specifications, but also gives

a measure of the reliability of the system in case some constraints are violated.

In this chapter we shall present an analysis procedure that can be used ahead of the
interface logic implementation, or synthesis. The problem that we face is that prior to
interface synthesis, the values that the interface delays can take are unknown. One solution
is to apply a timing verification procedure for which conservative estimates for the inter-
face delays are used [97, 98]. Our solution is to reformulate the timing interface verifica-
tion problem as the problem of finding the set of allowed values for the unknown delays so
that the constraints are satisfied, which we have called timing analysis for syrnthes)s (
in [47]. Amon and Borriello [2] suggested a similar idea, that they call symbolic timing

verification; however they studied only the convex case for which a solution can be given

143

using standard constraint satisfaction programming techniques [127, 68, 122], and failed

to point out that in general “symbolic verification” results in a non-convex problem.

5.2 Timing analysis for synthesis problem formulation

Timing analysis for synthesigAFs) is a technique that can be used in advance of the
interface logic synthesis to determine the values that the interface delays can take if they
are to meet the timing constraints given in the interface specifications. The importance of
TAFS is that it can break the series of iterations between interface design and implementa-
tion that usually occur during the design flave(a design is implemented, then checked

for timing constraint satisfaction, and if violations are encountered, the implementation
and/or the design of the interface logic must be redone), because it can be applied on a

description of the interface design prior to implementation.

In Chapter 3 we suggested that the interface logic required to integrate off-the-
shelf components to build up a system can be described as the “merging” of the interface
specifications describing the protocols followed by the components to implement certain
capability €.g, a bus arbitration operation), where the “merging” consisted of adding
delay edges, corresponding to the interface logic, to generate the input signal transitions of
the specifications. The result of the interface design was a complete graph. To clarify the

previous ideas we briefly present the bus arbitration interface design discussed in

Chapter 3.

Figure 5.2.1 shows a system comprisingv® component and themebus. The
bus arbitration interface block converts the request-acknowledge protocol usediay the

component to the more involved request-grant-done bus arbitration protocol defined in the

VMEDbus standard (refer to Figure 5.2.2).

144

VMEbus DMA
BR* o
ig: " Interface reqr
BUSY - ack
— |
dtbus data ransfer bus | dibus
| E— | E—

Figure 5.2.2 Interface specifications of the bus arbitration protocols
followed by the components of the system shown in Figure 5.2.1.

The complete graph that describes the component protocols and the interface logic

is shown in Figure 5.2.3. The interface logic is represented by the interface delay edges
shown as thick lines. It is not possible to check if the complete graph is time-consistent
without knowing the interface delays In this chapter we formulate timing analysis for
synthesis as the problem of finding the tightest bounds on the interface alslagts that

the timing constraints are satisfied. If there is no such set of values then the interface must
be redesignede(g by modifying some or all of tha links in the merged graph or by

145

choosing different components). Otherwise those bounds can be used to select an appro-
priate target technology and guide time-driven synthesis tools. Finally a correct realization

of the interface must not exceed the bounds computed by the analysis.

Figure 5.2.3 Bus arbitration interface design.

Definition 5.2.1.-Given

1. a complete grapk =X, C\.J whereZ. =\, Y., A Uis a timedsTéG with
underlying Petri neN, =[P, T, F., My, THand C; is a set of constraint

rules,

2. a partition on the set of plac®s into the set oft-placesP; and the set of
o-places Ps, with associated sets of random variabtes{t;|1; =T (p),

pp O P}andd={g |5 =T (p), p U P},

146

3. ajoint pdf characterizing the set of random variakkes [J 6 that can be writ-

ten as:
f(x) = f,(1) [¥5(d) (Eg. 5.2.1)
wheref (1) andfs(d) are joint pdf's of the random variablesndd respectively.

4. a projectiorR, 0 R™ of the joint pdff,(t), wheremis the size oP,, and

5. aregiorR, O R" of allowed values fod, wheren is the size oP;;

the timing analysis for synthesisags) problem is the problem of finding the largest pro-

jectionR5 [R, of the joint pdff5(d) such that any possible execution of Ngsatisfies all

the constraint rules; U Cy.

Let us compar@Ars and interface timing verification. In timing verification, the
input is a complete graph, with a fully specified signal transition graph and the problem is
to check that every possible execution of the net satisfies the constraimss,|the input
is also a complete graph, but some of the random variables are unspecified, and thus the
problem is to find a characterization of the set of unspecified random valdahlgtssatis-
fies the constraints. Such characterizatiod isfnot a joint pdf but its projection. The sig-
nificance of this fact can be understood by realizing that th& regiresents the delays of

the logic that is yet to be implemented, so that it makes sense to try to determine the pro-

jection of the pdf (which from the discussion of Section 2.5.4, specifies only the domain of
the delay values by neglecting the probability measure of the joint pdf) rather the pdf
itself, otherwise the solution alAFs would be too restrictive by yielding a specific joint

pdf that the interface logic must implement. In this sense, the restdFsfis ideal to

guide the interface implementation because there exist many possible implementations

that can satisfy a projection. Notice however that, by dealing with a projection, the proba-

bility measure, which was key for our reliability analysis discussed in Chapter 4, is lost.

This is not severe because at this phase of the design, the designer is more concerned with

147

getting a broader picture of the properties of a design that has not been fully carried out
down to silicon. Notice however that althourgtfrs is an interval analysis, it solves a more

difficult problem than interval interface timing verification. Other comments regarding

Definition 5.2.1 are discussed in the following paragraphs.

Condition 3 of the definition assumes that the joint pdf of the net is separable into
two pdf’s, that is the set afdelays and the set &fdelays are independent; this assump-
tion is not unrealistic, mainly because the interface block is implemented as a separate
entity from the components, and although the components and the interface will operate
under similar temperature conditions, this will amount to a weak correlation; stronger cor-
relation results from, for example, sharing locality in silicon. (On the other hand, from the
discussion of Chapter 4, correlation data improves the time separation calculation so that
by neglecting correlation one would expect conservative results.) In the sequel we shall
refer to the two components of the set of random variablbe set od delays and the set

of T delays by the symbo&sandt respectively for the sake of conciseness.

The reader may find the presenceRyfin step 5 of Definition 5.2.1 superfluous,
because one seeks to find a solution regigrbut R, seems to be “constraininggs. Our
reasoning is that in some circumstances one may know up-front a characterization of the
interface delay$. For instance, if just a known set of technologies is being considered, it
might be possible to put an upper bound on the maxidwadues. If no knowledge is

assumed on thé& values, the allowed regidR, turns out to be the non-negative hyper-
octant {; = 0} (notice that even in this “unconstrained” case, the values of délays

required to be non-negative). Thus, if partial information is known about the valdges of

this can be specified in our general scheme by defining a suRable

Finally Rs may turn out to be empty. This particular result signifies that there is no
possible assignment for the delays that satisfy the constraint rules of the complete graph.
In other words, it is possible to check if an interface design is feasible, prior to implemen-

tation, thus saving considerable design effort. Moreover, elyisfnot empty, by study-

148

ing Rs it may be possible to detect potential problems that would arise during

implementation; for example, if the maximum value of a given interface delay is too small,

then it may not be possible to implement it given a target technology.

In summary, the goal afaFs is to best characterize the set of unknown deldys
finding the largest projection of the joint pdf that satisfies the timing constraints of the
design. Therars problem for the case of protocol graphs with arbitrary underlying Petri

nets is an extremely difficult one. In this dissertation we sod#s for the same sub-class

that we studied in Chapters 3 and 4, namely the class of complete graphs whosgdimed

is a cycle invarianhoC STG. We also restrict the projections of pdi’&r) andfz(d) and the

allowed region®:, to be convex polyhedra [30].

5.3 SolvingTAFs

In this section we first present a general procedure that solves the timing analysis for syn-

thesis problem, and then we develop algorithms that implement the procedure.

5.3.1 TAFs procedure

By its formulation, one can see thats can be naturally cast as a constraint satisfaction
problem, namely one must find the largest set of values that the unknowndiedaytake

such that the timing constraints are satisfied. In this section we present a procedure that
solvesTAFs for complete graphs whose timgtGis a cycle-invariankocC STG. Firstly we

present some concepts that will be necessary to describerthprocedure.

From Section 2.5.1, we know that a constraint gjle [, t, A;, eldefines a time

ijr
window A; with respect to thd-th occurrence of the constraining transitipruring

which the k+€)-th occurrence of the constrained transitids allowed to occur. The con-

149

straint rule is satisfied if for all occurrence indi&esO0, the following constraint equation

for ¢; is true:
Tyj(kre) ~ Ttiky) U A (Eq. 5.3.1)

If a net is repeatable, then the time separatjgay) — Ty IS invariant fork = M.

Thus it is possible to check Eg.5.3.1 foe M by checking Eq. 5.3.1 fok=M. In
Chapter 3, we identified a structural condition on the net, the presencgdéanvariant
fork transition (refer to Definition 3.3.9), that implies repeatability. Furthermore, as dis-

cussed in Section 3.3.4, one can express the left-hand side of Eq. 5.3.1 with respect to a

cycle-invariant fork transitiol as:
Tyjkeeyox ~ Ttigyox D (Eq. 5.3.2)

where each ofj.e)ox aNdT4se)0x Are €xpressions containing linear/min/max terms on a

set of random variables that defines the timing behavior of the net.

With TAFs the probability measure of the delays has been dropped. Moreover, the
characterization of the random variables of the net is incomplete because one only knows

the projection of the joint pdf of thredelays, which specifies the set of possible values that

T can take. Then instead of checking if the constraint equation (refer to Eq. 5.3.2) is satis-
fied, one must find the projection of the joint pdf of theelays that satisfy the constraint
equation, forall possible valuesf thet delays. To understand this crucial point, consider
that there are some valuesdBayd,, that satisfy the constraint equation for some values

of 1, sayt,. However ifd, together with another set of valuestafoes not satisfy the con-
straint equation, thedy, is only a particular solution which does not hold in general. Thus

the set of values @ that satisfies the constraints must do safbpossible values af.

To solveTAFs we shall proceed in two steps: first we shall determine all the set of
values ofd andt that satisfy the constraint equation; and then we shall restrict such set to

the values that satisfy the constraint equation for all values of

150

Definition 5.3.1.- Given a TAFS problem, the allowed region fort,@) is

Rua={(1,0) OR™" |1 OR, andd O R,}.

The allowed regionR,,, represents the set of allowed value) defined by the
projection off (t) and the allowed values df In this senseR_,, is the preliminary projec-
tion of the joint pdf describing the complete graph, wiyes used as a first approxima-

tion of f5(d).

Definition 5.3.2.- Given a constraint rule; = [i, t, A, elof a complete graph

W, = [X, Cycthek-th constraint separation of is g (K) = Tyjee) — Trig)-

Notice that whemy;;(K) is calculated with respect to a fork transition, it is a func-

tion of thet andd random variables.

Definition 5.3.3.- Given a constraint rule; = [i, t, A, elof a complete graph

W, =, CL] the region of the kth time separation fromt to t s

Ry (K) = {(7, 8) O R™" | g;(K) O Ay}

HenceRy;(K) represents the set of valuesd) that satisfy the constraint equation

deij(K) O 4.

Figure 5.3.1 Set oft(d) values that satisfy a constraiit

151

Consider for the moment a single constraint equaigk) L] A. Given the set of
allowed valuesk, of & and the set of valueR, thatt can take, one can construct the
allowed regionR,,, of (t,). Thus the allowed values of, @) that satisfyg;;(K)] A is
given by R, n Ry;j(K). We call this region the feasible region of the constraint. These
ideas are illustrated in Figure 5.3.1. The regiBpandR, define the boR,,. The inter-
section ofRy;(K) with R, (the shaded area) are the allowed valueg) that satisfy the

constraint equation.

o4}

<>

V ~

Figure 5.3.2 Set di values that satisfy a constraihfor all values oft.

HoweverTAFs asks for the values @fthat satisfy the constraint equation forall

which is Rs. To compute this area one can “cut” the regipn, n Ry;(K) into vertical

infinitesimal “slices” in Figure 5.3.1, and thHerizontal intersection over all the slices

would beRs;. We have called this procedure the reduction of the feasible région
Figure 5.3.2 illustrates regidgs, of the values 0d that satisfy the constraint equation for

all t. A formal treatment is presented in Section 5.3.4.

Without the existence of a cycle-invariant fork transition (refer to Section 3.3) one

would have to check an infinite number of constraint equaggifk) [! 4;. The following

definitions specialize Definition 5.3.3 for the important case of cycle-invariant fork transi-

tions.

152

Definition 5.3.4.- Given a constraint rule; = [i, t, A, elJof a complete graph
W, = [, CyHand a cycle-invariant fork transition pandt; for k > M, theinvariant con-

straint separation afj is gjj = Tjjn+) ~ Tri(n) fOr anyn=M.

Definition 5.3.5.- Given a constraint rule; = [i, t, A, eLof a complete graph

i1

W, =X, CycHand a cycle-invariant fork transition fandt;, theregion of the invariant

constraint separation of is Ry; ={(t, 8) O R™" | g5 O A}

The definitions above refer to a particular region of a constraint rule, either for a

particular cyclek, or in the presence of a cycle-invariant fork transition for an infinite

number of cycles as discussed in Chapter 3. In general the region of a constraint rule is the

intersection of the regions for all cycles.

Definition 5.3.6.- Given a constraint rule; = i, t, 4;, eJof a complete graph

i1

W, = [X., CycLIthetotal regionof constraint; is RT(cij) =N ij(k) :
k>0

The following lemma establishes that for a constraint rule associated with a cycle-
invariant fork transition it is possible to compute the total region by a finite number of

intersections.
Lemma 5.3.1.-For a constraint rule; = [, t,, A;, eCwith associated cycle-invari-

ant fork transition front; to t;, the total region of constraiw} is RT(cij) =N ij(k) ,
k

k=1,..., M.

Proof.- Direct from Definition 3.3.9 of cycle-invariant fork transition. L]

According to our previous discussioct.(Figure 5.3.1), the following definitions

capture the concept of the feasible region of a constraint rule.

153

Definition 5.3.7.-Given aTAFs problem and a constraint rug= [, t;, 4;, elof a

complete graph W, =[X, C\Ll the feasible region of constraintc; is

Ri(cj) = Re(cy) n Rysa

Definition 5.3.8.-Given a complete graph, = [X;, C\.[Jthe feasible region &P,

isR = N Rf(Cij) .

Cij U Cye
Finally the important concept of tlkereduction of a feasible region is defined.

Definition 5.3.9.-Given aTAFs problem and a complete grapgh = [X;, C\ L) the

d-reduction of the feasible regionRs={6 OR" |01 OR,, (1, 8) U R}.

Theorem 5.3.2.-The é-reduction of the feasible region of a complete graph is the

solution of TAFS.

Proof.- From Definition 5.3.8, the feasible regioR; of a complete graph
W, =X, Cyliclearly satisfies all the constraint equatiggg(k) U 4; for all constraint
rulesc; U Cy.. ThenR; also satisfies the constraints. We have to showRhatthe largest

sub-set of § [0 R} that satisfies the constraints for all possible valuas ®his is guaran-

teed by Definition 5.3.9. TherefoR is R;. L]

Theorem 5.3.2 links th&-reduction operation to our original problem of finding
the solution of therArs problem. The following procedure summarizes the major steps

that one must follow to solveTaFs problem.

Procedure 5.3.1.-Given aTAFS problem for a cycle-invariant complete graph
W, =[Z, Gyl

1. For each constraint ruég J Cy, obtain the total regioR(c;).

154

2. For the complete grapH, = (£, C\ L) obtain the feasible regidg.

3. Obtain theé-reduction of;, and return it aRs.

It is easy to prove using Theorem 5.3.2 that Procedure 5.3.1 sak&dJsing the

fact that the complete graph is cycle-invariant step 1 computes the total region of a con-
straint rule by considering a finite number of regions of constraint equatigs L] A;.

In the following sections we shall discuss how to implement the three steps of

Procedure 5.3.1 for the case in which the projed®pof f.(1) is a polyhedron (refer to

Section 2.5.4). It will be shown that everRifis convex, in generdty is not.

5.3.2 Linearization of the constraint equations

In this section we shall discuss how to obtain the feasible region of a complete graph. The

first step consists of determining the region of a constraint equation. The complete graphs

that we consider have an underlyingc STG, thus from the discussion of Section 3.3.3,
the constraint equations contain only linear/min/max terms. We shall exploit the form of
the constraint equations to develop a procedure that, using standard techniques, can find

the feasible region of the complete graph.

As mentioned in the previous section, a constraint equetjgk) U 4; defines a
region of the values(d) that satisfy the equation for a particular execution of the net. The
problem we want to address in this section is how to compute such a region. The crucial
point is that a constraint equation is an expression on the random vaniab)esvolving
only linear, min and max operators. We use a linearization technique that converts the non-
linear expression of a constraint equation into a set of linear expressions [82, 20] which, as
we shall show below, have some nice properties. To make evident the dependency of the

constraint separatiogy;; on (t, 0) we shall denotg;;(k) by ggj(k, T, 9) in the sequel.

155

Definition 5.3.10.- The i linear sub-case of a max term mex(.., a,), for
i=1,....,n, replaces the max term with temnand adds the set of inequalities; % & |

j=1,...,nandj #i}.

Definition 5.3.11.- The i linear sub-case of a min term mag(..., a,), for
i=1,...,n, replaces the min term with terapand adds the set of inequalities € & |

j=1,...,nandj #i}.

Definition 5.3.12.-The linearization of a max, or a min, term is the seat lafear

sub-cases of the max, or min, term.

Definition 5.3.13.-A linear sub-case of a constraint equatigf(k, T, d) U 4; is

formed by selecting a linear sub-case for each of the max and min terms that appear in
9eij(k, T,).

Thus to find a linear sub-case of a constraint equation one must choose a “winner”

for each max and min term @;(k, T, 9). The linearization of a constraint equation com-

prises all the linear sub-cases.

Definition 5.3.14.-The linearization of a constraint equatigg(k, T, d) U 4; is

the set of all linear sub-cases of the constraint equation.

For example, the linearization of the left-hand side of the following constraint

equationgg;(k, T, d) U A; given by
9eij(k, T, 0) =11 + max(min(y, 83) + T4, 35) ~ O3
consists of the following linear sub-cases:
1. (linear sub-case 1 of the max term, linear sub-case 1 of the min term):
T+ T+ T~ O3 L A4y

T, <05
To+ 7,205

156

2. (linear sub-case 1 of the max term, linear sub-case 2 of the min term):

T+ 1,04
1,203

3. (linear sub-case 2 of the max term, linear sub-case 1 of the min term):

T1+65_63|:|Aij
T,< 0,
To+T7,< 0

4. (linear sub-case 2 of the max term, linear sub-case 2 of the min term):

T1+65_63|:|Aij
5,203
Lemma 5.3.3.-The maximum number of linear sub-cases of a constraint equation

does not exceed the product of the linear sub-cases of its different max and min terms.

Proof.- In the worst case, the selection of each different linear sub-case of a max/
min term is independent of the selection of linear sub-cases of the other max/min terms

thus generating a maximum number of linear sub-cases which is the product of the terms

of all the max/min terms.]

In the previous example, the constraint equation generated four linear sub-cases
corresponding to two independent selections of each of its two min/max termghé
number of cases achieves the maximum of Lemma 5.3.3). However if there are some com-
mon terms to the min/max terms of a constraint equation, a fewer number of linear sub-

cases may be generated. For example, if the left-hand side of a constraint equation is given

by

maxa, b) + min (a, b)

157

one can notice that only two linear sub-cases belong to the linearization, namely for the
case thaa > b and for the case that< b due to the sharing of common terms in the min

and max terms.

Lemma 5.3.4.-Each linear sub-case of a constraint equation describes a polyhe-

dron inR™", wherem andn are the number afandd variables respectively.

Proof.- A linear sub-case of a constraint equation consists of the original constraint
equation in which each max/min terms has been replaced by a particular winner term, and

a set of inequalities that have been added for each winner selection. Each added inequality

is linear according to Definitions 5.3.10 and 5.3.11. Also the new expression for the con-
straint equation is linear by construction, due to the replacement of the max/min terms (the

only non-linear terms in the constraint equation) with termBotice that the expression

g0 A, whereA is a closed intervald] D], can be replaced bg<g<D. (If A is not a
closed interval, the corresponding lower/upper bound of the interval that is not closed is

described using the strict inequality symbol) Finally a set of linear inequalities dn

variables describes a convex polyhedroRSifi30]. L]

Before stating the property that the linear sub-cases of a constraint equation

describe non-overlapping regions, we need to give some basic definitions (adapted

from [60]). For a definition of a hyperplane, refer to Definition 2.5.5.

Definition 5.3.15.-A hyperplaneH cutsa regionA [R¥ if both open spaces into

which R¥is divided byH contain points oA.

Definition 5.3.16.- The Euclidean distance between two poir{sx, 0 R, is
d(Xq, %) = (g — X, X; — %0V, wherexy, x,[ldenotes the dot product ®f andx,. The

Euclidean distance between regioAsB 0 RK is d(A, B) = inf({ d(xq, Xo) [X, O A and

X, 00 B}), where inf selects the minimum element of a set of values.

158

Definition 5.3.17.-A hyperplaneH supportsa regionA [0 R¥ if H does not cuf\
andd(A, H) =0.

Definition 5.3.18.-Let P, be a polyhedron iR, A setF O P, is a face oP, if
there exists a hyperplamkethat support®, andF =P, n H.

Definition 5.3.19.-Two polyhedra irR arenon-overlappingf their intersection is

either empty or is a common face of the two polyhedra.

Lemma 5.3.5.-The polyhedron described by a linear sub-case of a constraint
equation is non-overlapping with any of the polyhedra described by the other linear sub-
cases of the constraint equation.

Proof.- A linear sub-case differs from the other linear sub-cases of a constraint
equation by at least one selection of a winner for a given max/min term. Without loss of

generality, assume that for the giveaxterm, termg; was chosen as the winner for linear
sub-case, while g; was chosen as the winner, wjithi, for the other linear sub-case. Then

an added inequality = g is one of the inequalities that describe the polyhedron of sub-
casel, whilea = g is one of the inequalities that describe the polyhedron of the other sub-
case. Each of these inequalities represents a closed half-space [30]. Furthermore, the two
half-spaces define two regions that do not overlap, and only have the hypes;planan
common. A polyhedron is thetersectionof the half-spaces described by a set of inequal-

ities. Therefore the polyhedron corresponding to sub-cdees not overlap with any of

the polyhedra of the other sub-cases. L]

Definition 5.3.20.- The region of the linearization of a constraint equation

deij(k, T, 0) L 4y s [] P, , whereP, is the polyhedron described by th¢h linear sub-case
k

of the constraint equation.

159

v~

Figure 5.3.3 Region of the linearization of a constraint equation.

Thus the geometric region corresponding to the linearization of a constraint equa-

tion can be described by a set of non-overlapping convex polyhedra. However the region

needs not be convex nor connected (refer to Figure 5.3.3).

Lemma 5.3.6.-Given two regionsA, B 0 R, each one described as the union of

non-overlapping polyhedra, denotéd P,. ahdlP. respectively, their intersection
_ Ai _ Bj

I J

An Bis [JPAB; wherePAB; = P, n Py, andl(i,j) # (k 1), PAB; n PAB, = @

1
i
Proof.- Consider one polyhedron from each region, &y BQJd . Their
1 1
intersectionPAB, , = P, n Py ,isclearly iA n B. MoreoverPAB, ; - is non-overlap-
i1 1 Iy 1

ping with any otheP?,, , and any othBy, because of the non-overlapping property of

the sets []P,; andDPBj . TherPAB; is non-overlapping with any other
i i

PAB = P, n Py, . Finally suppose that there is an element An B but not in

160

[] PABij . But thenx must belong to one componenf, Aoénd one componert?tBj of
i

B, and therefor& must be in one partial intersectié; n PBj .]

Lemma 5.3.6 states that the intersection of two (possibly non-convex and discon-
nected) regions described as the union of non-overlapping polyhedra can also be described

as the union of non-overlapping polyhedra.

Lemma 5.3.7.-The region of the linearization of a constraint equation can be rep-

resented as the union of non-overlapping polyhedra.

Proof.- It follows from Lemma 5.3.5. []

Lemma 5.3.8.- The region of the linearization of a constraint equation

deij(k, T, 0) U 4 is identical to the regioiiRy;(k) of the k-th time separation (refer to

Definition 5.3.3).

Proof.- We have to show that every point in the region of the linearization belongs
to the region of thé-th time separation, and that there are no points belonging to the
region of thek-th time separation that do not belong to the region of the linearization.

Assume that there is a poiny(d,) which is in the region of the linearization. Then

(Tg, Op) is in the polyhedron of a linear sub-case, which corresponds to a specialization of
the constraint equatiogy;j(k, T, 0) U 4; in which exactly one term of each max/min term

has been chosen as a winner according to Definitions 5.3.10 and 5.3.11. Therefore
deij(K T, Og) U A must hold. Now suppose that there is a paigtd,) that is in the region

of thek-th time separation. Them;(k, T, 8g) U 4; holds. Evaluate every max/min term

and identify a winner. Thert{, §,) must belong to the polyhedron of the sub-case that

corresponds to the identified winner selection. L]

161

The total regiorRr(c;) of a constraint rule; (refer to Definition 5.3.6) is the inter-
section of the regions of the constraint equat®{ik, 1o, 8g) U 4; for k> 0. The feasible
region of a complete graph (refer to Definition 5.3.8) is the intersection of all the total
regions of the constraint rules of the complete graph with the allowed region &r (

R +a- From Lemma 5.3.6, the feasible region can be described as the union of non-overlap-

ping polyhedra.

Theorem 5.3.9.-The feasible region of the linearization of a constraint equation

can be represented as the union of non-overlapping polyhedra.

Proof.- It follows from Definitions 5.3.6, 5.3.7, and 5.3.8, and Lemmas 5.3.6,

5.3.7, and 5.3.8. []

Notice that from the previous discussion, the feasible region is not convex in gen-

eral.

The final step to find the solution OAFS is to perform a&-reduction of the feasi-

ble region (refer to Definition 5.3.9). That is the topic of Section 5.3.4. Before tackling the
reduction problem, we present a simple example in the following section to clarify the

ideas presented so far, and to motivate the basis @ @auction procedure.

5.3.3 An illustrative example

In this section we use a cycle-invariant constraint to walk through the steps necessary to

solve arAFs problem.

Consider for example the partial unfolding from the cycle-invariant fork transition

of transitionsc andd shown in Figure 5.3.4. The constraint rule has associated interval

A =[O0, 2]. There are three places (edges) labeled with random varighdgsandd,. The

pdf of random variable, is known and its projectiofR_ is the interval [0, 1]. The

162

Figure 5.3.4 Computing the projectionfgis,(d;, 8,).

allowed regionR, of the unknown random variablég andd, is the non-negative quad-

rant,i.e. R, = {(8;, 8,) 0 R?| 8,, 8, = 0}.

Assuming that the invariance of the constraint equation applies far-dll the
region of the invariant constraint separation is also the total region of the constraint rule.
The feasible region is given by the intersection of the total regions of the constraints (in
our example, only one) with the allowed regid®,,={(14,9,,9,)| 1, 0[0,1],

9, 8, 2 0}. The invariant constraint equation is:
61 + 62 - Tl D [O, 2] (Eq 533)

which does not contain non-linear terms. This fact simplifies the visualization of the prob-
lem by not having to draw a cluttered region. Recall that non-linear max/min terms can be
linearized so that the only difference is that we have to consider several linear sub-cases.
The constraint equation defines a region between the hyper@anes, — 1, =0 and

0, + 0, — 11 = 2. The feasible region is shown in Figure 5.3.5, which is a 3-D polyhedron

with its apex at the origin (the dashed lines are hidden lines).

We now introduce some important ideas informally that are the basis of our

d-reduction procedure. As discussed in Section 5.3.1, the feasible region contains some

values ofd that, although they satisfy the constraints, they do only for certain values of

163

Figure 5.3.5 The feasible regi&

For exampled, = 0 andd, = 0 satisfyA only fort; = 0. The solution region af must sat-

isfy the constraints for all possible values of

In Section 5.3.1 we suggested a procedure that “cuts” the feasible region in infini-

tesimal “slices” ofR,, and orthogonal t&s. In our example, the slices would be planes
parallel to plané;-d,. Then the region representing theeduction is computed as the

intersection of all such slices. Such a procedure is not practical because it involves an infi-
nite number of slices. However if the feasible region is convex, then one needs only con-

sider a finite number of slices &, namely the slices that intersect one or more of the

extreme points, or vertices, of the feasible region, as we shall prove in the following sec-

tion. For the moment notice that to find out aeeduction of the feasible region shown in
Figure 5.3.5, one has to consider only the two slic& that intersect hyperplaneg= 0

andt, = 1. The intersection of these two slices is the intersection of all the slices between
T, =0 andt; =1. The dreduction of the feasible region in Figure 5.3.5 is shown in

Figure 5.3.6.

The ideas discussed above can be applied only to convex regions. From the discus-

sion of the previous section, one knows that the feasible region is not necessarily convex,

164

Figure 5.3.6 ProjectioRy Of f515,(d1, 0,).

but it can be represented as the union of non-overlapping convex polyhedra. And because
the intersection of such non-convex regions can also be expressed as the union of non-
overlapping polyhedra, we shall apply those ideas to the convex components of the feasi-

ble region i e, the polyhedra that form the feasible region).

5.3.4 Reduction of the feasible region

In this section we present a procedure that obtaing-tieeluction of a feasible region.

From Section 5.3.1, th&reduction of the feasible region of aoc cycle-invariant com-

plete graph is the solution of the correspondimgs problem. We first present some basic

definitions. We start with a standard definition of an extreme point of polyhefdfaq().

Definition 5.3.21.- Given a polyhedror [R¢ and two pointsy, zO P, a point
x O P is an extreme point ¢t if x=Ay + (1 - A)zfor all A such that & A <1 implies that

X=y=z
The set of extreme points of a polyhedron are called vertices.

To describe our reduction procedure, we need to introduce the following defini-

tions:

165

Definition 5.3.22.-Given a polyhedro® 0 R™", and a point, O R", theslice of

P at1, is denoted by(ty) ={6 O R" | (14, d) O P}.

Definition 5.3.23.- Given a pointx = (1, d) of a polyhedronP O R™", where

10 RM™andd O R" arex’s components, the-projectionof x into R™ is x's T component.

Definition 5.3.24.- Given a polyhedrorP 0O R™", its 1-region is the region
P.={tOR"|30R"and , &) 0P}

Notice that the region described By is the projection of regio® in (m+n)-
dimensional space onto thedimensional space af (In our applicationt represents the

set of known delays, arfé, corresponds to the given projection of the joint pdf.@j.)

The following definition corresponds to Definition 5.3.9 for the case that the feasible
region is a convex regioné., for the case that the feasible region can be described by a

single convex polyhedron):

Definition 5.3.25.- The &-reduction of a polyhedro®® O R™" is the region
Ps={00R"| Ot 0P, (1,0) 0P}, whereP, is thet-region ofP.

Please refer to Figure 5.3.2. One can see thatthduction is the set & values
that satisfy a given constraiatfor all values oft. The following lemma gives a general,

although not practical, procedure to obtaindreduction of a polyhedron.

Lemma 5.3.10.Let P O R™" be a polyhedron, then tlereduction ofP is given
by:

Ps = NP(T) (Eq. 5.3.4)

wherex; [P, 1, is thet-projections of;, P(t;) is the slice oP att;, and the intersection is

carried out over al; O P.

166

Proof.- Let &, (I Ps, then according to Definition 5.3.28% must belong tdP;

because it must appear in every slicePotet &, [I P5s. According to Definition 5.3.25

(1, &,) belongs tdP for everyt-projectiont of P. Thend, must be a point of the intersec-

tion.]

We will need the following lemma later on:

Lemma 5.3.11.-Given a polyhedro® 0 R™" and a poink, O P, the sliceP(ty),

wheret is thet-projection ofx,, is a polyhedron ifR".

Proof.- P can be represented by a set of inequalities on variabl®y (vhere

T ORM™andd O R P(1y) is represented by the same set of inequalities on varialigs

substitutingr by 1, which describes a polyhedronR. L]

The following Lemma states that the polyhedron reduction can be computed by

considering only the extreme points of the polyhedron. Fortunately the number of extreme

points of a polyhedron described by a finite set of linear inequalities is finite [109].

Lemma 5.3.12.-Let P O R™" be a bounded polyhedron and #tbe the set
{t, ORM| %=(1;,9;) is an extreme point ¢f} with N elements, then threduction ofP is
given by:
N
P, =P¢=n P(1) (Eq. 5.3.5)

whereP(T;) is the slice oP atr;.

Proof.- Notice thatW is the set oft-projections of the extreme points Bf We
want to show that the slice Bfat thet-projection of any point, (I P containsP§ . This is
clearly true ifP§ = @ or ifx, is an extreme point d¥ We need to prove that this is also

the case whePs is not empty axgis not an extreme point & For at; U W, let us

167

define the set of poinex(t;) = {(1;, &) | § is an extreme point &5 }. A pointl] ex(T;)
is in P because its component is an extreme point®fand itsd component belongs to

Pz which is included irP(t;). Let us construd®’ as the convex hull of the set of points

N
X' = Di ext(t;) over allt; 0 W¥. Notice that tha-projection set | (t,0) Ll P'} is the
convex hull of¥ because the-projection set o’ isW¥. But {t | (1,8) I P} is also the con-

vex hull ofW. Thus for any, - (145,0) O P there exists at least one pokhy_ (15,0'p) O P',

thereforeP'(tp) O P(tp). Since by contructioR'(tp) = P§, thenPg [P(1,). L]

To illustrate Lemma5.3.12, consider the 2-dimensional polyhedron shown in
Figure 5.3.6. The polyhedron has five vertiegs/,, v,, v, andvg. The procedure stated in

the lemma finds thé-reduction as the intersection of the slices at each of the vertices,
which are shown in the figure as vertical dashed lines. For this examp@erédection

consists of poind,,

5 A .
o I I
Vs
STIAL
o l I
2T Vl: I I
O mem : y Vs
T=
o Vg ! T
L J | »
I ! I el
1 2 3

Figure 5.3.7 ProjectioRy Of f515,(d1, 0,).

Thus far we have considered the case of a convex feasible RgitoweverR; is

not convex in general, but by Theorem 5.3.9 it can be described as the union of non-over-
lapping convex polyhedra. Since we know how to obtairdtreduction of a polyhedron,

we now shall proceed to extend theeduction procedure to handle the more general fea-

168

sible region. In the sequel we consider the feasible régiohaTAFs problem for a cycle-

invariantAoc complete graph.

Definition 5.3.26.- Given the feasible regioR 0 R™" of a TAFs problem, the

T-projection ofR isR, ={t OR™|d O R", (1, d) O R}

Definition 5.3.27.- Given the feasible regioR; 0 R™" of a TAFs problem, the

dreduction ofR isRy={d U R"| Ot OR,, (1, 8) U Ry}.

Definition 5.3.28.-The slice of a feasible regid® 0 R™" at1,, wheret; O R, is

Ri(to) = {0 O R"| (10, 8) O R}

Lemma 5.3.13.-The slice oR; attyis R(t,) = []P;(ty) -
i

Proof.- From Lemma 5.3.9R can be represented as the union of non-overlapping

polyhedraP;. L]
Lemma 5.3.14.-The d-reduction of a feasible regioRs of a TAFS problem is

Rs= N Rty
O, 0R,

Proof.- If point &, belongs to the intersection, then it belongs to every sli€®. of
Thusd, satisfies Definition 5.3.27. Converselyd{f belongs to the reduction &%, then it

must belong to every slice 8. L]

Definition 5.3.29.-Given a feasible regioR; = [] P, offars problem, the set

{x} of extreme points oR; is the union of all extreme points of the non-overlapping poly-

hedraPj that formR;.

169

Definition 5.3.30.-Given a feasible regiofR, = [] P. of mFs problem, and
i

the N t-projectionst; of the set of extreme points Bf, a selection $f, ... , ij, ... , iy) of
R is a set of sliceq Pﬁl('l'l)..., Pﬁj('l'j), Pﬁn(rN)} in which an arbitrary polyhedron

P;; Is selected for eadh.
J

Thus in a selection &%, there is exactly one slice Bf at eaclt-projectiont; of an

extreme point. Notice that the same polyhedpgn can be selected for different
J

Lemma 5.3.15.-Given a feasible region ofaFs problem represented b non-

overlapping polyhedr&; which hasN t-projectionst; of its set of extreme points, there

areMN different possible selections.

Proof.- For eacht-projectiont; any non-overlapping polyhed®; can be chosen

(i.e, the samé; can be chosen for differens). L]
In the following definition, we use the shorthafdo denote a selection.

Definition 5.3.31.-The region of a selectidg = iy, ..., i) of a feasible region is

N
RS = P. .
S mjzl f|j

Lemma 5.3.16.-Given the intersections of two different selectidsand S,,

RS, n RS,=0.

Proof.- SelectionsS; and§;, contain at least one differeRy; for a givent;, say

P (Tjk) and Py (le) Kk # 1, which are non-overlapping. O]
ik I

170

Theorem 5.3.17.Let R be the feasible region ofrars problem. Theé-reduction

of Ris Ry = [1§ , where the union is over tv selections oR..
|

Proof.- Each§ corresponds to tBereduction of the portion d& corresponding

to the selection of non-overlapping polyhe®aof R;, therefore eacly ~ belongs to the

d-reduction ofk.. Now we show that all the points 8f also belong to the union. Suppose
there is such a poid, that is inRs but not in the union. Then for all] R, (t, &) U R
In particular, if 1; is the T-projection of an extreme point d®, (T;, o) U R But

O U Pﬂ('[j) . Becaus#y is not in the unionife., there is no region of a selection involving
Py; (T;) which containg), then there must existrg [R; such thatt, 8) U Ry, which is

a contradiction.]

Theorem 5.3.17 suggests a procedure to obtain the reduction of the feasible region

of aTAFs problem, thus yielding the solution DAFs.

Procedure 5.3.2.-Given the feasible regioR; of a TAFS problem for a cycle-

invariantAoc complete graph, to find tiereduction ofR:
1. Find the set)} of extreme points oR.
2. Find the slice&(t;) of R; at thet-projections §;} of the extreme points.
3. Obtain all the selections B¥.

4. Thed-reductionRs of R is the union of the non-overlapping regions of the

selections oR.

Consider for example the feasible region shown in Figure 5.3.8, which consists of

two convex non-overlapping polygo; andP;,. PolygonPy; has four extreme points

171

Figure 5.3.8 A feasible region.

andPy, has five, while the feasible region has eight (one is common taPpo#mdPs,).

However there are only thraeprojections of the extreme points because some extreme

points have the santecomponent.

Because there are threeprojections of the extreme points and two polygons
forming Ry, the number of possible selection 5=28. One selection iSR,(T;), Pi(T,),
Ps1(T3)} whose region is the shaded intervaldofalues shown in Figure 5.3.8 (an interval

or line segment is a 1-dimensional polyhedron). The other selections whose regions are
non-empty are R (ty), Pr1(T2), Pr(Ta)} and {Pe(T4), Pro(T2), Pra(ta)}-

Figure 5.3.9 Thé-reduction of the feasible region shown in Figure 5.3.8.

172

The &-reduction of the feasible region, shown in Figure 5.3.9, is the union of the
regions of the three non-empty selections. It consists of two disconnected inte®als of

values.

Procedure 5.3.2 is correct based upon the results of this section, particularly
Theorem 5.3.17. However the running complexity of Procedure 5.3.2 is proportional to the
number of selections &, which can be worst-case exponential in the number of extreme
points ofR;, although in the examples that we have worked out most of the regions of
selections are empty. The number of extreme points of a polyhedron can also be exponen-
tial on the dimension of the polyhedron [89]. Howeverth@ojection reduces the num-
ber of slices that need be considered. At the moment we do not have empirical results to be
able to estimate the running time for the average case. Thus it is important for future work

to conduct analysis of the running complexity of our Procedure for average cases and also
to develop a more efficie®treduction algorithms.

Although different algorithms to find the extreme points of a polyhedron exist in
the literature [7, 27, 109, 40, 8, 5], we have used Prof. Fukuda’s cdd algorithm, which is

discussed in [55]. We are very grateful to Prof. Fukuda for making his code available to us

and for providing us with important pointers on this topic.

5.4 Bus arbitration interface example

In this section we apply the concepts developed in the previous sections of this chapter to

analyze the bus arbitration interface design described in Chapter 3. We shosr#tdn
be used to determine the feasibility of an interface design before the interface is even

implemented.

173

Let us consider again the bus arbitration interface design shown in Figure 5.2.3.

The complete graph contains some interface delays, label&d which are unknown

prior to the interface implementation. The purposeass is to determine in the first place
if there is a possible assignment of non-negative values for the interface delays, and if so,

to determine all possible assignments. All but two constraigtar{dA,) are labeled with

the interval [00). Although forTAFs one would have to consider all the constraints, to be
able to visualize the solution we shall concentrate on studying the effect of constraints

labeled with intervalds andA,, which are the two critical timing constraints given in the

VMEDbus specification.

First we write the constraint equations (refer to Section 3.3.4) correspondigg to
andA,. The cycle-invariant fork transition, fé&e> 0, associated with both constraints is

signal transitiorGA+. The constraint equations are given by the following expressions:

{max (8, + 05 + Ty + T, O + T)} — {03} L1 A3
{max (8, + 05 + Ty + T, O + Tp)} U Ay

We proceed to apply thezFs procedure discussed in the previous section. We lin-

earize the max term (common to both equations) by considering two cases:
1. Oy +O5+T1,+Tp205+To

{04+ 05+ Ty + T} — {03} U Ag
{Op+ 05+ T, + 1} U4,

2. Oyt O+ T+ Tp<05+ Ty
{06 + T} — {03} A3
{06+ 1o} UAg

Using the following values for the projections of the known defayst[15, 30],
T, U [20, 80], 1, U [40, 100], and the constraint windows = [30,), andA, = [90,),

one can write the following two sets of linear inequalities:

174

Case 1:

To—T,- T, 0, 05+8<0
—“Ta—Tp+03—-9,—05<-30
—Ta—Tp— 0, - 0;<-90
15<1,<30

20<1,<80

40<1,< 100
§=0,fori=31t06

Case 2:

—To+T,+T,+9,+0—8<0
—To,+03—-05<-30
-T,—0<-90

15<1,<30

20<1,<80

40<1,< 100
§,=0,fori=31t06

Because the delayg andt, are independent, it is possible to combine them into a

single delayt,, such that 6& t,,< 180, to simplify our analysis. One can obtain the

extreme points of the polyhedra described by the two set of inequalitiescasif&f].
Thet-projections ¢, T,p) of the extreme points are: (15, 60), (15, 90), (15, 180), (30, 60),

(30, 90), and (30, 180). Hence there dtsdections, but only 7 are non-empty:

{P4(15, 60),P4(15, 90),P,(15, 180),P,(30, 60),P;(30, 90),P(30, 180)}
{P,(15, 60),P,(15, 90),P,(15, 180),P,(30, 60),P,(30, 90),P,(30, 180)}
{P,(15, 60),P4(15, 90),P,(15, 180),P,(30, 60),P;(30, 90),P(30, 180)}
{P,(15, 60),P4(15, 90),P,(15, 180),P,(30, 60),P,(30, 90),P(30, 180)}
{P,(15, 60),P,(15, 90),P,(15, 180),P,(30, 60),P,(30, 90),P,(30, 180)}
{P,(15, 60),P,(15, 90),P,(15, 180),P,(30, 60),P,(30, 90),P,(30, 180)}
{P,(15, 60),P,(15, 90),P,(15, 180),P,(30, 60),P,(30, 90),P,(30, 180)}

whereP; andP, are the polyhedra described by cases 1 and 2 above respectively.

175

Figure 5.4.1 shows the union of the regions of the non-empty selections, which is a
(non-convex) region in thed§, 8,4, 85, 05} space (one of the axis is label@g+ &5 to make
possible to display the solution in three dimensions), which is the solutiF®fThed-
reduction is the volume bounded by planes that extend to infinity in the directions shown
by the five pointers, reflecting the fact that arbitrary large delays are accommodated by the
handshakes in thevebus andMA bus arbitration protocols. Small values for the inter-
face delays however can cause violations of the timing constraints. The relation between
thed’s is shown in the polytope. For instance, the plane below the pointer startdag at (
0,105, 8g) = (30, 60, 0) is the region where the path throdglanddg is too fast with

respect to thé; path, which causes a violation.

Figure 5.4.1 AFs solution forA; = [30,) andA, = [90, o).

Informally a delay-insensitive circuit is defined as a circuit whose correct opera-
tion is independent of circuit delays. The bus arbitration interface is clearly not delay-

insensitive, otherwise its solution would consist of the whole positive octant.

If constraintsAz andA, are narrowed to intervals [30, 100] and [90, 200], the solu-

tion is shown in Figure 5.4.2. In this case daeeduction is a convex region. One can see

that the solution region in Figure 5.4.2 is inside the solution region shown in Figure 5.4.1

as expected.

176

ds

2o{ J
95 150170 °
’ ’ ’, L

Figure 5.4.2 AFs solution forA; = [30, 100] and\, = [90, 200].

5.5 Summary

In this chapter we formulated the timing analysis for synthesis problem of an interface
design described by a complete graph. The underlying net of the complete graph is par-
tially specified: only the projection of the joint pdf of a sub-set of the delays is known, and
the task is to determine the maximiag.(largest) projection of a joint pdf that can charac-
terize the rest of the delays so that all the constraint rules of the complete graph are satis-
fied.

We have shown thatFs problem is complex because it involves non-convex pro-
gramming due to the presence of non-linearities in the constraint equations that describe
the conditions that must hold for the constraints to be satisfied. Our main contribution is to
have developed a strategy that describes the non-convex regions by the union of non-over-
lapping convex regions, so that standard techniques from convex programming can be

applied.

We have also shown that for such a representation, the solutioxrg)fcalled
o-reduction, for cycle-invariankoc complete graphs amounts to finding the union of a
finite number of intersections of convex regions. Although our proposed procedure that
obtains thed-reduction is not computationally efficient, we believe that the development

of more efficient algorithms is a promising area of future research.

Chapter 6

Conclusions

6.1 Overview of the main contributions

In this dissertation we have presented some results on the topic of timing specification,

timing verification and timing analysis for synthesis of hardware interface circuits.

Firstly, we have proposed an interface specification graph suitable to specify inter-
face specifications. Our interface specification graphs include two types of timing rela-
tionships with different semantics: timing delays and timing constraints. The operational
aspect of an interface specification, timing delays, is captured using a timed signal transi-
tion graph $7G). Other timedsTGs have been proposed previously in the literature, how-
ever oursTG model, which has an underlying probabilistic timed Petri net, is more general
in the sense that a delay is represented by a random variable while in previous efforts it is
characterized by an interval,f;, d,J- One important feature of our timedGs is that
they allow us to describe delay correlation. Moreover the probabilistic view of delays pro-
vides us with a statistical view of the timed behavior that proves essential for a reliability

analysis.

Secondly we have developed a formal timing verification technique that can check
if a system satisfies a set of given timing constraints. The technique is applicable to closed
systems, that is systems that are self-contained and do not require to interact with an envi-

ronment, represented by complete graphs. The type of closed systems that so far we are

178

able to verify are the sub-classaaic complete graphs, in which ondjD andor causal-

ity are allowed, such that each pair of transitions associated with a timing constraint has a
cycle-invariant fork transition. This is not a very serious restriction. On the one hand the
presence of a cycle-invariant fork transition guarantees that the timed behavior of the cir-
cuit is repeatable and thus predictable which is a desirable property of a circuit (although
as was mentioned in this dissertation, the converse is not in general true; that is, the
absence of a cycle-invariant fork transition does not imply that the timed behavior is not
repeatable). On the other hand more complex behaviors, for instance behaviors with free
choice, can be transformed into a collection of simple behaviors withasimyand or
causality by using the idea of processes (although there is potentially the problem of
obtaining a large number of such simple behaviors). This restriction has been met by the
components that we have modeled so far. Extending our timing verification technique is of
course a valuable direction to pursue in future work. It is important to note two major fea-

tures:

1. First, in contrast with previous interface timing verification techniques, for the
case that some of the timing constraints are not satisfied, our technique can
determine the probability that such constraints would be violated. This infor-

mation can be used to support a design for manufacturability methodology.

2. Second the probabilistic treatment admits taking timing correlation into con-
sideration, thus delivering a more accurate analysis as was illustrated in this

dissertation.

Finally, we developed a technique that we have called timing analysis for synthesis
(TAFS). With TAFs it is possible to investigate the feasibility of an interface design prior to
interface synthesis by finding the tightest bounds of the interface delays such that all the
timing constraints are satisfied. The solution (interface delay) space is not convex in gen-
eral which makes this problem very difficult. A key result of our work is that we express
the solution space as the union of non-overlapping convex regions thus allowing us to use

convex techniques.AFs facilitates the exploration of interface designs without having to

179

go through the expensive process of producing a corresponding implementation to be able

to ascertain that the interface circuit will satisfy the given timing constraints.

6.2 Future work

In this section we present some directions that we consider worth pursuing as future
research. Some of our contributions, due to their novelty, are in an early stage of develop-
ment and therefore more work is needed to achieve maturity. Predicting the future is
always a risky business, and thus we do not claim to hold the truth and we encourage the
reader to explore the directions he or she considers important.

A first direction, as hinted in the previous section, is to extend our techniques so
that they can handle richer timed behaviors. A clear candidate is the chagsoR cau-
sality with free choice. Another interesting problem is to extend the techniques so they can
handle constrained transitions for which there is no cycle-invariant fork transition;

although we think that maintaining repeatibility of the behavior is highly desirable.

Improving the efficiency of our techniques is another important direction other-
wise our techniques cannot directly be applied to large-scale problems. The general prob-

lem isNP-complete. One can attack this difficulty using two different strategies:

1. By developing heuristics that although they may not guarantee an exact solu-
tion they should not find a wrong solution; in the probabilistic timing verifica-
tion, a wrong solution is to underestimate the probability that a timing
constraint would be violated; in the timing analysis for synthesis a wrong solu-
tion is to determine that there is a solution space for an infeasible interface
design.

2. By identifying special cases for which the time complexity of the techniques is

significantly reduced. As a simple example, if only single causality is allowed

180

TAFS can be solved by a linear program. Another example is to restrict the type
of probability density functions that characterize the circuit delays (e.g. Gauss-

ian pdf’s).

We also believe that our probabilistic timed Petri nets can be used in related areas
such as real-time systems, distributed systems, computer netetarlks an example, we
show in Appendix A the modelling and analysis of a Seitz arbiter using our probabilistic

timedsTGs.

A final direction we suggest is to investigate if our techniques can be used in a
hierarchical methodology. In such a methodology one can use the fact that a set of mod-
ules has been verified to work correctly to prove that a system composed of such modules
also works correctly. This is a powerful mechanism to contain the ever-increasing com-
plexity of hardware systems. An example is a delay-insensitive methodology that uses cir-
cuits which behave correctly in the presence of arbitrary delay variations. (Notice that
TAFS can determine if an interface design is delay-insensitive, namely when the solution

space does not restrict any of the interface delays.)

181

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

M. Ajmone Marsan, G. Balbo, A. Bobbio, G. Chila, G. Conte and A. Cumani,
“On Petri nets with stochastic timing”, iRroceedings of the International
Workshop on Timed Petri netgp. 80-87, 1985.

T. Amon and G. Borriello, “An approach to symbolic timing verification,” in
Proceedings of the 29th ACM/IEEE Design Automation Confergpcel10—
413, 1992.

T. Amon, H. Hulgaard, S. M. Burns, and G. Borriello, “An algorithm for exact
bounds on the time separation of events in concurrent systerfsgaeedings
of the International Conference on Computer Desgm 166-173, 1993.

Analog Devices, ADSP-21060/62 SHARC data shediorwood, MA,
November 1994.

D. Avis, “A C implementation of the reverse search vertex enumeration
algorithm”, Technical report, School of Computer Science, McGill University,
Montreal, Canada, 1993.

F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadsgthchronization and
Linearity. Wiley series in Probability and Mathematical Statistics. New
York:Wiley and Sons, 1992.

M. L.Balinski, “An algorithm for finding all vertices of convex polyhedral
sets”,Journal of the Society of Industrial Applied Mathemati¢d. 9, No. 1,
pp. 72—88, March 1961.

C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull algorithm for
convex hulls”, Technical report GCC53, The Geometry Center, Minnesota,
U.S.A, 1993.

M. Berkelaar, “Statistical delay calculation”, in Notes of the International
Workshop on Logic Synthesis”, Lake Tahoe, May 1997.

M. Berkelaar, “Statistical delay calculation, a linear time method”, in Proc. of
the International Workshop on Timing Analysis TAU'97, pp 15-24, November
1997.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

182

B. Berthomieu and M. Diaz, “Modeling and verification of time dependent
systems using time petri netdEEE Transactions on Software Engineering
vol. 17, pp. 259-273, March 1991.

E. Best and J. Desel, “Partial order behavior and structure of Petri nets”,
Formal Aspects of Computingol. 2, pp. 123-138, 1990.

W. P. Birmingham and D. P. Siewiorek, “Single board computer synthesis,” in
Expert Systems for Engineering Desi¢g. D. Rychener, ed.), chapter 5,
pp. 113-139, Boston: Academic Press, 1988.

W. P. Birmingham, A. P. Gupta, and D. P. Siewiorek, “MeoN system for
computer design,JEEE Micro, vol. 9, pp. 61-67, October 1989.

G. V. Bochmann, “Hardware specification with temporal logic: An example,”
IEEE Transactions on Computeml. C-31, pp. 223-231, Mar. 1982.

G. Borriello and R.H. Katz, “Synthesis and optimization of interface
transducer logic,” inProceedings of the International Conference on
Computer-Aided Desigmpp. 274-277, 1987.

J. A. Brzozowski, T.Gahlinger, and F. Mavaddat, “Consistency and
satisfiability of waveform timing specificationsNetworks vol. 21, pp. 91—
107, Jan. 1991.

B. Bueler, A. Enge, K. Fukuda and H.-J. Luthi, “Exact Volume Computation
for Polytopes: A Practical Study,” Technical report, Institute for Operations
Research, Swiss Federal Institute of Technology, Zurich, Switzerland.

J.R.Burch, E.M.Clarke, K.L.McMillan, D.L.Dill, and J.Hwang,

“Symbolic model checking: £8 states and beyond,” iRroceedings of the
Fifth Annual Symposium on Logic in Computer Sciedere 1990.

T. M. Burks and K. A. Sakallah, “Min-max linear programming and the timing
analysis of digital circuits”, ifProceedings of the International Conference on
Computer Designpp. 152-155, 1993.

S.M. Burns and A.J. Martin, “Syntax-directed translation of concurrent
programs into self-timed circuits,” Proceedings of the Fifth MIT Conference
on Advanced Research in VL@l Allen and F. Leighton, eds.), pp. 35-50,
Cambridge, Massachussetts: MIT Press, 1988.

S. M. Burns, “Performance analysis and optimization of asynchronous
circuits,” PhD dissertation, Tech. Rep. Caltech-CS-TR-91-01, December 1990.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

183
S. M. Burns, Personal communication, Intel Corp., January 1997.

R. Camposano, L. F. Saunders, and R. M. Tabet, “VHDL as input for High-
level synthesis,JEEE Design & Test of Computensp. 43—49, Mar. 1991,

E. Cerny and K. Khordoc, “Interface Specifications with conjunctive timing
constraints: realizability and compatibility”, Proceedings of the 2nd AMAST
Workshop on Real-Time Systert395.

B. Chandrasekaran and S. Mittal, “Deep versus compiled knowledge
approaches to diagnostic problem-solving,Dievelopment in Expert Systems
London: Academic Press, 1984.

N. V. Chernikova, “An algorithm for finding a general formula for non-
negative solutions of systems of linear inequalitiés$.S.R. Computational
Mathematics and Mathematical Physidi. 5, pp. 228-233, 1965.

Chronology.Timing Designer user’s manud@eaverton, Oregon, 1993.

T.-A. Chu, “On the models for designing VLSI asynchronous digital systems,”
INTEGRATION, the VLSI journaho. 4, pp. 99-113, 1986.

V. Chvatal. Linear Programming. New York:Freeman, 1983.

E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. E. Long, K. L. McMillan,
and L. A. Ness, “Verification of the Futurebus+ cache coherence protocol,” In
L. Claesen, editorProceedings of the Eleventh Symposium on Computer
Hardware Description Languages and their Applicatioméorth-Holland,
April 1993.

J. Cohen and T. Hickey, “Two algorithms for determining volumes of convex
polyhedra.”Journal of the ACMvol. 26, No. 3, pp. 401-414, July 1979.

T. H. Cormen, C. E. Leiserson, and R. L. Rivdstroduction to algorithms
Cambridge,MA: The MIT Press & McGraw-Hill, 1990.

D. del Corso, H. Kirmann, and J. D. Nicoudjcrocomputer buses and links
London: Academic Press, 1986.

D. L. Dill and E. M. Clarke, “Automatic verification of asynchronous circuits
using temporal logic,” ilrProceedings of the Chapell Hill Conference on VLSI
(H. Fuchs, ed.), pp. 127-143, Computer Science Press, 1985.

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

184

D. L. Dill, S. M. Novick, and R. F. Sproull, “Automatic verification of speed-
independent circuits with petri net specifications,” Rmoceedings of the
International Conference on Computer Desigp. 212—-216, 1989.

N. J. Dimopoulos, “On the structure of the Homogeneous Multiprocessor,”
IEEE Transactions on Computemsl. C-34, pp. 141-150, February 1985.

N. J. Dimopoulos, K. F. Li, and E. G. Manning, “DAME: A rule based
designer of microprocessor based systems,”Pmceedings of the 2nd
International Conference on Industrial & Computer Engineering Applications
of Artificial Intelligence and Expert Systenpp. 486—492, June 1989.

N.J. Dimopoulos, B. Huber, K. F. Li, D.Caughey, M. Escalante, D. Li,
R. Burnett, and E. G. Manning, “Modelling components in DAME,” in
Proceedings of the 3rd International Conference on Industrial & Computer
Engineering Applications of Artificial Intelligence and Expert Systems
pp. 716—725, July 1990.

H. EdelsbrunnerAlgorithms in Combinatorial GeometrySpringer-Verlag,
1987.

M. Escalante, N. J. Dimopoulos, B. Huber, K. F. Li, D. Li, and E. G. Manning,
“Generic design rules for the design of microprocessor based systems in
DAME: Bus arbitration subsystem,” iProceedings of the International
Symposium on Circuits and Systeps 3166—3169, June 1991.

M. A. Escalante, “Bus arbitration modelling and design in DAME: An expert
microprocessor-based-systems designer,” M. A. Sc. thesis, University of
Victoria, Department of Electrical and Computer Engineering, 1991.

M. A. Escalante, B. Huber, N.J. Dimopoulos, K.F. Li, D.Li, and E.G.
Manning, “Bus arbitration modelling and design in DAME: An expert
microprocessor-based-systems-designer Prioceedings of the International
Symposium on Artificial Intelligencpp. 238—-244, Nov. 1991.

M. A. Escalante, N. J. Dimopoulos, D. M. Miller, K. F. Li, and E. G. Manning,
“The implementor subsystem in DAME: Using OASIS to complete the design
automation of microprocessor-based systems$Prateedings of the Canadian
Conference on VLSpp. 139-146, October 1992.

M. A. Escalante and M. H.M. Cheng, “Decomposing signal transition
graphs,” inProceedings of the Canadian Conference on Vpg!3B-19-3B-
24, Nov. 1993.

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

185

M. A. Escalante and N. J. Dimopoulos, “Timed asynchronous interface design
in microprocessor-based systems,Pimoceedings of the Canadian Conference
on VLSJ pp. 7-1-7-6, Nov. 1993.

M. A. Escalante and N.J. Dimopoulos, “Timing analysis for synthesis in
microprocessor interface design,” Rroceedings of the Seventh High-Level
Synthesis Symposiypp. 23—-28, May. 1994.

M. A. Escalante, “A probabilistic approach to timing analysis for synthesis and
its application to microprocessor interface design”, Technical Report
ECE 94-6, Dept. of Electrical and Computer Engineering, University of
Victoria, June 1994,

M. A. Escalante, “A probabilistic timing analysis in microprocessor interface
design”, in Proceedings of the IEEE Pacific Rim Conference on
Communications, Computers and Signal Proces$pg277-280, 1995.

M. A. Escalante and N. J. Dimopoulos, “Assessing the Feasibility of Hardware
Interface Designs before their Implementatioln’,Proceedings of the Asian
South-Pacific Design Automation Conference (ASP-DAC'@%)ba, Japan,
August 1995.

M. A. Escalante, N. Dimopoulos, D. Gyuroff, and H. Muller, “Timing analysis
for synthesis of hardware interface controllers using timed signal transition
graphs”, inProceedings of the 8th International Workshop on Petri nets and
Performance Mode]gp. 232—-240, 1995.

M. A. Escalante and N. J. Dimopoulos, “Modeling Timing Correlation and the
Accurate Timing Verification of Digital Interface Circuitdf) Proceedings of
the Mid-West Symposium on Circuits and Syst&as Moines, lowa, August
1996.

M. A. Escalante, L. Lavagno, and N. J. Dimopoulos, “Performance Analysis of
an Arbiter using Probabilistic Timed Petri Netdf)y Proceedings of the
International Workshop on Logic Synthediake Tahoe, May 1997.

J. Esparza, “A partial order approach to model checking”, Manuscript, Institut
fur Informatik, Universitat Hildesheim, Germany, February 1993.

K. Fukuda, “cdd.c: A C-implementation of the double description method for

computing all vertices and extremal rays of a convex polyhedron given by a
system of linear inequalities”, Technical report, Department of Mathematics,
Swiss Federal Institute of Technology, Zurich, Switzerland, 1993.

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

186

K. Fukuda, “Cdd user’s manual,” Institute for Operations Research, Swiss
Federal Institute of Technology, Zurich, Switzerland, 1996.

M. R. Garey and D. S. Johnshon. Computers and Intractability: A guide to the
theory of NP-Completeness. W. H. Freeman and Company. 1979.

A. Gibbons. Algorithmic Graph Theory Cambridge:Cambridge University
Press, 1989.

P. Gritzmann and V. Klee, “On the complexity of some basic problems in
computational convexity: Volume and mixed volumes,” Technical Report 94-
07, Universitat Trier, 1994.

B. GrinbaumConvex Polytoped.ondon:John Wiley and Sons, 1967.

J. Gunawardena, “Causal automat8iieoretical Computer Scienceol. 101,
no. 2, pp. 265-288, 1992.

B. T. Hailpern, “Verifying concurrent processes using temporal logic,” Tech.
Rep. 195, Computer Systems Laboratory, Stanford Univ., Stanford, CA, 1980.

C. A. R. Hoare, “Communicating sequential process€aimmunications of
the ACM vol. 21, pp. 666-677, Aug. 1978.

L.A. Hollaar, “Direct implementation of asynchronous control unitE§EE
Transactions on Computengol. C-31, pp. 1133-1141, December 1982.

B. Huber, M. Escalante, D. Caughey, N. J. Dimopoulos, K. F. Li, D. Li, and

E. G. Manning, “Microprocessor components and signal behavior modelling in
DAME,” in Proceedings of the Canadian Conference on Electrical and

Computer Engineeringrol. 1, pp. 19.4.1-19.4.4, September 1990.

H. Hulgaard, S. M. Burns, T. Amon, and G. Borriello, “Practical applications
of an efficient time separation of events algorithm,”Aroceedings of the
International Conference on Computer-Aided Desigp. 146-151, IEEE,
1993.

H. Hulgaard,Timing analysis and verification of timed asynchronous circuits
PhD dissertation, University of Washington, 1995.

E. Hyvonen, “Constraint reasoning based on interval arithmetic: the tolerance
propagation approachArtificial Intelligence vol. 58, pp. 71-112, 1992.

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

187

IEEE. IEEE Standard for a Versatile Backplane Bus: VMEBYsw York:
IEEE Press, 1988.

H. Jyu, S. Malik, S. Devadas, and K. Keutzer, “Statistical timing analysis of
combinational circuits”|EEE Trans. on VLSI Systepwl. 1, No. 2, pp. 126—
137, Jun. 1993.

G. Juanole and Y. Atamna, “Dealing with arbitrary time distributions with the
stochastic timed Petri net model - Applications to queueing systems”, in
Proceedings of the Fourth International Workshop on Petri Nets and
Performance Mode]gp. 166—173, December 1991.

K. Khordoc and E. Cerny, “Modeling Cell-processing hardware with action
diagrams”, inProceedings of the International Symposium on Circuits and
SystemsJune 1994,

L. Kucera,Combinatorial AlgorithmsBristol:Adam Hilger, 1990.

Y.-H. Kuo, L. Kung, C.-C. Tzeng, G.-H. Jeng, and W.-K. Chia, “KMDS: An
expert system for integrated hardware/software design of microprocessor-
based digital systemslEEE Micro, vol. 11, pp. 32-92, August 1991.

J.B. Lasserre, “An analytical expression and an algorithm for the volume of a

convex polyhedron inR",” J. of Optimization Theory and Applications
vol. 39, No. 3, pp. 363-377, 1983.

L. Lavagno, K. Keutzer, and A. Sangiovanni-Vincentelli, “Algorithms for
synthesis of hazard-free asynchronous circuits,Pioceedings of the 28th
ACM/IEEE Design Automation Conferenpg. 302—-308, June 1991.

L. Lavagno, C. W. Moon, R. K. Brayton, and A. Sangiovannin-Vincentelli,
“Solving the state assignment problem for signal transition graphs,” in
Proceedings of the 29th ACM/IEEE Design Automation Confergmpcé&68—
572, 1992.

L. Lavagno and A. Sangiovanni-Vincentelli, “Linear programming for
optimum hazard elimination in asynchronous circuits,Piceedings of the
International Conference on Computer Desigp. 275-278, 1992.

L. Lavagno, “Synthesis and testing of bounded wire delay asynchronous
circuits from signal transition graphs,” Tech. Rep. UCB/ERL M92/140, U.C.
Berkeley, November 1992.

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

188

J. Lawrence, “Polytope volume computatiohfathematics of Computation
vol. 57, No. 195, pp. 259-271, 1991.

Y. Liu, “Reasoning about asynchronous designs in CCS,” Tech. Rep. No. 92-
492-30, University of Calgary, Department of Electrical and Computer
Engineering, Calgary, Alberta, 1992.

K. L. McMillan and D. L. Dill, “Algorithms for interface timing verification,”
in Proceedings of the International Conference on Computer Depjyi8—
51, 1992.

K. L. McMillan and J. Schwalbe, “Formal verification of the Encore Gigamax
cache consistency protocols,” in the Proceedings of the International
Symposium on Shared Memory Multiprocessors, April 1991.

M. A. Marsan, G. Balbo, and G. Conte, “A class of Generalized Stochastic
Petri nets for the performance evaluation of multiprocessor syst&Gd/,
Transactions on Computer Systesl. 2, 1984.

A.J. Martin, S. M. Burns, T. K. Lee, D. Borkovic, and P.J. Hazenwindus,
“The design of an asynchronous microprocessor,Pmceedings of the
Decennial Caltech Conference on VLEL. L. Seitz, ed.), pp.351-373,
Cambridge, Massachussetts: MIT Press, 1989.

A.J. Martin, “Programming in VLSI: From communicating processes to
delay-insensitive circuits,” il T Year of Programming Institute on Concurrent
Programming (C. A. H. Hoare, ed.), pp.1-64, Reading, Massachussetts:
Addison-Wesley, 1990.

A. J. Martin, “Synthesis of asynchronous VLSI circuits,”Harmal methods
for VLSI design(J. Staunstrup, ed.), ch. 5, pp. 237-283, North-Holland, 1990.

F. Maruyama and M. Fuijita, “Hardware verificatiotZEE Computerpp. 22—
32, Feb. 1985.

T. H. Mattheis and D. S. Rubin, “A survey and comparison of methods for
finding all vertices of convex polyhedral setdburnal of Mathematics of
Operation Researchol. 5, No. 2, pp. 167-185, May 1980.

Philip M. Merlin and David J. Farber, “Recoverability of communication
protocols - Implications of a theoretical studyEEE Transactions on
Communicationspp. 1036—-1043, September 1976.

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

189

Philip M. Merlin, “Specification and validation of protocols”]JEEE
Transactions on Communicatignyol. COM-27, No. 11, pp. 1671-1680,
November 1979.

R. Milner, Communication and Concurrencgeries in Computer Science,
Hertfordshire: Prentice Hall, 1989.

C.E. Molnar, T.-P. Fang, and F.U. Rosenberger, “Synthesis of delay-
insensitive modules,” iProceedings of the Chapell Hill Conference on VLSI
(H. Fuchs, ed.), pp. 67-86, Computer Science Press, 1985.

B. Moszkowski, “A temporal logic for multilevel reasoning about hardware,”
IEEE Computerpp. 10-21, Feb. 1985.

Motorola, MC68010 microprocessor user’s manudustin, Texas, August
1983.

T. Murata, “Petri nets: Properties, analysis and applicatidh®teedings of
the IEEE vol. 77, pp. 541-580, Apr. 1989.

C. Myers and T. H.-Y. Meng, “Synthesis of timed asynchronous circuits,” in
Proceedings of the International Conference on Computer Depgr279—
284, 1992.

C.J. Myers and T. H.-Y. Meng, “Synthesis of timed asynchronous circuits,”
IEEE Transactions on VLSI Systemwal. 1, no. 2, pp. 106-119, June 1993.

F.N. Najm, R. Burch, P.Yang, and I. N. Hajj, “Probabilistic simulation for
reliability of CMOS VLSI circuits”,IEEE Transactions on CAD/ol. 9, No. 4,
pp. 439-450, April 1990.

F.N. Najm, “Feedback, correlation, and delay concerns in the power
estimation of VLSI circuits,” inProceedings of the 32th ACM/IEEE Design
Automation Conferen¢g@p. 612—617, June 1995.

J. A. Nestor and D. E. Thomas, “Behavioral synthesis with interfaces,” in
Proceedings of the International Conference on Computer-Aided Design
pp. 112-115, 1986.

K. Okumura, “A formal protocol conversion method,” Froceedings ACM
SIGCOMM pp. 30-37, 1986.

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

190

E.-R. Olderog, “Nets, terms and formulas: Three views of concurrent
processes and their relationship,” Tech. Report, Universitat Oldenburg, FB
Informatik, 1989.

C. H. Papadimitriou and K. SteiglitZombinatorial Optimization: Algorithms
and ComplexityEnglewood Cliffs, NJ: Prentice-Hall, 1982.

A. Papoulis,Probability, Random Variables, and Stochastic Proces3ed.
edition. New York: McGraw-Hill, 1984.

P. Z. PeeblesProbability, random variables, and random signal principles
3rd ed. New York:McGraw-Hill, 1993.

J. L. PetersonPetri Net Theory and the Modeling of Systemsglewoods
Cliffs, NJ: Prentice Hall, 1981.

C. A. Petri, “Non-sequential Processes”, Internal Report GMD-ISF-77-5,
Gesellschatft fur Informatik and Datenver-arbeitung, Bonn, Germany, 1977.

F. P. Preparata and M. I. Sham@&mputational Geometry: An introduction
New York: Springer-Verlag, 1985.

C.V.Ramamoorthy and GaryS.Ho, “Performance Evaluation of
Asynchronous concurrent systems using Petri néEEE Transactions on
Software Engineering/ol. SE-6, No. 5, pp. 440-449, September 1980.

C. Ramchandani, “Analysis of asynchronous concurrent systems by Petri
nets”, Project MAC, TR-120, MIT, Cambridge, MA, 1974.

H. Ratschek and J. Rokn€omputer Methods for the Range of Functions
Chichester, England: Ellis Horwood, 1984.

W. Reisig Petri nets: An IntroductionSpringer-Verlag, Berlin, 1985.

T. G. Rokicki,Representing and Modeling Digital CircuitBhD dissertation,
Stanford University, Dec. 1993.

L. Y. Rosenblum and A. V. Yakovlev, “Signal graphs: From self-timed to timed
ones,” inProceedings of the International Workshop on Timed Petri,Nets
pp. 199-207, IEEE Computer Society Press, July 1985.

C. L. Seitz,System Timingchapter 7, pp. 218-262, Reading, Massachusetts:
Addison-Wesley, 1980.

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

191

J. Sifakis, “Performance evaluation of systems using net®einrheory and
Applications Lecture Notes in Computer Science, Springer-Verlag, pp. 307—
319, 1980.

J. L. A. van de Snepschedtace theory and VLSI desigNo. 200 in Lecture
Notes in Computer Science, Berlin: Springer-Verlag, 1985.

H. S. StoneMicrocomputer InterfacingReading, Massachussetts: Addison-
Wesley, 1982.

Texas Instrument8/OS memory data bopkallas, Texas, 1988.

J. T. Udding, “A formal model for defining and classifying delay-insensitive
circuits and systemspPistributed Computingvol. 1, pp. 197-204, 1986.

P. Van Beek, “Reasoning about qualitative temporal informatiartjficial
Intelligence vol. 58, pp. 297-326, 1992.

P. Vanbekbergen, F. Catthoor, G. Goosens, and H.de Man, “Optimized
synthesis of asynchronous control circuits from graph-theoretic
specifications,” inProceedings of the International Conference on Computer-
Aided Designpp. 184-187, 1990.

P. Vanbekbergergynthesis of Asynchronous Controllers from Graph-theoretic
SpecificationsPhD dissertation, Katholieke Universiteit Leuven, Sept. 1993.

P. Vanbekbergen, G. Goosens, and B. Lin, “Modeling and synthesis of timed
asynchronous circuits”, iProceedings of the European Design Automation
Conferencepp. 460-465, 1994.

W. M. P. Van Der Aalst, “Interval timed coloured Petri nets and their analysis”,
in 14th. International Conferenco on the Application and Theory of Petri Nets,
No. 691 in Lecture Notes in Computer Science, Berlin: Springer-Verlag, 1993.

P. Van Hentenryck, H. Simonis, and M. Dincbas, “Constraint satisfaction using
constraint logic programming,Artificial Intelligence vol. 58, pp. 113-159,
1992.

E. Walkup and G. Borriello, “Interface timing verification with application to
synthesis,” irProceedings of the Design Automation Confereppel06-112,
1994,

P. H. Winston Artificial Intelligence second edition. Reading, MA:Addisson-
Wesley, 1984.

[130]

[131]

[132]

[133]

[134]

192

W. Wolf, Modern vLsI design: A systems approadinglewoods Cliffs, NJ:
Prentice Hall, 1994.

A. V. Yakovlev, “On limitations and extensions of STG model for designing
asynchronous control circuits,” Proceedings of the International Conference
on Computer Desigrpp. 396—400, 1992.

T.-Y. Yen, A.lIshii, A.Casavant, and W.Wolf, “Efficient algorithms for
interface timing verification”, inProceedings of the European Design
Automation Conferen¢c@p. 34—39, 1994.

J.Zejda and E. Cerny, “Gate-level timing verification using window
narrowing”, in Proceedings of the European Design Automation Conference
pp. 374-379, 1994.

J.J. Zhu and R.T. Denton, “Timed Petri nets and their application,” in
Proceedings of the Military Communications Conference MILCPM 195—
199, Oct. 1988.

Appendix A

Performance analysis of an arbiter

A.1 Introduction

Interval timing analysis has been used to determine the worst-case scenario of the perfor-
mance of asynchronous circuits modeled by timed signal transition graphs [3]. There are
some situations in which a worst-case analysis is not very appropriate. For instance if

some of the involved delays are unbounded.

In this appendix we consider the problem of modeling the performance of an arbi-
ter. An ideal 2-way arbiter controls access to a shared resource that can only service one
client at a time. Such an arbiter can accept up to two requests at any time, but it will pro-

duce at most one grant even if the requests arrive simultaneously.

A typical circuit that implements an arbiter is the Seitz arbiter shown in

Figure A.1.1. If only one of the requests is generated, the corresponding grant is produced
after some delay. However if both requests arrive at (about) the same time, the NAND

latch may enter a metastable state, and the resolutiorn fjnadter which only one of the

grants is generated, can be arbitrarily long. The probability density function that describes

the timet,, when a circuit that has entered a metastable behavior leaves such state is given

by (cf. [116]):

fon(Tp) = C ek (Eq. A.1.1)

194

whereC andK are constants that depend on properties of the circuit elements. Notice
that in the Seitz’ arbiter, the differential detection circuit after the NAND latch always
exhibits a well defined binary output, not being affected by the metastable behavior

that may take place in the SR latch.

9

91
Figure A.1.1 Seitz’ arbiter.

If one wants to determine the worst delay of a grant from a request for the
Seitz’ arbiter, the answer would be “arbitrarily long”, which lacks a quantitative
notion. Instead of using a timed Petri net with intervals associated with its places
which has the limitation that can only characterize a worst-case scenario, we propose

to model the metastable behavior using a probabilistic Petri net in which random vari-

ables are associated with its places [48, 49] because it allows us to quantify a possibly

unbounded delay by obtaining its probability density function (pdf).

Figure A.1.2 shows a partial timed Petri net [117, 51] that represerttstte
behavior of an ideal arbiter. In interv@tined Petri nets, a compact non-empty time
interval is associated with each place [51]. A transition fires immediately when all its
input places havesibletoken. When a transition fires, it consumes the tokens on its
input places, and sends tokens to its output places. A place labeled with ifsténed|

receives a token at tinte will make the token visible at tinet+ 1;, wherert; O A;.

195

NGOG

01 " " Jo

4]

Figure A.1.2 Arbiter.

To understand the net shown in Figure A.1.2, let us assume that the token
shown in the common input place to transitigngndg, is already visible. Suppose
that a token is made visible at the input place ot hen transitiom, fires and sends a
token to place, labeled with intervad\;. When the tokematures(i.e., becomes visi-
ble) in placep,, and if there is no visible token at plgee(labeled with interval\,),
then transitiory, fires. Thus the grant enabled by the the first visible token (at place
or placep,) is the only one that fires. If tokens at both plggeandp, mature exactly
at the same time, one of the grant transitgyns g, is chosen to fire non-deterministi-

cally.

Clearly this Petri net cannot model the richer behavior of the Seitz’ arbiter,
since it does not distinguish between meta-stability and normal (digital) behavior. In

the next section we will propose a more accurate model that takes meta-stability into

account. In order to do so, we have to consider probabilistic Petri nets [49]. In such
nets, each place is associated with a random variable which is characterized by a prob-
ability density function. This variable represents the random maturing time of the

token, relative to the time when the token arrives in the place.

196

A.2 Model of the Seitz’ arbiter

In this section we introduce our probabilistic approach to the timing analysis of asyn-

chronous circuits by working out a case example: the Seitz’ arbiter.

Throughout this appendix we will make the following assumptions: (i) the cir-
cuit responds with a fixed delay if the separation between the requests is greater than
T, (ii) if the requests arrive withim,, of each other, the probability that a grant is gen-
erated after delawy, is given by Eq. A.1.1; (iii) strictly speakingdepends on the time

of arrival of the requests but in this appendix we assumd&tlsainvariant.

We propose to model the Seitz’ arbiter with the Petri net shown in
Figure A.2.1. This Petri net models only the grant phase of the arbiter in which only
one grant is generated to a given request or requests. To understand the behavior of the

Petri net shown in Figure A.2.1, consider first the case in which a request arrives and

the other request is not issued during the windgw

Due to symmetry, it suffices to consider only requesWWhen transitiorr;
fires after a token matures at its input place, it puts tokens into gaeesp,. Unla-
beled places such pgsmake tokens visible immediately (i.e., the) of the corre-
sponding associated random variabigs the Dirac’s impulse functiod(x)). Placep, is
labeled with random variablg, with pdf shown in Figure A.3.1. Thus transitipro-
ceedwill fire after T,, and transitiorg, will fire after D;. The total delay from the

occurrence of, to the issuance of the respective grai,is D;.

However if request, fires within windowT,, afterr; has fired, then transition
metawill fire and eitherg, or g, (as selected by the free choice plpgewill be gener-

ated after a delay,. Random variabla, obeys an exponential pdf as given by

Eq. A.1.1.

>

v

w Dl

Figure A.2.2 Probability distributions of the random variables
associated with labeled places of the Petri net shown in Figure A.2.1.

197

198

A.3 Analysis

In this section we discuss how to analyze the Petri net shown in Figure A.2.1. We
assume that the pdf’s of the time of occurrence for requeatsdr,, 1,, andt,,, are
known and given by, (t,,) andf,,(T,,) (refer to Figure A.3.2). (In [49] we show how

to find the pdf of a given transition for a sub-class of probabilistic timed Petri nets.)
Our goal is to determine the probabilistic profile (i.e., pdf) of the grant transgions

anddg,.

Figure A.3.1 Probability distributions of the random variables
associated with labeled places of the Petri net shown in Figure A.2.1.

In this section we discuss how to analyze the Petri net shown in Figure A.2.1. We

assume that the pdf’s of the time of occurrence for requgatdr, are known (refer

to Figure A.3.2). (In [49] we show how to find the pdf of a given transition for a sub-
class of probabilistic timed Petri nets.) Our goal is to determine the probabilistic pro-

file (i.e., pdf) of the grant transitiorgg andg,.

From the previous analysis it is clear that the firing of transinostsandpro-

ceedare mutually exclusive (i.e. there is a single token in gigce

Let us find the time of occurrence of transitign First we introduce some

basic concepts from [105]. L&tbe a random variable with probability density func-

tion (pdf)f(x). The probability that variabbetakes a value in range, Jx,) is given by:

199

Figure A.3.2 Probability of the time occurrence of requgsasdr .

Prob{x; £ X <x,} = F, (%) — F(X,) (Eq. A.3.1)

whereF,(X) is the accumulative distribution function of random variable x, related to

f(X) by the following equation:
X
F00 =] f(at (Eq. A.3.2)

Using Egs. A.3.1 and A.3.2, it can be shown that:
Probfx, < x <x, + dx} = f(x) dx (Eq. A.3.3)

The random variable,, associated with plage, represents a metastable state

and thus it is described by the exponentialfpgt,) given by Eq. A.1.1. The probabil-

ity density functions,,(t,;) describe the firing of transitiomsat timet,;, fori =1, 2.

From the discussion in Section A.2, the probability that transineta will

fire at timea (blocking the firing ofproceed is:

Prob{a < T, ¢,< a+da} =
Prob{a < 1., <a+da} [(Prob{o-T,<T1,<a} +
Prob{a-T, <T1,, <a} [(Probfa <1, <a+da} +
Prob{a < 1., <a+da} [(Prob{a <T1,, <a+da} (Eq. A.3.4)

200

Similarly the probability that transitioproceedfires at timea given that tran-

sitionr, has occurred is given by:

Prob{a < Tjceeqyr < 0+da} =

Prob{o-T, < 1,, <a-T,+da} 1 - Prob{,, < a} (Eq. A.3.5)

Thus the pdf's of the occurrence time for transitions meta and proceed are

given by:
fned) =
[FTrZ(a) - FTI’Z(G_TW)] EfTI’l(a) + [FTl’l(a) - FTrl(a_Tw)] EfTI’Z(a) (Eq A36)
fproceele(a) = [1 - FTrZ(a)] |:JfTrl(c‘(_Tw) (Eq A37)

Let us assume for the sake of illustration that hgtlndf,,, are uniform in the

interval [0D] and thatD =20T,. Substituting the parameters of the pdf's into

Egs. A.3.6 and A.3.7, one can obtain the following expressions:

[ID—a

D D2 if Ty,<a<D
foroceedr1(0) = []

%0, otherwise

[]2a

N2’ fO<a<T,

|:| D w
fmeid) = [T, |

[1D2 if Ty<as<D

DO, otherwise

If proceedhas occurred due tg, the grang, will be issued at time,,ceeq T1,

wheret, is the random variable associated with placdo compute the firing time of

201

g, we shall use the fact that the pdf of random varialleg + zisf, = f, [f, if y andz

are independent random variables, wherd tbperator denotes convolution [105].

If meta has occurred, plapgselects eitheg, or g,, with a 50% chance. (Note:
in a first approximation, a non-deterministic choice event can be considered a ran-
domly selected event; an extension of the model could assign a probability to each of
the choices of a free choice place). The pdf of random vanglalgsociated witp, is

f.m = C eXm for 1,20, andg,, if selected, will fire at time i, + T,
Thus the probability thag, will be issued at time is given by:
f2(00) = Foroceeqya() Ofa(a) + 0.5) Of(c) (Eq. A.3.8)

The first term corresponds to the generatiom,ofia proceed(which isf,.

«<eq12(0—Dy), a transport delay) and the second term corresponds to the generation of

g, via meta Figure A.3.3 shows the pdf of the occurrence of ggambr the uniform
case. One can observe a “triangular” shape that correspogdgéeoerated vigro-
ceed and a tail that correspondsgpgenerated vianeta The area under the curve is
0.5 which represents the 50% probability of occurrenag (d, andg, being equally
likely to occur). The probability thag, is generated after a delayl5 diminishes
exponentially. For example the probability tigawill be generated after 15time units
is approximately 1.9%. Moreover, the probability tgatwill be generated after 40

time units is under 0.15%.

A.4 Summary

We have introduced a probabilistic model capable of representing with more accuracy
the complex behavior of the Seitz’ arbiter, including metastability. The advantage of

our approach is twofold: first our analysis procedure relies upon a formal model for

202

0.1

0.09- ,

0.08 T

0.07r- 4

0.06 : : T

0.05 : : N,

0.04 T

0.03- T

0.02 T

0.01r- T

0 i ! Il 1
0 10 20 30 40 50 60

Figure A.3.3 Probability density function of the occurrence ting of
for D=10,D4=5, andK=0.1.
circuit specification (a probabilistic timed Petri net), and secondly our model is an

extension of signal transition graphs (STG's) [29, 79] which are widely used to

describe asynchronous circuits.

We believe that a probabilistic analysis is essential in the qualitative study of
the impact of metastable behavior in the timing performance of asynchronous circuits

which can exhibit this phenomenon.

	Title
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Notation
	Chapter 1: Introduction
	Chapter 2: Representation of Interface Specifications
	Chapter 3: Timing and the Interface Design
	Chapter 4: Probabilistic Interface Timing Verification
	Chapter 5: Timing Analysis for Synthesis
	Chapter 6: Conclusions
	Bibliography
	Appendix A: Performance Analysis of an Arbiter

